
The newclude LaTeX package
A new system for including files (Frankenstein’s

backbone)

Matt Swift <swift@alum.mit.edu>

Version: 2 Date: 1999/11/02
Documentation revision: 1999/11/02

Abstract

Newclude is a backwards-compatible reimplementation of the LATEX sys-
tem for including files. The princpal new features are: (1) the restriction
that \clearpages must surround an included file is removed, (2) the restric-
tion that \includes cannot be nested is removed, and (3) the provision of
hooks executed before and after the contents of an included file. Newclude
accomplishes the first two by using a single aux file instead of many.

Still in development, but already useful in many situations, are new com-
mands that include partial contents of independent LATEX files, which can
also be processed on their own (that is, files that contain \documentclass,
\begin{document}, etc.). Newclude absorbs and supersedes the former
package includex.

1

Contents

I Discussion 3

1 Introduction 3

2 Usage 3

3 Experimental features 5

4 Options 6
4.1 Simple . 6
4.2 Tag . 7
4.3 Allocate . 7

5 Programmers’ interface 8

6 How to play nicely with newclude 8

II Implementation 10

7 Version control 10

8 Review of the kernel’s inclusion system 10

9 Discussion of newclude’s inclusion system 11

10 Package initialization 11

11 Simple 12

12 Common 13

13 Experimental common 14

14 Tag 17
14.1 Writing to \@auxout . 17
14.2 Kernel redefinitions . 17
14.3 Checkpoints . 19
14.4 Including . 19

15 Allocate 23
15.0.1 Wheels . 23
15.0.2 Preliminaries . 24
15.0.3 Static allocation . 25
15.0.4 Dynamic allocation . 26
15.0.5 Including . 26
15.0.6 Checkpoints . 28
15.0.7 Wheels . 29

2

16 Benign packages 29

3

Part I

Discussion

1 Introduction

Let us call a file that might be included into another document with a command in
the \include family a part. When a part is actually included during a particular
processing run, let us call it an included part, and when it is not included, let us
call it an unincluded part. Notice that an unincluded part is not the same as a file
that was never a candidate for inclusion with a command in the \include family.

The newclude package adds these features to the standard LaTeX inclusion
system:

1. Hooks \AtBeginInclude and \AtEndInclude are provided.

2. Optional arguments to \include and friends override current values of
\AtBeginInclude and \AtEndInclude.

3. \include* is like \include but with arbitrary commands rather than
\clearpages surrounding the part.

4. \include and friends can be nested.

5. \includeall cancels the effect of \includeonly.

6. \IfAllowed 〈filename〉 is a new conditional that branches, depending on
what has been declared in an \includeonly.

7. Commands \includedoc etc. include a part that can be processed indepen-
dently. These features are in development.

Newclude accepts three mutually-exclusive package options, with tag the de-
fault when no package option is given.

Loading newclude with the simple option provides only features 1 and 2. If
you don’t use either of these new features, the standard LATEX and newclude
inclusion systems will behave identically except in some unusual and benign odd
cases relating the the parsing of the new optional arguments to \include, which
are discussed below in that command’s documentation.

The options tag and allocate each implement all the above features with a
different method. Each method introduces different discrepancies from standard
LATEX which are discussed below in sections 4.2 and 4.3. If I discover how to make
one method never inferior to the other, I will remove the other option from the
package.

2 Usage

\include [〈prehook〉]{〈filename〉}[〈posthook〉] behaves like standard LATEX’s\include

\AtBeginInclude

\AtEndInclude

\include except that it can be nested and the contents of the two hook argu-
ments, when they are given, are inserted at the beginning and end of the part
whenever it is included, overriding the current values of \AtBeginInclude and
\AtEndInclude.

4

Warning: Right square braces (]s) in the optional arguments must be sur-
rounded by curly braces to avoid confusing the argument parser.

Warning: A left square brace ([) that immediately follows an \include

command’s mandatory 〈filename〉 argument (after optional whitespace) will be
considered to delimit the beginning of the 〈posthook〉 argument. If you want an
actual left brace character in this position, you must precede it with something
that will terminate TEX’s search for an optional argument, such as \relax , , or a
paragraph division (explicit or implicit).

The commands \AtBeginInclude 〈tokens〉 and \AtEndInclude 〈tokens〉 are
analagous to standard LATEX’s commands \AtBeginDocument 〈tokens〉 and \AtEndDocument
〈tokens〉.

FIX: multiple instances concatenate?
FIX give name to what’s held by atbegininclude so that an override can mention

it
When the optional argument 〈prehook〉 is given to \include, its contents will

be used instead of whatever has been specified with \AtBeginInclude, for that
one inclusion. Likewise, 〈posthook〉 will be used in place of whatever has been
specified with \AtEndInclude for that one inclusion.

For example, putting the \chapter declaration in the 〈prehook〉 argument
allows the chapter name, and, optionally, a corresponding LATEX label, to be kept
in the including file, rather than the included file:

\include [\chapter{Whales}

\label{ch:whales}]

{big-cetecea}

The 〈posthook〉 argument can be used, for example, to delimit or undo dec-
larations made in the 〈prehook〉 or the included file: FIX: better example, since
these coudl simple appear before/after the \include without ill effect.

\include [\begingroup\larger] % this part in larger type

{manifesto}

[\endgroup]

\include*[〈prehook〉]{〈filename〉}[〈posthook〉] is like \include but omits\include*

\IncludeSurround

\DefaultIncludeSurround

the usual \clearpages that surround an included part, replacing them with
\IncludeSurround, which defaults to \DefaultIncludeSurround. The contents
of \IncludeSurround are inserted before the 〈prehook〉 or whatever has been
specified with \AtBeginInclude, and after the 〈posthook〉 or whatever has been
specified with \AtEndInclude.

Warning: A space gets inserted after an \include* unless it is suppressed
by a immediately following. Combined with trailing spaces in the included file,
this may lead to unwanted spaces. For this reason, \DefaultIncludeSurround
is initialized to \par . When the user must explicitly change \IncludeSurround

to achieve totally smooth flow from main file to included file, they are more likely
to consult this documentation if they spot a problem. Package and class writers
should take this difficulty into account when changing \DefaultIncludeSurround .

The \includeonly command is reimplemented, but its usage and behavior is\includeonly

the same as the standard LATEX version.
The \includeall command cancels the effect of any \includeonly command\includeall

presently in effect.

5

If you write an \includeonly so that each file appears on its own line, it is
particularly easy to add and remove files to include by commenting out their lines,
but it becomes laborious to comment out the entire \includeonly command. It’s
easy, however, to uncomment a single \includeall command when you want
to process the entire document. (Or \includeall could be inserted from the
command line that invokes LATEX, and so on.)

3 Experimental features

\includeenv [〈prehook〉]{〈filename〉}{〈environment name〉} {〈instance〉}[〈posthook〉]\includeenv

\includeenv *[〈prehook〉]{〈filename〉}{〈environment name〉} {〈instance〉}[〈posthook〉]
\includeenv includes the contents of a single LATEX environment that appears

in 〈filename〉. The environment is specified by giving its name (〈environment〉)
and an instance of that environment in the file (〈instance〉). Presently, 〈instance〉
is ignored, so that it will always be the contents of the first occurrence in 〈filename〉
of a LATEX environment with the name 〈environment〉 that will be included. In
the future, the 〈instance〉 argument may be used to specify the nth instance of the
environment within the file, or further specify the environment to be extracted in
some other way.

FIX: right now they’re required; skip text up to documentclass OR the target,
then branch?

Good preamble syntactic sugar: \let\TheMarkupDeclarations\begin
To do: You can insert a \usepackage into the main aux file and have it

loaded properly. If we discover a \usepackage that is not a formatting package,
one strategy is to insert a corresponding \usepackage into the (main) aux file
and then bail after the preamble.

To do: You can’t skip verbatim text via macro argument processing and sugar.
this means that a major reimplementation of skipping using verbatim methods will
have to be done.

The included file is permitted (but not required) to have its own \documentclass
command and \begin{document} . . . \end{document} pair. \includeenv ex-
tracts the specified environment by processing the preamble if one exists, skipping
text up until the beginning of the specified environment, processing the contents
of the environment, and skipping the rest of the included part.

Notice that while a \begin{document} . . . \end{document} pair may not
technically delimit a LATEX environment, you may nevertheless (because it looks
exactly like an environment) set 〈environment〉 to document to extract the contents
of the document “environment” of 〈filename〉.

Consider the following issues when you are tempted to use this command.
Maybe the \usepackage you are about to disregard is necessary to processing
the part’s contents. Maybe it conflicts with a package already loaded at top
level. Maybe both! The same holds of course for the defining commands like
\newcommand that one expects to find in a package.

A deep problem with the design of a LATEX source file exists with respect to
the function of the preamble. The preamble contains declarations that determine
how the document below will be formatted. Unfortunately, there is no way to
make the distinction between:

1. declarations that signal that certain markup will appear in the document

6

that are either not defined in the LATEX kernel or are used with a different
syntax

2. declarations that describe how a certain instance of the document should be
formatted

Examples in the first category are \usepackage{url} and FIX%example, and ex-
amples in the second are \usepackage{times} and FIX. When you want to include
the document or a part of it in another document, it is absolutely necessary to
make this distinction so that declarations in category (1) can be processed and
declarations in category (2) can be ignored.

Adopting a convention on the use of the preamble can overcome this design
problem, but it will not fix the problem for legacy files whose preambles do not
obey the convention. Legacy files that contain category (1) declarations in their
preambles must either be altered or specifically accommodated with additional
commands.

The convention I suggest is to \usepackage{preamble}. \beginmarkup
\endmarkup. FIX. Can we arrange to load

When \includeenv encounters a \usepackage command in the included
part, it looks at the packages in the argument of \usepackage and issues
a warning if the package is not already loaded and does not appear on a
list of packages known whose use falls entirely within category (2). (See the
\DeclareFormattingPackage command below.)

The \documentclass command is of course also a category (1) declara-
tion. Presently, if \includeenv detects that the arguments to an included
\documentclass command differ from the arguments of the \documentclass
command of the including document, it will issue a warning, and continue. In
the future, I hope to make this behavior smarter by having \includeenv take
specific actions for specific combinations of arguments. For example, if the in-
cluded document’s class implies the use of markup not defined in the parent’s
class, an appropriate action would be to define the missing markup commands. A
document of class report and a document of class article, on the other hand, do
not (I don’t think) declare different markup, so that there should be no warning
in this case.

\includeenv* is analogous to \include*, that is, it surrounds the included\includeenv*

part with \IncludeSurround rather than \clearpage.
\includedoc [〈prehook〉]{〈file name〉}[〈posthook〉] is shorthand for \includeenv\includedoc

\includedoc* [〈prehook〉]{〈filename〉}{〈document 〉}{〈〉}[〈posthook〉].
\includedoc* is analogous to \includeenv*.

4 Options

4.1 Simple

If the simple option is given, the only new feature provided is the hooks (features
1 and 2 above). As with standard LATEX, \clearpages surround an \include
and nesting \includes gives an error. Newclude will only behave differently than
standard LATEX command scans for possible optional arguments will make a dif-
ferent.

7

4.2 Tag

The tag option causes LATEX to use just one aux file. This option, which is the
default, works well. I am aware of the following two differences from the kernel’s
including system:

1. If the LATEX process is stopped during the processing of a part, all informa-
tion normally stored in an aux file from that point in the document forward
is lost. In the kernel’s system, processing the document twice more would
recover any aux information previously generated for parts.

If LATEX is always invoked in \nonstopmode (e.g., by AUC-TEX), then this
difference is only going to occur when there are catastrophic errors that
cause even \nonstopmode to terminate processing.

2. Other packages and classes that redefine kernel commands that write to
\@auxout will cause problems.

The first difference must be accepted. The second difference can be removed
on a case by case basis, by specifically coding compatibility with such packages
and classes. I intend to do this. Here is a list of such packages and classes known
to me:

〈none so far〉 If you discover any more for this list, please write me!
It’s also very easy to revise the other package to be compatible with newclude

as it is now. See section 6 below, which includes a list of relevant kernel commands.

4.3 Allocate

The second way (the allocate option) represents my first attempt at a solution,
and until I am sure it has no advantages over tag under any circumstances, it will
continue to be an option.

The allocate option causes LATEX to dynamically allocate TEX output streams
to each part as they are needed. Streams are allocated when processing of the part
begins, and are reclaimed after the ejection of the last page to which the part has
contributed. Like the old system, a separate aux file is created for each part. The
limitation of this implementation is that TEX only possesses 16 output streams.
Each of the commands \tableofcontents, \listoffigures, \listoftables,
\makeglossary, and \makeindex causes LATEX to use one output stream. The
remainder (minus any streams required by packages and classes) are available for
the including system. If n streams are available, the level of nesting possible is
n − 1 minus the maximum number of parts that occur on the same page. For
example, if 10 streams are available and the parts never appear on the same page
(the old behavior required by the \clearpages), then 8 levels of nesting are pos-
sible (which is 8, not 7 more than with the old system). The maximum number of
parts that may contribute the to same page is calculated with the same equation.
Note: TEX’s page-breaking algorithm looks ahead until it has more than enough
material to fill one page. You must count all the new aux files that are opened
during a look-ahead as contributing to the page in question, even if some of the
later ones do not actually contribute to the page after the break is chosen.

The allocate solution is itself implemented in two ways. The system either
reserves a fixed number of output streams from the start, or will dynamically claim
and free them as needed. The dynamic solution is the default. I do not see much

8

use for the static solution at present. If the dynamic system claims streams that
are later required, then it is simply a question of whether newclude or the other
feature is going to signal an error about having no more streams to allocate.

5 Programmers’ interface

\IfAllowed {〈part name〉}{〈true〉}{〈false〉} executes 〈true〉 if 〈part-name〉 is on\IfAllowed

the list of files to be included and 〈false〉 otherwise. If there is no list, executes
〈true〉.

\IncludeName expands to the name of the part currently being processed. In\IncludeName

the toplevel source file, it will expand to \jobname.
\ParentName expands to the name of the part that includes the part currently\ParentName

being processed. In the toplevel source file, expanding \ParentName will generate
a warning and expand to \jobname (which is also what \IncludeName expands
to).

FIX: root source file? toplevel? master? principle source? glossary!
\DeclareFormattingPackage {〈package name〉} declares 〈package name〉 to\DeclareFormattingPackage

be a package that only makes formatting declarations, that is, the effect of using it
falls entirely within category (2). If a formatting package occurs in a \usepackage
declaration in the preamble of a part included by \includeenv, no warning will
be given. An example of a formatting package is the times package. No facility is
provided to distinguish the case when a package is used with or without certain
package options, so do not declare a package as a formatting package unless it is
so regardless of the options it is passed.

If you send me the names of formatting packages, I will include them in the
next release of newclude. Meanwhile, you may declare them in newclude.cfg.
Do the same for your local formatting packages if you wish. It does no harm to
declare a package as a formatting package more than once.

\ifSkipPreamble

\SkipPreambletrue

\SkipPreamblefalse

\Disable {〈tokens〉} provides a way to ignore additional commands when

\Disable

\DisableAll

using \includeenv and friends. If you want to cause the macro \foo which takes
no arguments to be entirely ignored in parts, issue the command \Disable{\let\
foo\relax} any time before including the parts you want to affect. If \foo takes
one mandatory argument, write \let\foo\Gobble instead. If \foo takes one
optional and one mandatory, write \let\foo\GobbleOM. And so on. For other
examples, see the gobbling commands in the moredefs package (which newclude
requires), or write your own.

The arguments to \Disable are accumulated and executed by the command
\DisableAll, which is executed inside a group that contains a part when it is
included.

There is no way to undo the effect of issuing a \Disable command.

6 How to play nicely with newclude

To adapt a package or class for use with the tag option of newclude:

1. replace \immediate\write\@auxout with \@writeaux

2. replace \protected@write\@auxout with \protected@writeaux

9

3. add

\providecommand\@writeaux {%

\immediate\write\@auxout

}

\providecommand\protected@writeaux {%

\protected@write\@auxout

}

10

Part II

Implementation

7 Version control

\fileinfo

\DoXUsepackagE

\HaveECitationS

\fileversion

\filedate

\docdate

\PPOptArg

These definitions must be the first ones in the file.
1 \def\fileinfo{A new system for including files (Frankenstein’s backbone)}

2 \def\DoXPackageS {}

3 \def\fileversion{v2}

4 \def\filedate{1999/11/02}

5 \def\docdate{1999/11/02}

6 \edef\PPOptArg {%

7 \filedate\space \fileversion\space \fileinfo

8 }

If we’re loading this file from a \ProcessDTXFile command (see the compsci
package), then \JusTLoaDInformatioN will be defined; othewise we assume it is
not (that’s why the FunkY NamE).

If we’re loading from \ProcessDTXFile, we want to load the packages listed in
\DoXPackageS (needed to typeset the documentation for this file) and then bail
out. Otherwise, we’re using this file in a normal way as a package, so do nothing.
\DoXPackageS, if there are any, are declared in the dtx file, and, if you’re reading
the typeset documentation of this package, would appear just above. (It’s OK to
call \usepackage with an empty argument or \relax, by the way.)
9 \makeatletter% A special comment to help create bst files. Don’t change!

10 \@ifundefined{JusTLoaDInformatioN} {%

11 }{% ELSE (we know the compsci package is already loaded, too)

12 \UndefineCS\JusTLoaDInformatioN

13 \SaveDoXVarS

14 \eExpand\csname DoXPackageS\endcsname\In {%use \csname in case it’s undefined

15 \usepackage{#1}%

16 }%

17 \RestoreDoXVarS

18 \makeatother

19 \endinput

20 }% A special comment to help create bst files. Don’t change!

Now we check for LATEX2e and declare the LaTeX package.
21 \NeedsTeXFormat{LaTeX2e}

22 \ProvidesPackage{newclude}[\PPOptArg]

8 Review of the kernel’s inclusion system

One aux file is written to disk for the principle source and one for each of the
included parts. The reason to have a separate ones for the parts is so that infor-
mation from the last time the part was included is retained in subsequent runs
even when the part is excluded by \includeonly. Suppose a part is processed
once, and on a subsequent run its name is removed from the \includeonly list.
This run will still read in the part’s aux file, since the aux file of any part that
was \included during the last run is always read. But the information therein is

11

not going to be regenerated in this run, since the part will not be processed. The
main aux file is created anew with each run, so this information would be lost if
it resided there.

To handle writing these multiple aux files, the kernel uses two of TEX’s output
streams. When a routine writes to an auxiliary file, it writes to \@auxout, which
is \let to either \@mainaux, the aux file for the principle source, or \@partaux
the aux file for all the parts each in turn.

When encountering an \include command, but before deciding whether or
not to actually load the part, the kernel writes a command to \@mainaux that will
load the part’s aux file. The main aux file is loaded by \document, so that all aux
files are read in every time the principle source is processed.

If a part is actually loaded, a checkpoint is written to the part’s aux file con-
sisting of a snapshot of the counters (a record of the values of all LATEX counters).
On the next run, if the part is not actually loaded, the information in its aux file
has nevertheless already been processed by \document. Processing the checkpoint
causes a macro to be defined that when invoked restores the counter state. When
\include does not actually load a part it calls this checkpoint macro instead to
alter the present counter state.

This system has pitfalls as well as benefits. It is useful to keep the bibliography,
citations, cross references, and page numbers up to date in certain situations, but
the results can be confusing sometimes, because checkpoints are not documented.
(Perhaps this is remedied in the 2d edition of the LATEX manual.) How, besides
reading the code, or finding out the hard way, is anyone supposed to guess that
rearranging two “deactivated” \include statements in a principle source will bring
havoc on the page numbers?

9 Discussion of newclude’s inclusion system

The simple removal of the \clearpages that surround an included part would
cause a problem involving the delayed action of \write commands. Suppose a
part ending with a \write command ends halfway down a page, and another
\write occurs in the principle source immediately (or soon) after the inclusion.
The first must be written to \@partaux and the second to \@mainaux. If we
close \@partaux while the first \write is still pending, that is, before the current
page has been shipped out, then the \write will be destined for a closed stream
and therefore go to the log file and terminal. The \clearpages solve this by
flushing all pending \writes. Then we can close \@partaux immediately and
reopen \@mainaux.

Successful removal of the \clearpages can be accomplished either by having
the entire document use just one auxiliary file, or by allocating additional output
streams so that it becomes possible to avoid closing \@partaux until after the
current page is shipped out when all the \write’s to it have been completed.

10 Package initialization

23 \RequirePackage{moredefs}

24 \InitCS\sc@t@a

25 \DeclareOption{simple} {%

12

26 \input{simple.sto}

27 \let\sc@t@a\endinput

28 }

29 %^^A\DeclareOption{group} {%

30 %^^A \AtEndOfPackage {\input{group.sto}}

31 %^^A}

32 \DeclareOption{tag} {%

33 \AtEndOfPackage {\input{tag.sto}}

34 }

35 \DeclareOption{allocate} {%

36 \AtEndOfPackage {\input{allocate.sto}}

37 }

38 \DeclareBooleanOptions{dynamic}{static}

39 \ExecuteOptions{tag}

40 \ProcessOptions

If the simple option has been given, end right here.
41 \sc@t@a

11 Simple

The above option processing causes the file simple.sto to be loaded when the
simple is given. After it is loaded, processing stops. When the simple option is
not given, newclude package code continues in section 12.

The simple option adds the optional argument to \include, and does nothing
else.

\include I’m not really sure why the \relax is there; I’m imitating the kernel’s command.
42 \defcommand\include {%

43 \relax

44 \ifnum\@auxout=\@partaux

45 \@latex@error{\string\include\space cannot be nested}\@eha

46 \else

47 \expandafter\@include

48 \fi

49 }

\@include

50 \defcommand\@include [2][] {%

51 \clearpage

52 \if@filesw

53 \immediate\write\@mainaux{\string\@input{#2.aux}}%

54 \fi

55 \@tempswatrue

56 \if@partsw

57 \@tempswafalse

58 \edef\reserved@b{#2}%

59 \@for\reserved@a:=\@partlist\do

60 {\ifx\reserved@a\reserved@b\@tempswatrue\fi}%

61 \fi

62 \if@tempswa

63 \let\@auxout\@partaux

64 \if@filesw

65 \immediate\openout\@partaux #2.aux

13

66 \immediate\write\@partaux{\relax}%

67 \fi

All we did was change #1 to #2 and add the next line.
68 #1%

69 \@input@{#2.tex}%

70 \clearpage

71 \@writeckpt{#2}%

72 \if@filesw

73 \immediate\closeout\@partaux

74 \fi

75 \else

76 \@nameuse{cp@#2}%

77 \fi

78 \let\@auxout\@mainaux

79 }

12 Common

The code in this section is common to the tag and allocate options.

\nc@t@a

\nc@t@b

\nc@t@c

\nc@toks@a

Scratch variables.
80 \ReserveCS\nc@t@a

81 \ReserveCS\nc@t@b

82 \ReserveCS\nc@t@c

83 \newtokens\nc@toks@a

\IncludeSurround

\DefaultIncludeSurround 84 \newcommand\DefaultIncludeSurround {%

85 \par

86 }

87 \newlet\IncludeSurround\DefaultIncludeSurround

\c@IncludeDepth With nested \includes, we need some way for the various ones to distinguish
themselves, so we keep track of the nested depth with the IncludeDepth counter.
88 \newcounter{IncludeDepth} % starts at 0

\IfAllowed

\includeonly

\includeall

I think it’s more efficient to define a macro for each included part on the list than
it is to search through the list possibly twice for each one. Other opinions on
making this whole thing more efficient?

We are using the usual LATEX trick of undefined control sequences comparing
equally with \relax. Empty control sequences are not the same. Should be
followed by 〈true clause〉 then 〈false clause〉.
89 \newcommand\IfAllowed [1] {%

90 \@firstoftwo

91 }

92 \newcommand\includeall {%

93 \let\includeonly\Gobble

94 }

95 \defcommand\includeonly [1] {%

96 \@partswtrue

97 % \DTypeout{INCLUDEONLY}%

14

98 \edef\@partlist {\zap@space#1 \@empty}%

99 \@for\nc@t@a:=\@partlist \do {%

100 \InitName*{nc@part@\nc@t@a}%

101 }%

102 \defcommand\IfAllowed [1] {% args: part-name

103 \@ifundefined{nc@part@##1} {%

104 % \DTypeout{##1 NOTALLOWED}%

105 \let\nc@t@c\@secondoftwo

106 }{% ELSE

107 % \DTypeout{##1 ALLOWED}%

108 \let\nc@t@c\@firstoftwo

109 }%

110 \nc@t@c

111 }%

112 % \DTypeout{ENDINCLUDEONLY}%

113 }

\include

\include*

This is the principle user command. The scratch variable \nc@t@b contains what
really surrounds the included file.

114 \def\include {%

115 \@ifstar {%

116 \let\nc@t@b\IncludeSurround

117 \nc@include

118 }{% ELSE

119 \let\nc@t@b\clearpage

120 \nc@include

121 }%

122 }

13 Experimental common

\Disable

\DisableAll

This allows the disabling hacks.
123 \ReserveCS\DisableAll

124 \newcommand\Disable [1] {%

125 \g@addto@macro\DisableAll{#1}%

126 }

We start with considering how to quit inputting a file. The idea is to make
the \end{document} command of the part call \endinput. But there is a hitch
that characters on the line after the \end{document} get inserted when you don’t
want them to. To beat that limitation, we have to do some work.

\nc@radical@shutdown We will add a bunch of commands to this macro, with the idea of \catcodeing
everything and its brother to a comment. This would be a brute force method!

127 \ReserveCS\nc@radical@shutdown

First log a message that we’re about to do some crazy things. In case something
goes wrong, this might help.

128 \addto@macro\nc@radical@shutdown {%

129 \MonsterInfo{newclude}

130 {\protect\nc@radical@shutdown\space beginning}}

15

Now we start adding \catcode commands. These first two should be redundant;
but just in case someone changed things. . . .

131 \addto@macro\nc@radical@shutdown{\catcode‘\%=14} % 14 = comment

132 \addto@macro\nc@radical@shutdown{\catcode‘\^=7} % 7 = superscript

\nc@disable@char Next, we define a command we weill use in a loop in a moment.
133 \newcommand\nc@disable@char[1] {%

134 \addto@macro\nc@radical@shutdown

135 {\catcode‘#1=14}} % 14 = comment

The following list contains every keyboard char except these three, which are
treated specially: %#. The first is already a comment, and we handle the second
in a moment. Each character in the following list is \catcoded to a comment:

136 \@tfor\sc@t@a:=abcdefghijklmnopqrstuvwxyz%

137 ABCDEFGHIJKLMNOPQRSTUVWXYZ%

138 ~!@$&*()_+-=[]|/?.,<>%

139 1234567890%

140 ‘’";:%

141 \^\\\{\}\ % this is really the chars "^\{}" and space

142 \do {\expandafter\nc@disable@char\sc@t@a}

We add # separately, because it’s tricky or impossible to put it into the list we
just used.

143 \nc@disable@char\#

We end the macro with \endinput. This has to come after all the previous,
otherwise, TEX goes ahead and reads to the end of the line immediately, with
regular catcodes. This is a good theory, I’m not sure it’s necessary.

144 \addto@macro\nc@radical@shutdown{\endinput}

c@radical@shutdown@aftergroup We need to use \nc@radical@shutdown this way.
145 \newcommand\nc@radical@shutdown@aftergroup {%

146 \aftergroup\nc@radical@shutdown

147 }

\includedoc

\includedoc* 148 \newcommand\includedoc {%

149 \md@check@star

150 \Expand \sc@star@nothing\In {%

151 \IncludeEnv##1{document}{}%

152 }%

153 }

\includedocskip

\includedocskip* 154 \newcommand\includedocskip {%

155 \md@check@star

156 \Expand \sc@star@nothing\In {%

157 \IncludeEnvSkip##1{document}{}%

158 }%

159 }

\IncludeEnv

\nc@includeenv

\nc@@includeenv
160 \newcommand\IncludeEnv [2] {% args: environment instance

16

161 \md@check@star

162 \@ifnextchar [{% ^^A for Emacs:]

163 \nc@includeenv{#1}{#2}%

164 }{% ELSE

165 \nc@includeenv{#1}{#2}[]%

166 }%

167 }

168 \NewName{nc@includeenv} {#1#2[#3]} {% args: environment instance [prehook]

169 \@ifnextchar [{% ^^A for Emacs:]

170 \nc@@includeenv {#1}{#2}{#3}%

171 }{% ELSE

172 \nc@@includeenv {#1}{#2}{#3}[]%

173 }%

174 }

175 \NewName{nc@@includeenv} {#1#2#3[#4]} {% args: environment instance prehook [posthook]

176 \begingroup

177 \DisableAll

178 \let\documentclass\GobbleOM

179 \let\usepackage\GobbleOM

180 \expandafter\def\csname end#1\endcsname {%

181 \makeatletter

182 % POSTHOOK

183 \nc@radical@shutdown@aftergroup

184 }%

185 \expandafter\def\csname #1\endcsname {} % PREHOOK

186 \endgroup

187 \par

188 \Expand \sc@star@nothing\In {%

189 \include##1{#2}%

190 }%

191 }

192 \NewName {nc@@includeenvskip} {#1#2#3[#4]} {% args: environment instance prehook [posthook]

193 \begingroup

194 \DisableAll

195 \expandafter\def\csname end#1\endcsname {%

196 \makeatletter

197 % POSTHOOK

198 \nc@radical@shutdown@aftergroup

199 }%

200 \expandafter\def\csname #1\endcsname {} % PREHOOK

201 \long\def\documentclass ##1\begin{document}{%

202 \begingroup

203 \def\@currenvir{document}%

204 }

205 \endgroup

206 \par

207 #1%

208 }

17

14 Tag

The code in this section is processed when the tag package option is given (or,
because the tag option is the default, when no package options are given.)

14.1 Writing to \@auxout

To do: Might I need to do \let\protect\@unexpandable@protect instead of
\noexpand , in the def of \\protected@writeaux?

\nc@writeaux@main

\nc@protected@writeaux@main

The main versions are exactly the same as what they replaced.
209 \newcommand\nc@writeaux@main {%

210 \immediate\write\@auxout

211 }

212 \newcommand\nc@protected@writeaux@main {%

213 \protected@write\@auxout

214 }

\nc@writeaux@aux

\nc@protected@writeaux@aux

When you remove the \immediate, you have to expand whatever’s in the argument
at the time you invoke \write. \IncludeName and \@percentchar, and other
exandables in #2 will get expanded now. The \@percentchar and the ^^Js are
there because lines written to \@auxout must be on lines by themselves to satisfy
BibTEX. The ^^Js write newlines, and the \@percentchar eliminates a newline
when the aux file is read in again later. Accommodating BibTEX requires special
consideration several times below as well.

215 \newcommand\nc@writeaux@aux [1] {% args: write-text

216 \eExecute {%

217 \write\@auxout{\string\@auxtag{\IncludeName}{\@percentchar^^J#1^^J}}%

218 }%

219 }

220 \newcommand\nc@protected@writeaux@aux [2] {% args: init-hook write-text

221 \protected@write\@auxout{#1}{\string\@auxtag{\IncludeName}{\@percentchar^^J#2^^J}}%

222 }

\@writeaux

\@protected@writeaux

We start with the main versions. We don’t reserve the control sequences
\@writeaux and \protected@writeaux because the hack to adapt other pack-
ages might have already defined it with \providecommand.

223 \let\@writeaux\nc@writeaux@main

224 \let\protected@writeaux\nc@protected@writeaux@main

14.2 Kernel redefinitions

\@bibitem

\@lbibitem

\label

\@citex

\bibliography

\nocite

\addtocontents

These are simple redefinitions of kernel functions. The changes are the substitu-
tions for the writing commands described above.

225 \defcommand*\@bibitem [1] {%

226 \item

227 \if@filesw

228 \@writeaux{\string\bibcite{#1}{\the\value{\@listctr}}}%

229 \fi

230 \ignorespaces

231 }

232 \DefName*{@lbibitem} {[#1]#2} {%

18

233 \item[\@biblabel{#1}\hfill]%

234 \if@filesw

235 \begingroup

236 \let\protect\noexpand

237 \@writeaux{\string\bibcite{#2}{#1}}%

238 \endgroup

239 \fi

240 \ignorespaces

241 }

242 \defcommand*\label [1] {%

243 \@bsphack

244 \protected@writeaux{}{\string\newlabel{#1}{{\@currentlabel}{\thepage}}}%

245 \@esphack

246 }

247 \defcommand\addtocontents [2] {%

248 \protected@writeaux

249 {

250 \let\label\Gobble

251 \let\index\Gobble

252 \let\glossary\Gobble

253 }

254 {\string\@writefile{#1}{#2}}%

255 }

256 \DefName*{@citex} {[#1]#2} {%

257 \let\@citea\@empty

258 \@cite {%

259 \@for\@citeb:=#2\do {%

260 \@citea

261 \def\@citea{,\penalty\@m\ }%

262 \edef\@citeb{\expandafter\@firstofone\@citeb}%

263 \if@filesw

264 \@writeaux{\string\citation{\@citeb}}%

265 \fi

266 \@ifundefined{b@\@citeb} {%

267 \mbox{\reset@font\bfseries ?}%

268 \G@refundefinedtrue

269 \@latex@warning

270 {Citation ‘\@citeb’ on page \thepage \space undefined}%

271 }{% ELSE

272 \hbox{\csname b@\@citeb\endcsname}%

273 }%

274 }%

275 }{#1}% second arg to \@cite

276 }

277 \defcommand*\bibliography [1] {%

278 \if@filesw

279 \@writeaux{\string\bibdata{#1}}%

280 \fi

281 \@input@{\jobname.bbl}%

282 }

283 \defcommand*\bibliographystyle [1] {%

284 \ifx\@begindocumenthook\@undefined\else

285 \expandafter\AtBeginDocument

286 \fi

19

287 {\if@filesw

288 \@writeaux{\string\bibstyle{#1}}%

289 \fi}%

290 }

291 \defcommand*\nocite [1] {%

292 \@bsphack

293 \@for\@citeb:=#1\do {%

294 \edef\@citeb{\expandafter\@firstofone\@citeb}%

295 \if@filesw

296 \@writeaux{\string\citation{\@citeb}}%

297 \fi

298 \@ifundefined{b@\@citeb} {%

299 \G@refundefinedtrue

300 \@latex@warning{Citation ‘\@citeb’ undefined}%

301 }{}%

302 }%

303 \@esphack

304 }

14.3 Checkpoints

\@writeckpt

\@wckptelt

The \@charlb, \@charrb, and \@percentchar stuff is to satisfy BibTEX (see
above).

305 \defcommand*\@writeckpt [1] {%

306 \if@filesw

307 \write\@auxout{\string\@setckpt{#1}\@charlb\@percentchar}%

308 {\let\@elt\@wckptelt

309 \cl@@ckpt}%

310 \write\@auxout{\@charrb}%

311 \fi

312 }

313 \defcommand\@wckptelt [1] {%

314 \write\@auxout{\string\setcounter{#1}{\the\@nameuse{c@#1}}}%

315 }

14.4 Including

\IncludeName

\ParentName

\nc@includename@<N>
316 \newcommand\IncludeName {%

317 \@nameuse{nc@includename@\theIncludeDepth}%

318 }

319 \newcommand\ParentName {%

320 \ifnum\value{IncludeDepth}= 0

321 \jobname

322 \FrankenWarning{newclude}{Requested name of parent of principle source}%

323 \else

The incrementation of the IncludeDepth counter is local to the group.
324 \begingroup

325 \advance\c@IncludeDepth by \m@one

326 \@nameuse{nc@includename@\theIncludeDepth}%

327 \endgroup

328 \fi

20

329 }

330 \NewName {nc@includename@0} {} {\jobname}

\nc@include

\nc@@include

To do: dox

331 \newcommand\nc@include [2][] {% args: hook filename

332 \@ifnextchar [{%]

333 \nc@@include{#1}{#2}%

334 }{% ELSE

335 \nc@@include{#1}{#2}[]%

336 }%

337 }

338 \NewName{nc@@include}{#1#2[#3]} {% args: prehook filename posthook

339 \IfAllowed{#2} {%

340 \nc@t@b % surround the \include with something

341 \stepcounter{IncludeDepth}%

342 \DefName*{nc@includename@\theIncludeDepth} {} {#2}%

343 \let\@writeaux\nc@writeaux@aux

344 \let\protected@writeaux\nc@protected@writeaux@aux

Now execute the text of the optional argument to \include.
345 #1%

346 \@input@{#2.tex}%

347 #3%

348 \@writeckpt{#2}%

349 \let\@writeaux\nc@writeaux@main

350 \let\protected@writeaux\nc@protected@writeaux@main

We mustn’t restore the counter before we have finished using it.
351 \addtocounter{IncludeDepth}{\m@ne}%

352 \nc@t@b % surround the \include with something

353 }{% ELSE

If the file is not allowed, we don’t load it and do two things instead. We execute
the part’s checkpoint, then we write out the part’s auxcommands and checkpoint
again. We must handle the case when the auxcommands isn’t defined; but the
checkpoint will always be defined.

354 \@ifundefined{cp@#2} {%

355 % \DTypeout{No information on part [#2]!}%

356 }{% ELSE

357 \@nameuse{cp@#2}%

358 \if@filesw%

359 \nc@write@auxcommands{#2}%

360 \nc@write@ckpt{#2}%

361 \fi% if@filesw

362 }% if@undefined

363 }% IfAllowed

364 }%

\nc@write@auxcommands

\nc@write@ckpt

To do: dox
\meaning produces catcode 12’s for all chars except spaces which are 10. Begin

making definitions with \catcode‘\^^M=12 (other).
365 \begingroup

366 \catcode‘\^^M=12 %% double percents mean they’re there only because of the catcode

367 %%

21

368 \Global\DefName*{nc@write@auxcommands} {#1} {% args: partname

369 \@ifundefined{nc@auxcommands@#1} {%

370 }{% ELSE

371 \write\@auxout{\string\@auxtag{#1}\@charlb\@percentchar}%

372 \EExpand*\csname nc@auxcommands@#1\endcsname\In {%

373 \edef\nc@t@a {%

374 \expandafter\strip@prefix\meaning ##1%

375 }%

376 }%

377 \edef\nc@t@a {\expandafter\nc@strip@M\nc@t@a\@nil}%

378 % \DTypeout{The auxcommands: \meaning\nc@t@a}%

379 \begingroup %%

380 \catcode‘\^^M=12 % other

381 \nc@for\nc@t@b:=\nc@t@a\do {%

382 % \DTypeout{auxcommand ITEM: \meaning\nc@t@b}%

383 \EExpand\nc@t@b\In {%

384 \write\@auxout{##1}%

385 }%

386 }%

387 \endgroup %%

388 \write\@auxout{\@charrb}%

389 }%

390 }%%

391 \Global\DefName*{nc@write@ckpt} {#1} {% args: partname

392 \write\@auxout{\string\@setckpt{#1}\@charlb\@percentchar}%

393 \EExpand*\csname cp@#1\endcsname\In {%

394 \edef\nc@t@a {%

395 \expandafter\strip@prefix\meaning ##1%

396 }%

397 }%

398 \edef\nc@t@a {\expandafter\nc@strip@M\nc@t@a\@nil}%

399 \begingroup %%

400 \catcode‘\^^M=12 % other

401 \nc@for\nc@t@b:=\nc@t@a\do {%

402 % \DTypeout{checkpoint ITEM: \meaning\nc@t@b}%

403 \EExpand\nc@t@b\In {%

404 \write\@auxout{##1}%

405 }%

406 }%

407 \endgroup %%

408 \write\@auxout{\@charrb}%

409 }%%

\nc@for

\nc@forloop

\nc@iforloop

\nc@for is like the kernel’s \@for but divides its list at ^^M12 instead of ,.
410 \Global\NewName{nc@for} {#1:=#2\do#3} {% FIX (what?)

411 \expandafter \def %%

412 \expandafter \@fortmp %%

413 \expandafter {#2}%

414 \ifx\@fortmp\@empty \else %%

415 \expandafter\nc@forloop#2^^M\@nil^^M\@nil\@@#1{#3}%

416 \fi %%

417 }%%

418 \Global\NewName{nc@forloop} {#1^^M#2^^M#3\@@#4#5} {%

419 \def#4{#1}%

22

420 \ifx #4\@nnil \else %%

421 #5%

422 \def#4{#2}%

423 \ifx #4\@nnil \else %%

424 #5%

425 \nc@iforloop #3\@@#4{#5}%

426 \fi %%

427 \fi %%

428 }%%

429 \Global\NewName{nc@iforloop} {#1^^M#2\@@#3#4} {%

430 \def#3{#1}%

431 \ifx #3\@nnil %%

432 \expandafter\@fornoop %%

433 \else %%

434 #4%

435 \relax %%

436 \expandafter\nc@iforloop %%

437 \fi %%

438 #2\@@#3{#4}%

439 }%%

\nc@strip@M This strips a final ^^M12 from its argument.
To do: I think this could be built in to \nc@for .

440 \Global\NewName{nc@strip@M} {#1^^M\@nil} {#1}%%

Finish making definitions with \catcode‘\^^M=12.
441 \endgroup

\@auxtag

\@@auxtag

We both execute and save.
To do: efficiency? check only once, then redefine auxtag?
To do: dox
.
I could use \EExpand\In for clarity, but I go for efficiency on this crucial macro.
Begin making definitions with \catcode‘\^^M=12 (other).

442 \begingroup

443 \catcode‘\^^M\active %% double percents mean they’re there only because of the catcode

444 %%

445 \Global\NewName*{@auxtag} {#1} {% args: partname

446 \begingroup %%

447 \catcode‘\^^M\active %%

448 \@@auxtag{#1}%

449 }%%

450 \Global\NewName*{@@auxtag} {#1#2} {% args: partname auxcommands

451 \@ifundefined {nc@auxcommands@#1} {%

452 \nc@toks@a={#2}%

453 }{% ELSE

454 \expandafter \nc@toks@a %%

455 \expandafter \expandafter %%

456 \expandafter {\csname nc@auxcommands@#1\endcsname#2}%

457 }%

458 \expandafter\xdef\csname nc@auxcommands@#1\endcsname{\the\nc@toks@a}%

459 #2%

460 \endgroup %%

461 }%%

23

\@setckpt

\@@setckpt

To do: dox

462 \Global\DefName*{@setckpt} {#1} {% args: partname

463 \begingroup %%

464 \catcode‘\^^M\active %%

465 \@@setckpt{#1}%

466 }%%

Finish making definitions with \catcode‘\^^M=12.
467 \endgroup

The \endgroup terminates the change in catcode.
468 \newcommand*\@@setckpt [2] {% args: partname checkpoint

469 \expandafter\gdef\csname cp@#1\endcsname{#2}%

470 \endgroup

471 }

What this does is effectively remove all the tags. The end of document hook is
processed before the closing processing of the aux files, during which checking for
things like undefined references is done. At this point we do not need the tags.

472 \AtEndDocument {%

473 \let\@auxtag\@secondoftwo

474 }

15 Allocate

The code in this section is processed when the allocate package option is given.
Warning: This code has not been well tested yet. The output routine of

LATEX is very complicated, and unforseen problems might arise.
The macro \NextAux changes \@auxout to a new stream if one is available, and\NextAux

\DynamicAux

\StaticAux

gives an error otherwise. The macro is implemented in dynamic and static ways
which can be selected with \DynamicAux and \StaticAux {〈number of streams〉}.
The number of streams can be from 2 to 16. The dynamic implementation is
the default; I do not see much use for the static implementation at present. The
static option is the equivalent of the declaration \StaticAux{10}. The dynamic
selects the dynamic implementation.

\StaticAux can be invoked after \DynamicAux, but not the other way around
(at least, the streams allocated by \StaticAux are not recovered). Macros which
use \NextAux do not have to know whether the implementation is static or dy-
namic.

15.0.1 Wheels

The output streams are manipulated with the help of a data structure I call a
wheel.

A wheel has 0 or more spokes and can be rolled. Each spoke is a TEX token,
probably a control sequence name, and has an internal name. You can access the
spoke at the 12 o’clock or “top” position of a wheel. In computerese, a wheel is a
circularly linked list of tokens, and the operation of rolling moves a pointer along
it in a certain direction by one element.

Wheels and operations on wheels are local.
You make a wheel either with \InitWheel {〈\csname〉}, which makes\InitWheel

\DefWheel

24

〈\csname〉 a wheel with no spokes, or \DefWheel {〈\csname〉}{〈spokes〉}, which
makes a wheel with 〈spokes〉 for spokes. The first spoke in 〈spokes〉 is the top, the
second will be top after one roll, and the first will be top again after n rolls, if
there are n spokes.

Wheels are rolled by \Roll {〈wheel〉}. Spokes can be added to a wheel with\Roll

\Top

\AddSpokes

\AddSpokes {〈wheel〉}{〈spokes〉}. When n spokes are added, the previous top will
be at the top after n rolls. \Top {〈wheel〉} expands eventually to the top spoke,
which then can further expand, and so on.

\IfTop {〈wheel〉}{〈spoke〉}{〈true clause〉}{〈false clause〉} compares the top of\IfTop

〈wheel〉 with 〈spoke〉 using \ifx, and executes either 〈true clause〉 or 〈false clause〉
as appropriate. (The newclude package doesn’t actually use this command; it’s
provided to “round out” the wheel data structure.)

Warning: Don’t put more than one token as the second argument to \IfTop .

15.0.2 Preliminaries

We require the afterpage package. The intuitive justification is that \writes are
delayed until the current page is shipped out. We need to keep an output stream
open until its last \write has been actually handled; after that, the stream can
be made available again.

475 \RequirePackage{afterpage}

\nc@aux@wheel We use the wheel structure to handle both the static case and the dynamic case.
The spokes of the wheel are macros \nc@auxout@〈n〉. Their first-level expan-
sion is 〈n〉, a positive integer from 0 to 15. Each spoke has two correspond-
ing macros. \nc@auxout@〈n〉@stream is a stream name allocated by \newwrite.
\nc@auxout@〈n〉@inuse is a global boolean which is true iff the corresponding
stream is currently in use.

476 \InitWheel\nc@aux@wheel

\nc@count We need an internal counter. Notice that the stream numbers used in the auxwheel
start at 0, so the stream associated with with the numeral 4 is the fifth stream.

477 \newcounter{nc@count}

\nc@aux@wheel@size \nc@aux@wheel@size is a pseudo-counter that holds the present size of the aux
wheel. In the static case it never changes and is set only for consistency.

478 \ReserveCS\nc@aux@wheel@size

\NextAux

479 \ReserveCS\NextAux

The kernel allocates two streams for the include system, \@mainaux and
\@partaux. The auxwheel is initialized with these two streams. The first, corre-
sponding to the principle source, is always marked in use.

To do: Reserve the stream names.

480 \newboolean{@nc@auxout@1@inuse@}

481

482 \ReserveName{nc@auxout@1}

483 \NewName*{nc@auxout@1} {} {1}

484

485 \ReserveName{nc@auxout@1@stream}

486 \expandafter\let\csname nc@auxout@1@stream\endcsname\@partaux

25

\nc@init@aux@wheel We initialize the wheel with the first spoke.
487 \newcommand\nc@init@aux@wheel {%

488 \EExpand\csname nc@auxout@1\endcsname\In {%

489 \AddSpokes\nc@aux@wheel##1%

490 }

491 }

15.0.3 Static allocation

\StaticAux nonpositive numbers are treated the same as 1.
To do: bounds check; the counter’s max should be one less than the number,

since we have stream 0.

492 \newcommand\StaticAux [1] {%

493 \def\nc@aux@wheel@size {#1}

494 \setcounter{nc@count}{2}

495 \nc@init@aux@wheel

496 \@whilenum \value{nc@count} <= \nc@aux@wheel@size

497 \do {%

First define the macros that make up the wheel itself to be their spoke numbers.
498 \eExpand*\thenc@count\In {%

499 \NewName*{nc@auxout@\thenc@count} {} {%

500 ##1%

501 }%

502 }

Next allocate the corresponding stream.
503 \EExpand\csname nc@auxout@\thenc@count@stream\endcsname\In {%

504 \@nameuse{newwrite}##1%

505 }

Next create the corresponding flag (they start false).
506 \provideboolean{@nc@auxout@\thenc@count @inuse@}

Now add the spoke itself.
507 \EExpand\csname nc@auxout@\thenc@count\endcsname\In {%

508 \ReserveCS#1%

509 \AddSpokes\nc@aux@wheel##1%

510 }

511 \stepcounter{nc@count}

512 }

513 \def\NextAux {%

514 \Roll\nc@aux@wheel

515 \@nameuse{if@nc@auxout@\Top\nc@aux@wheel @inuse@}%

516 \MonsterError{newclude} {%

517 You can’t nest \protect\include this deeply!%

518 }%

519 \else

520 \Elet\@auxout\csname nc@auxout@\Top\nc@aux@wheel @stream\endcsname

521 \fi

522 }%

523 }

26

15.0.4 Dynamic allocation

\DynamicAux

\nc@addnewauxstream 524 \newcommand\DynamicAux {%

525 \def\nc@aux@wheel@size {1}

526 \nc@init@aux@wheel

527 \def\NextAux {%

528 \Roll\nc@aux@wheel

529 \@nameuse{if@nc@auxout@\Top\nc@aux@wheel @inuse@}%

530 \nc@addnewauxstream

531 \fi

Either the top spoke was not in use, or we have added a fresh spoke at the top –
so the top spoke represents what we want.

532 \Elet\@auxout\csname nc@auxout@\Top\nc@aux@wheel @stream\endcsname

533 \typeout{NextAux has just set auxout to stream

534 \the\csname nc@auxout@\Top\nc@aux@wheel @stream\endcsname.

535 We are using spoke number

536 \csname nc@auxout@\Top\nc@aux@wheel\endcsname.}

537 }%

538 }

It works out that the new spoke should have a spoke number one greater than the
current wheel size. We use the nc@count counter to find this number.

539 \newcommand\nc@addnewauxstream {%

540 \setcounter{nc@count}{\nc@aux@wheel@size}%

541 \stepcounter{nc@count}%

542 \typeout{Allocating another spoke (spoke number \thenc@count)}%

First we add the spoke itself, then initialize the corresponding objects.
543 \EExpand*\csname nc@auxout@\thenc@count\endcsname\In {%

544 \AddSpokes\nc@aux@wheel##1%

545 }%

546 \EExpand*\thenc@count\In {%

547 \DefName*{nc@auxout@##1} {} {##1}%

548 \provideboolean{@nc@auxout@##1@inuse@}%

549 \def\nc@aux@wheel@size {##1}%

550 \EExpand*\csname nc@auxout@##1@stream\endcsname\In {%

551 \@nameuse{newwrite}####1%

552 }%

553 }%

554 }

555 \DynamicAux

15.0.5 Including

\nc@include The only way I see how to set the inuse flag to false at the proper time is to
use the afterpage package. What I would really like is to \write something with
side effects.

556 \newcommand\nc@include [2][] {%

557 \if@filesw

558 \immediate\write\@mainaux{\string\@input{#2.aux}}%

559 \fi

560 \@tempswatrue

561 \if@partsw

27

562 \@tempswafalse

563 \edef\reserved@b{#2}%

564 \@for\reserved@a:=\@partlist\do

565 {\ifx\reserved@a\reserved@b\@tempswatrue\fi}%

566 \fi

567 \if@tempswa

568 \stepcounter{IncludeDepth}%

\nc@t@c is going to preserve the current aux stream number to restore \@auxout,
in case there is a nested \include.

569 \edef\nc@t@c {%

570 \the\@auxout

571 }%

572 \if@filesw

573 \NextAux

574 \openout\@auxout #2.aux

575 \write\@auxout{\relax}%

576 \expandafter\global

577 \csname @nc@auxout@\Top\nc@aux@wheel @inuse@true\endcsname

\nc@include@finish@<N> The next line defines the macro \nc@include@finish@〈n〉 to close the output
stream that is presently open. We have an interesting task here of getting certain
unique information to macros after the \@input when we might end up recursing
during the \@input. To do this, we immediately expand the variables we need and
store them in a macro which will not be altered by a recursion of \include. We
have set up the IncludeDepth counter to allow us to define such a macro, which
is unique to this instance of \include.

Warning: The macro names \nc@include@finish@〈n〉 where 〈n〉 is an in-
teger are overwritten, that is, they are not allocated in a safe way.

The following lines are intended to make this definition, where <D> represents
the current value of IncludeDepth, <P> represents the spoke number of the current
top of \nc@aux@wheel, and <S> represents the stream number for the current part,
i.e., the current value of \@auxout, and <X> represents the stream number that
was current before \include got called (this is saved in \nc@t@c).

\def\nc@include@finish@<D> {%

\closeout<S>%

\global\chardef\@auxout=<X>%

\afterpage{\global\@nc@auxout@<P>@inuse@false}

}

578 \EExpand\theIncludeDepth\In {% ##1

579 \EExpand\the\@auxout\In {% ####1

580 \DefName{nc@include@finish@##1} {} {%

581 \closeout####1%

582 \global\chardef\@auxout=\nc@t@c

583 \typeout{Restored auxout to stream number

584 \nc@t@c \space (old: \the\@auxout)}

585 \typeout{executing afterpage}%

586 \EExpand\csname @nc@auxout@\Top\nc@aux@wheel

587 @inuse@false\endcsname\In {% ########1

588 \afterpage{%

589 \typeout{Finishing. auxout is now \the\@auxout; current spoke

28

590 is \csname nc@auxout@\Top\nc@aux@wheel\endcsname\space

591 with stream number

592 \the\csname nc@auxout@\Top\nc@aux@wheel @stream\endcsname

593 }%

594 \global########1%

595 }% Afterpage

596 }% EExpand

597 }% DefName

598 }}% EExpand

599 \fi % \if@filesw

600 \nc@t@b % surround the \include with something

Now execute the text of the optional argument to \include. Notice that if we
change to a new aux file, we should do it before the optional argument. This
is important so that sectioning commands will appear in the right order. If the
sectioning command were to write to \@mainaux, then it would come after the
whole included aux file, instead of before it.

601 #1%

602 \@input@{#2.tex}%

603 \@writeckpt{#2}%

604 \if@filesw

605 \csname nc@include@finish@\theIncludeDepth\endcsname

606 \fi

607 \nc@t@b % surround the \include with something

We mustn’t restore the counter before we have finished using it.
608 \addtocounter{IncludeDepth}{\m@ne}%

If the file is excluded by the \includeonly command, we don’t load it and execute
the file’s checkpoint instead.

609 \else

610 \@nameuse{cp@#2}%

611 \fi

612 }

15.0.6 Checkpoints

\@writeckpt

\@wckptelt

We must redefine the macros which write the checkpoints. \@auxout is substituted
for \@partaux; I think this change should be in the kernel anyway! And we remove
the \immediates.

613 \defcommand\@writeckpt [1] {%

614 \if@filesw

615 \write\@auxout{\string\@setckpt{#1}\@charlb}%

616 \begingroup

617 \let\@elt\@wckptelt

618 \cl@@ckpt

619 \endgroup

620 \write\@auxout{\@charrb}%

621 \fi

622 }

623 \defcommand\@wckptelt [1] {%

624 \protected@write\@auxout{}{\string\setcounter{#1}{\the\@nameuse{c@#1}}}%

625 }

29

15.0.7 Wheels

\InitWheel

\Roll

\IfTop

\Top

\AddSpokes

A wheel is implemented as a macro. The tokens of its first-level expansion are the
spokes, the top being the first.

626 \newcommand\InitWheel [1] {% args: wheel

627 \InitCS#1%

628 }

629 \newcommand\Roll [1] {% args: wheel

630 \edef #1{%

631 \expandafter\nc@roll #1\nc@llor

632 }%

633 }

634 \ReserveCS\nc@llor

635 \NewNameDef{nc@roll} {#1\nc@llor} {%

636 \@cdr#1\@nil\@car#1\@nil

637 }

638 \newcommand\Top [1] {% args: wheel

639 \E@car #1\@nil

640 }

641 \newcommand\IfTop [4] {% args: wheel token true false

642 \EExpand#1\In {%

643 \edef\nc@t@b {%

644 \expandafter\noexpand\@car##1\@nil

645 }%

646 }%

At this point, the first-level expansion of \nc@t@b is a single token, the top of the
wheel. We \let \nc@t@a to this token.

647 \Elet\nc@t@a\nc@t@b

648 \let\nc@t@b #2%

649 \ifx\nc@t@a\nc@t@b

650 \expandafter\@firstoftwo

651 \else

652 \expandafter\@secondoftwo

653 \fi

654 }

655 \newcommand\AddSpokes [2] {% args: wheel spokes

656 \EExpand#1\In {%

657 \def #1{#2##1}%

658 }%

659 }

16 Benign packages

\DeclareFormattingPackage

\nc@formatting@packages 660 \newcommand\DeclareFormattingPackage [1] {%

661 \addto@macro\nc@formatting@packages{,#1}%

662 }

663 \newcommand\nc@formatting@packages {times,helvetic}

30

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\# 143
\% 131
\@@ 415, 418, 425, 429, 438
\@@auxtag 442
\@@setckpt 462
\@auxout . 44, 63, 78,

210, 213, 217,
221, 307, 310,
314, 371, 384,
388, 392, 404,
408, 520, 532,
570, 574, 575,
579, 582, 584,
589, 615, 620, 624

\@auxtag 217,
221, 371, 442, 473

\@begindocumenthook 284
\@bibitem 225
\@biblabel 233
\@bsphack 243, 292
\@car 636, 644
\@cdr 636
\@charlb

. 307, 371, 392, 615
\@charrb

. 310, 388, 408, 620
\@cite 258, 275
\@citea . . . 257, 260, 261
\@citeb 259,

262, 264, 266,
270, 272, 293,
294, 296, 298, 300

\@citex 225
\@currentlabel 244
\@currenvir 203
\@eha 45
\@elt 308, 617
\@empty . . . 98, 257, 414
\@esphack 245, 303
\@firstofone . . 262, 294
\@firstoftwo 90, 108, 650
\@for 59, 99, 259, 293, 564
\@fornoop 432
\@fortmp 412, 414
\@ifnextchar

. . . . 162, 169, 332
\@ifstar 115

\@ifundefined
. . 10, 103, 266,
298, 354, 369, 451

\@include 47, 50

\@input 53, 558

\@input@ 69, 281, 346, 602

\@latex@error 45

\@latex@warning 269, 300

\@lbibitem 225

\@listctr 228

\@m 261

\@mainaux . . 53, 78, 558

\@nameuse 76,
314, 317, 326,
357, 504, 515,
529, 551, 610, 624

\@nil . 377, 398, 415,
440, 636, 639, 644

\@nnil 420, 423, 431

\@partaux 44,
63, 65, 66, 73, 486

\@partlist 59, 98, 99, 564

\@partswtrue 96

\@percentchar . 217,
221, 307, 371, 392

\@protected@writeaux

. 223

\@secondoftwo
. . . . 105, 473, 652

\@setckpt
. 307, 392, 462, 615

\@tempswafalse . 57, 562

\@tempswatrue
. . 55, 60, 560, 565

\@tfor 136

\@undefined 284

\@wckptelt . . . 305, 613

\@whilenum 496

\@writeaux 223, 228,
237, 264, 279,
288, 296, 343, 349

\@writeckpt 71,
305, 348, 603, 613

\@writefile 254

\\ 141

\{ 141

\} 141

\^ 132, 141, 366, 380,
400, 443, 447, 464

\� 141, 261

A

\active . . . 443, 447, 464

\AddSpokes 24,
489, 509, 544, 626

\addto@macro 128, 131,
132, 134, 144, 661

\addtocontents 225

\addtocounter . 351, 608

\advance 325

\aftergroup 146

\afterpage 588

\AtBeginDocument . . 285

\AtBeginInclude 3

\AtEndDocument 472

\AtEndInclude 3

\AtEndOfPackage . . .
. 30, 33, 36

B

\begin 201

\begingroup 176, 193,
202, 235, 324,
365, 379, 399,
442, 446, 463, 616

\bfseries 267

\bibcite 228, 237

\bibdata 279

\bibliography 225

\bibliographystyle . 283

\bibstyle 288

C

\c@IncludeDepth 88, 325

\catcode . . 131, 132,
135, 366, 380,
400, 443, 447, 464

\chardef 582

\citation 264, 296

\cl@@ckpt 309, 618

\clearpage . 51, 70, 119

\closeout 73, 581

31

\csname 14,
180, 185, 195,
200, 272, 372,
393, 456, 458,
469, 486, 488,
503, 507, 520,
532, 534, 536,
543, 550, 577,
586, 590, 592, 605

D
\DeclareBooleanOptions

. 38
\DeclareFormattingPackage

. 8, 660
\DeclareOption

. . . . 25, 29, 32, 35
\def . . 1–5, 114, 180,

185, 195, 200,
201, 203, 261,
411, 419, 422,
430, 493, 513,
525, 527, 549, 657

\DefaultIncludeSurround

. 4, 84
\defcommand

42, 50, 95, 102,
225, 242, 247,
277, 283, 291,
305, 313, 613, 623

\DefName 232,
256, 342, 368,
391, 462, 547, 580

\DefWheel 23
\Disable 8, 123
\DisableAll

. . 8, 123, 177, 194
\do 59, 99, 142,

259, 293, 381,
401, 410, 497, 564

\docdate 1
\documentclass 178, 201
\DoXPackageS 2
\DoXUsepackagE 1
\DTypeout 97,

104, 107, 112,
355, 378, 382, 402

\DynamicAux 23, 524

E
\E@car 639
\edef 6, 58, 98,

262, 294, 373,
377, 394, 398,
563, 569, 630, 643

\eExecute 216
\EExpand . . 372, 383,

393, 403, 488,
503, 507, 543,
546, 550, 578,
579, 586, 642, 656

\eExpand 14, 498
\Elet 520, 532, 647
\else 46, 75, 284, 323,

414, 420, 423,
433, 519, 609, 651

\endcsname 14,
180, 185, 195,
200, 272, 372,
393, 456, 458,
469, 486, 488,
503, 507, 520,
532, 534, 536,
543, 550, 577,
587, 590, 592, 605

\endgroup 186,
205, 238, 327,
387, 407, 441,
460, 467, 470, 619

\endinput . . 19, 27, 144
\ExecuteOptions . . . 39
\Expand . . . 150, 156, 188
\expandafter

. . 47, 142, 180,
185, 195, 200,
262, 285, 294,
374, 377, 395,
398, 411–413,
415, 432, 436,
454–456, 458,
469, 486, 576,
631, 644, 650, 652

F
\fi 48, 54, 60, 61, 67,

74, 77, 229, 239,
265, 280, 286,
289, 297, 311,
328, 361, 416,
426, 427, 437,
521, 531, 559,
565, 566, 599,
606, 611, 621, 653

\filedate 1
\fileinfo 1
\fileversion 1
\FrankenWarning . . . 322

G
\g@addto@macro 125

\G@refundefinedtrue

. 268, 299
\gdef 469
\Global . . . 368, 391,

410, 418, 429,
440, 445, 450, 462

\global . . . 576, 582, 594
\glossary 252
\Gobble 93, 250–252
\GobbleOM 178, 179

H
\HaveECitationS 1
\hbox 272
\hfill 233

I
\if@filesw 52, 64, 72,

227, 234, 263,
278, 287, 295,
306, 358, 557,
572, 599, 604, 614

\if@partsw 56, 561
\if@tempswa 62, 567
\IfAllowed . . 8, 89, 339
\ifnum 44, 320
\ifSkipPreamble 8
\IfTop 24, 626
\ifx 60, 284, 414, 420,

423, 431, 565, 649
\ignorespaces . 230, 240
\immediate 53,

65, 66, 73, 210, 558
\In 14, 150, 156, 188,

372, 383, 393,
403, 488, 498,
503, 507, 543,
546, 550, 578,
579, 587, 642, 656

\include 3, 42,
114, 189, 340,
352, 517, 600, 607

\include* 4, 114
\includeall 4, 89
\includedoc 6, 148
\includedoc* 6, 148
\includedocskip . . . 154
\includedocskip* . . 154
\IncludeEnv . . . 151, 160
\includeenv 5
\includeenv* 6
\IncludeEnvSkip . . . 157
\IncludeName

. . 8, 217, 221, 316

32

\includeonly 4, 89
\IncludeSurround . .

. 4, 84, 116
\index 251
\InitCS 24, 627
\InitName 100
\InitWheel 23, 476, 626
\input . . . 26, 30, 33, 36
\item 226, 233

J
\jobname . . 281, 321, 330
\JusTLoaDInformatioN 12

L
\label 225
\let 27, 63,

78, 93, 105, 108,
116, 119, 178,
179, 223, 224,
236, 250–252,
257, 308, 343,
344, 349, 350,
473, 486, 617, 648

\long 201

M
\m@ne 351, 608
\m@one 325
\makeatletter 9, 181, 196
\makeatother 18
\mbox 267
\md@check@star

. . . . 149, 155, 161
\meaning 374,

378, 382, 395, 402
\MonsterError 516
\MonsterInfo 129

N
\nc@@include 331
\nc@@includeenv . . . 160
\nc@addnewauxstream 524
\nc@aux@wheel

. 476, 489, 509,
514, 515, 520,
528, 529, 532,
534, 536, 544,
577, 586, 590, 592

\nc@aux@wheel@size .
. . . . 478, 493,
496, 525, 540, 549

\nc@count 477
\nc@disable@char . . 133
\nc@for . . . 381, 401, 410

\nc@forloop 410
\nc@formatting@packages

. 660
\nc@iforloop 410
\nc@include

. 117, 120, 331, 556
\nc@includeenv 160
\nc@init@aux@wheel .

. . . . 487, 495, 526
\nc@llor . . 631, 634, 635
\nc@protected@writeaux@aux

. 215, 344
\nc@protected@writeaux@main

. . . . 209, 224, 350
\nc@radical@shutdown

. 127, 146
\nc@radical@shutdown@aftergroup

. . . . 145, 183, 198
\nc@roll 631
\nc@strip@M 377, 398, 440
\nc@t@a 80, 99,

100, 373, 377,
378, 381, 394,
398, 401, 647, 649

\nc@t@b 80,
116, 119, 340,
352, 381–383,
401–403, 600,
607, 643, 647–649

\nc@t@c 80, 105, 108,
110, 569, 582, 584

\nc@toks@a
. 80, 452, 454, 458

\nc@write@auxcommands

. 359, 365
\nc@write@ckpt 360, 365
\nc@writeaux@aux . .

. 215, 343
\nc@writeaux@main .

. . . . 209, 223, 349
\NeedsTeXFormat . . . 21
\newboolean 480
\newcommand

84, 89, 92, 124,
133, 145, 148,
154, 160, 209,
212, 215, 220,
316, 319, 331,
468, 487, 492,
524, 539, 556,
626, 629, 638,
641, 655, 660, 663

\newcounter 88, 477
\newlabel 244

\newlet 87
\NewName 168, 175, 192,

330, 338, 410,
418, 429, 440,
445, 450, 483, 499

\NewNameDef 635
\newtokens 83
\NextAux 23,

479, 513, 527, 573
\nocite 225
\noexpand 236, 644

O
\openout 65, 574

P
\par 85, 187, 206
\ParentName 8, 316
\penalty 261
\PPOptArg 1, 22
\ProcessOptions . . . 40
\protect . . 130, 236, 517
\protected@write . .

. . . . 213, 221, 624
\protected@writeaux

. 224,
244, 248, 344, 350

\provideboolean 506, 548
\ProvidesPackage . . 22

R
\relax . . 43, 66, 435, 575
\RequirePackage 23, 475
\ReserveCS

80–82, 123, 127,
478, 479, 508, 634

\reserved@a
. . 59, 60, 564, 565

\reserved@b
. . 58, 60, 563, 565

\ReserveName . . 482, 485
\reset@font 267
\RestoreDoXVarS . . . 17
\Roll . . 24, 514, 528, 626

S
\SaveDoXVarS 13
\sc@star@nothing . .

. . . . 150, 156, 188
\sc@t@a

24, 27, 41, 136, 142
\setcounter

. 314, 494, 540, 624
\SkipPreamblefalse . . 8
\SkipPreambletrue . . 8

33

\space 7, 45,
130, 270, 584, 590

\StaticAux 23, 492
\stepcounter

. 341, 511, 541, 568
\string . 45, 53, 217,

221, 228, 237,
244, 254, 264,
279, 288, 296,
307, 314, 371,
392, 558, 615, 624

\strip@prefix . 374, 395

T
\the . . 228, 314, 458,

534, 570, 579,
584, 589, 592, 624

\theIncludeDepth 317,
326, 342, 578, 605

\thenc@count
. 498, 499, 506,
507, 542, 543, 546

\thenc@count@stream 503
\thepage 244, 270
\Top 24, 515,

520, 529, 532,
534, 536, 577,
586, 590, 592, 626

\typeout 533,
542, 583, 585, 589

U
\UndefineCS 12
\usepackage 15, 179

V

\value 228, 320, 496

W

\write 53, 66, 210, 217,
307, 310, 314,
371, 384, 388,
392, 404, 408,
558, 575, 615, 620

X

\xdef 458

Z

\zap@space 98

34

