
AVRDUDE
A program for download/uploading AVR microcontroller flash and eeprom.

For AVRDUDE, Version 5.4, 21 December 2006.

by Brian S. Dean

Send comments on AVRDUDE to avrdude-dev@nongnu.org.
Use http://savannah.nongnu.org/bugs/?group=avrdude to report bugs.
Copyright c© 2003,2005 Brian S. Dean
Copyright c© 2006 Jörg Wunsch

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

mailto:avrdude-dev@nongnu.org
http://savannah.nongnu.org/bugs/?group=avrdude

i

Table of Contents

1 Introduction . 1
1.1 History and Credits . 2

2 Command Line Options . 3
2.1 Option Descriptions . 3
2.2 Example Command Line Invocations . 10

3 Terminal Mode Operation 14
3.1 Terminal Mode Commands. 14
3.2 Terminal Mode Examples . 15

4 Configuration File . 18
4.1 AVRDUDE Defaults . 18
4.2 Programmer Definitions . 18
4.3 Part Definitions . 18

4.3.1 Instruction Format . 19
4.4 Other Notes . 20

Appendix A Platform Dependent Information
. 21

A.1 Unix . 21
A.1.1 Unix Installation . 21

A.1.1.1 FreeBSD Installation . 21
A.1.1.2 Linux Installation . 21

A.1.2 Unix Configuration Files . 22
A.1.2.1 FreeBSD Configuration Files . 22
A.1.2.2 Linux Configuration Files . 22

A.1.3 Unix Port Names. 22
A.1.4 Unix Documentation . 22

A.2 Windows . 22
A.2.1 Installation . 22
A.2.2 Configuration Files . 23

A.2.2.1 Configuration file names . 23
A.2.2.2 How AVRDUDE finds the configuration files. 23

A.2.3 Port Names . 23
A.2.3.1 Serial Ports . 23
A.2.3.2 Parallel Ports . 23

A.2.4 Using the parallel port . 23
A.2.4.1 Windows NT/2K/XP . 24
A.2.4.2 Windows 95/98 . 24

A.2.5 Documentation . 24
A.2.6 Credits. 24

ii

Appendix B Troubleshooting 25

Chapter 1: Introduction 1

1 Introduction

AVRDUDE - AVR Downloader Uploader - is a program for downloading and uploading
the on-chip memories of Atmel’s AVR microcontrollers. It can program the Flash and
EEPROM, and where supported by the serial programming protocol, it can program fuse
and lock bits. AVRDUDE also supplies a direct instruction mode allowing one to issue any
programming instruction to the AVR chip regardless of whether AVRDUDE implements
that specific feature of a particular chip.

AVRDUDE can be used effectively via the command line to read or write all chip memory
types (eeprom, flash, fuse bits, lock bits, signature bytes) or via an interactive (terminal)
mode. Using AVRDUDE from the command line works well for programming the entire
memory of the chip from the contents of a file, while interactive mode is useful for exploring
memory contents, modifing individual bytes of eeprom, programming fuse/lock bits, etc.

AVRDUDE supports the following basic programmer types: Atmel’s STK500, Atmel’s
AVRISP and AVRISP mkII devices, Atmel’s JTAG ICE (both mkI and mkII, the latter
also in ISP mode), appnote avr910, appnote avr109 (including the AVR Butterfly), serial
bit-bang adapters, and the PPI (parallel port interface). PPI represents a class of sim-
ple programmers where the programming lines are directly connected to the PC parallel
port. Several pin configurations exist for several variations of the PPI programmers, and
AVRDUDE can be be configured to work with them by either specifying the appropriate
programmer on the command line or by creating a new entry in its configuration file. All
that’s usually required for a new entry is to tell AVRDUDE which pins to use for each
programming function.

A number of equally simple bit-bang programming adapters that connect to a serial port
are supported as well, among them the popular Ponyprog serial adapter, and the DASA
and DASA3 adapters that used to be supported by uisp(1). Note that these adapters are
meant to be attached to a physical serial port. Connecting to a serial port emulated on top
of USB is likely to not work at all, or to work abysmally slow.

The STK500, JTAG ICE, avr910, and avr109/butterfly use the serial port to communi-
cate with the PC. The STK500, JTAG ICE, and avr910 contain on-board logic to control
the programming of the target device. The avr109 bootloader implements a protocol sim-
ilar to avr910, but is actually implemented in the boot area of the target’s flash ROM, as
opposed to being an external device. The fundamental difference between the two types lies
in the protocol used to control the programmer. The avr910 protocol is very simplistic and
can easily be used as the basis for a simple, home made programer since the firmware is
available online. On the other hand, the STK500 protocol is more robust and complicated
and the firmware is not openly available. The JTAG ICE also uses a serial communication
protocol which is similar to the STK500 firmware version 2 one. However, as the JTAG
ICE is intented to allow on-chip debugging as well as memory programming, the protocol is
more sophisticated. (The JTAG ICE mkII protocol can also be run on top of USB.) Only
the memory programming functionality of the JTAG ICE is supported by AVRDUDE. For
the JTAG ICE mkII, JTAG, debugWire and ISP mode are supported. See below for the
limitations of debugWire.

The AVR Dragon is supported in all modes (ISP, JTAG, HVSP, PP, debugWire). (High-
voltage programming is not yet supported.) When used in JTAG and debugWire mode,
the AVR Dragon behaves similar to a JTAG ICE mkII, so all device-specific comments for

Chapter 1: Introduction 2

that device will apply as well. When used in ISP mode, the AVR Dragon behaves similar
to an AVRISP mkII (or JTAG ICE mkII in ISP mode), so all device-specific comments will
apply there. In particular, the Dragon starts out with a rather fast ISP clock frequency, so
the -B bitclock option might be required to achieve a stable ISP communication.

The USBasp ISP adapter is also supported, provided AVRDUDE has been compiled
with libusb support. It features a simple firwmare-only USB implementation, running on
an ATmega8 (or ATmega88).

1.1 History and Credits

AVRDUDE was written by Brian S. Dean under the name of AVRPROG to run on the
FreeBSD Operating System. Brian renamed the software to be called AVRDUDE when
interest grew in a Windows port of the software so that the name did not conflict with
AVRPROG.EXE which is the name of Atmel’s Windows programming software.

The AVRDUDE source now resides in the public CVS repository on savannah.gnu.org
(http://savannah.gnu.org/projects/avrdude/), where it continues to be enhanced and
ported to other systems. In addition to FreeBSD, AVRDUDE now runs on Linux and Win-
dows. The developers behind the porting effort primarily were Ted Roth, Eric Weddington,
and Joerg Wunsch.

And in the spirit of many open source projects, this manual also draws on the work
of others. The initial revision was composed of parts of the original Unix manual page
written by Joerg Wunsch, the original web site documentation by Brian Dean, and from
the comments describing the fields in the AVRDUDE configuration file by Brian Dean. The
texi formatting was modeled after that of the Simulavr documentation by Ted Roth.

http://savannah.gnu.org/projects/avrdude/

Chapter 2: Command Line Options 3

2 Command Line Options

2.1 Option Descriptions

AVRDUDE is a command line tool, used as follows:
avrdude -p partno options ...

Command line options are used to control AVRDUDE’s behaviour. The following options
are recognized:

-p partno

This is the only mandatory option and it tells AVRDUDE what type of part
(MCU) that is connected to the programmer. The partno parameter is the
part’s id listed in the configuration file. Specify -p ? to list all parts in the
configuration file. If a part is unknown to AVRDUDE, it means that there
is no config file entry for that part, but it can be added to the configuration
file if you have the Atmel datasheet so that you can enter the programming
specifications. Currently, the following MCU types are understood:
c128 AT90CAN128
pwm2 AT90PWM2
pwm3 AT90PWM3
1200 AT90S1200
2313 AT90S2313
2333 AT90S2333
2343 AT90S2343 (*)
4414 AT90S4414
4433 AT90S4433
4434 AT90S4434
8515 AT90S8515
8535 AT90S8535
m103 ATmega103
m128 ATmega128
m1280 ATmega1280
m1281 ATmega1281
m16 ATmega16
m161 ATmega161
m162 ATmega162
m163 ATmega163
m164 ATmega164
m169 ATmega169
m2560 ATmega2560 (**)
m2561 ATmega2561 (**)
m32 ATmega32
m324 ATmega324
m329 ATmega329
m3290 ATmega3290
m48 ATmega48
m64 ATmega64

Chapter 2: Command Line Options 4

m640 ATmega640
m644 ATmega644
m649 ATmega649
m6490 ATmega6490
m8 ATmega8
m8515 ATmega8515
m8535 ATmega8535
m88 ATmega88
t12 ATtiny12
t13 ATtiny13
t15 ATtiny15
t2313 ATtiny2313
t25 ATtiny25
t26 ATtiny26
t45 ATtiny45
t85 ATtiny85
(*) The AT90S2323 and ATtiny22 use the same algorithm.
(**) Flash addressing above 128 KB is not supported by all programming hard-
ware. Known to work are jtag2, stk500v2, and bit-bang programmers.

-b baudrate

Override the RS-232 connection baud rate specified in the respective program-
mer’s entry of the configuration file.

-B bitclock

Specify the bit clock period for the JTAG interface or the ISP clock (JTAG ICE
only). The value is a floating-point number in microseconds. The default value
of the JTAG ICE results in about 1 microsecond bit clock period, suitable for
target MCUs running at 4 MHz clock and above. Unlike certain parameters in
the STK500, the JTAG ICE resets all its parameters to default values when the
programming software signs off from the ICE, so for MCUs running at lower
clock speeds, this parameter must be specified on the command-line.

-c programmer-id

Specify the programmer to be used. AVRDUDE knows about several common
programmers. Use this option to specify which one to use. The programmer-id
parameter is the programmer’s id listed in the configuration file. Specify -c ? to
list all programmers in the configuration file. If you have a programmer that is
unknown to AVRDUDE, and the programmer is controlled via the PC parallel
port, there’s a good chance that it can be easily added to the configuration
file without any code changes to AVRDUDE. Simply copy an existing entry
and change the pin definitions to match that of the unknown programmer.
Currently, the following programmer ids are understood and supported:
abcmini ABCmini Board, aka Dick Smith HOTCHIP
alf Nightshade ALF-PgmAVR,

http://nightshade.homeip.net/

avr109 Atmel AppNote AVR109 Boot Loader
avr910 Atmel Low Cost Serial Programmer

http://nightshade.homeip.net/

Chapter 2: Command Line Options 5

avr911 Atmel AppNote AVR911 AVROSP (an alias for
avr109)

avrisp Atmel AVR ISP (an alias for stk500)
avrispv2 Atmel AVR ISP, running a version 2.x firmware (an

alias for stk500v2)
avrispmkII Atmel AVR ISP mkII (alias for stk500v2)
avrispmk2 Atmel AVR ISP mkII (alias for stk500v2)
bascom Bascom SAMPLE programming cable
bsd Brian Dean’s Programmer,

http://www.bsdhome.com/avrdude/

butterfly Atmel Butterfly Development Board
dt006 Dontronics DT006
dragon_dw AVR Dragon in debugWire mode
dragon_hvsp AVR Dragon in high-voltage serial programming

mode
dragon_isp AVR Dragon in ISP mode
dragon_jtag AVR Dragon in JTAG mode
dragon_pp AVR Dragon in (high-voltage) parallel programming

mode
frank-stk200 Frank’s STK200 clone,

http://electropol.free.fr/spip/spip.php?article15

jtagmkI Atmel JTAG ICE mkI, running at 115200 Bd
jtag1 Same as before.
jtag1slow Atmel JTAG ICE mkI, running at 19200 Bd
jtagmkII Atmel JTAG ICE mkII (default speed 19200 Bd)
jtag2slow Same as before.
jtag2fast Atmel JTAG ICE mkII, running at 115200 Bd
jtag2 Same as before.
jtag2isp Atmel JTAG ICE mkII in ISP mode.
jtag2dw Atmel JTAG ICE mkII in debugWire mode.
pavr Jason Kyle’s pAVR Serial Programmer
picoweb Picoweb Programming Cable,

http://www.picoweb.net/

pony-stk200 Pony Prog STK200
sp12 Steve Bolt’s Programmer
stk200 STK200
stk500 Atmel STK500, probing for either version 1.x or 2.x

firmware
stk500v1 Atmel STK500, running a version 1.x firmware
stk500hvsp Atmel STK500 in high-voltage serial programming

mode(version 2.x firmware only)
stk500pp Atmel STK500 in parallel programming mode (ver-

sion 2.xfirmware only)
stk500v2 Atmel STK500, running a version 2.x firmware

http://www.bsdhome.com/avrdude/
http://electropol.free.fr/spip/spip.php?article15
http://www.picoweb.net/

Chapter 2: Command Line Options 6

-C config-file

Use the specified config file for configuration data. This file contains all pro-
grammer and part definitions that AVRDUDE knows about. If you have a
programmer or part that AVRDUDE does not know about, you can add it to
the config file (be sure and submit a patch back to the author so that it can
be incorporated for the next version). If not specified, AVRDUDE reads the
configuration file from /usr/local/etc/avrdude.conf (FreeBSD and Linux). See
Appendix A for the method of searching for the configuration file for Windows.

-D Disable auto erase for flash. When the -U option with flash memory is speci-
fied, avrdude will perform a chip erase before starting any of the programming
operations, since it generally is a mistake to program the flash without per-
forming an erase first. This option disables that. However, to remain backward
compatible, the -i, and -m options automatically disable the auto erase feature.

-e Causes a chip erase to be executed. This will reset the contents of the flash
ROM and EEPROM to the value ‘0xff’, and is basically a prerequisite command
before the flash ROM can be reprogrammed again. The only exception would
be if the new contents would exclusively cause bits to be programmed from the
value ‘1’ to ‘0’. Note that in order to reprogram EERPOM cells, no explicit
prior chip erase is required since the MCU provides an auto-erase cycle in that
case before programming the cell.

-E exitspec[,...]
By default, AVRDUDE leaves the parallel port in the same state at exit as it
has been found at startup. This option modifies the state of the ‘/RESET’
and ‘Vcc’ lines the parallel port is left at, according to the exitspec arguments
provided, as follows:

reset The ‘/RESET’ signal will be left activated at program exit, that
is it will be held low, in order to keep the MCU in reset state
afterwards. Note in particular that the programming algorithm for
the AT90S1200 device mandates that the ‘/RESET’ signal is active
before powering up the MCU, so in case an external power supply
is used for this MCU type, a previous invocation of AVRDUDE
with this option specified is one of the possible ways to guarantee
this condition.

noreset The ‘/RESET’ line will be deactivated at program exit, thus al-
lowing the MCU target program to run while the programming
hardware remains connected.

vcc This option will leave those parallel port pins active (i. e. high)
that can be used to supply ‘Vcc’ power to the MCU.

novcc This option will pull the ‘Vcc’ pins of the parallel port down at
program exit.

Multiple exitspec arguments can be separated with commas.

-F Normally, AVRDUDE tries to verify that the device signature read from the
part is reasonable before continuing. Since it can happen from time to time that
a device has a broken (erased or overwritten) device signature but is otherwise
operating normally, this options is provided to override the check.

Chapter 2: Command Line Options 7

-i delay For bitbang-type programmers, delay for approximately delay microseconds be-
tween each bit state change. If the host system is very fast, or the target runs off
a slow clock (like a 32 kHz crystal, or the 128 kHz internal RC oscillator), this
can become necessary to satisfy the requirement that the ISP clock frequency
must not be higher than 1/4 of the CPU clock frequency. This is implemented
as a spin-loop delay to allow even for very short delays. On Unix-style operat-
ing systems, the spin loop is initially calibrated against a system timer, so the
number of microseconds might be rather realistic, assuming a constant system
load while AVRDUDE is running. On Win32 operating systems, a preconfig-
ured number of cycles per microsecond is assumed that might be off a bit for
very fast or very slow machines.

-n No-write - disables actually writing data to the MCU (useful for debugging
AVRDUDE).

-O Perform a RC oscillator run-time calibration according to Atmel application
note AVR053. This is only supported on the STK500v2, AVRISP mkII, and
JTAG ICE mkII hardware. Note that the result will be stored in the EEPROM
cell at address 0.

-P port Use port to identify the device to which the programmer is attached. Normally,
the default parallel port is used, but if the programmer type normally connects
to the serial port, the default serial port will be used. See Appendix A, Platform
Dependent Information, to find out the default port names for your platform.
If you need to use a different parallel or serial port, use this option to specify
the alternate port name.

For the JTAG ICE mkII, if AVRDUDE has been built with libusb support, port
may alternatively be specified as usb[:serialno]. In that case, the JTAG ICE
mkII will be looked up on USB. If serialno is also specified, it will be matched
against the serial number read from any JTAG ICE mkII found on USB. The
match is done after stripping any existing colons from the given serial number,
and right-to-left, so only the least significant bytes from the serial number
need to be given. For a trick how to find out the serial numbers of all JTAG
ICEs attached to USB, see Section 2.2 [Example Command Line Invocations],
page 10.

As the AVRISP mkII device can only be talked to over USB, the very same
method of specifying the port is required there.

For the USB programmer "AVR-Doper" running in HID mode, the
port must be specified as avrdoper. Libusb support is required on Unix
but not on Windows. For more information about AVR-Doper see
http://www.obdev.at/avrusb/avrdoper.html.

For programmers that attach to a serial port using some kind of higher level
protocol (as opposed to bit-bang style programmers), port can be specified as
net:host:port. In this case, instead of trying to open a local device, a TCP
network connection to (TCP) port on host is established. The remote endpoint
is assumed to be a terminal or console server that connects the network stream
to a local serial port where the actual programmer has been attached to. The

http://www.obdev.at/avrusb/avrdoper.html

Chapter 2: Command Line Options 8

port is assumed to be properly configured, for example using a transparent 8-bit
data connection without parity at 115200 Baud for a STK500.
This feature is currently not implemented for Win32 systems.

-q Disable (or quell) output of the progress bar while reading or writing to the
device. Specify it a second time for even quieter operation.

-u Disables the default behaviour of reading out the fuses three times before pro-
gramming, then verifying at the end of programming that the fuses have not
changed. If you want to change fuses you will need to specify this option, as
avrdude will see the fuses have changed (even though you wanted to) and will
change them back for your "saftey". This option was designed to prevent cases
of fuse bits magically changing (usually called safemode).

-t Tells AVRDUDE to enter the interactive “terminal” mode instead of up- or
downloading files. See below for a detailed description of the terminal mode.

-U memtype:op:filename[:format]
Perform a memory operation, equivalent to specifing the ‘-m’, ‘-i’ or ‘-o’, and
‘-f’ options, except that multiple ‘-U’ optins can be specified in order to operate
on mulitple memories on the same command-line invocation. The memtype field
specifies the memory type to operate on. Use the ‘-v’ option on the command
line or the part command from terminal mode to display all the memory types
supported by a particular device. Typically, a device’s memory configuration at
least contains the memory types flash and eeprom. All memory types currently
known are:

calibration
One or more bytes of RC oscillator calibration data.

eeprom The EEPROM of the device.

efuse The extended fuse byte.

flash The flash ROM of the device.

fuse The fuse byte in devices that have only a single fuse byte.

hfuse The high fuse byte.

lfuse The low fuse byte.

lock The lock byte.

signature
The three device signature bytes (device ID).

The op field specifies what operation to perform:

r read the specified device memory and write to the specified file
w read the specified file and write it to the specified device memory
v read the specified device memory and the specified file and perform

a verify operation

The filename field indicates the name of the file to read or write. The format
field is optional and contains the format of the file to read or write. Possible
values are:

Chapter 2: Command Line Options 9

i Intel Hex
s Motorola S-record
r raw binary; little-endian byte order, in the case of the flash ROM

data
m immediate mode; actual byte values specified on the command line,

seperated by commas or spaces in place of the filename field of the
‘-i’, ‘-o’, or ‘-U’ options. This is useful for programming fuse bytes
without having to create a single-byte file or enter terminal mode.
If the number specified begins with 0x, it is treated as a hex value.
If the number otherwise begins with a leading zero (0) it is treated
as octal. Otherwise, the value is treated as decimal.

a auto detect; valid for input only, and only if the input is not pro-
vided at stdin.

d decimal; this and the following formats are only valid on output.
They generate one line of output for the respective memory section,
forming a comma-separated list of the values. This can be partic-
ularly useful for subsequent processing, like for fuse bit settings.

h hexadecimal; each value will get the string 0x prepended.
o octal; each value will get a 0 prepended unless it is less than 8 in

which case it gets no prefix.
b binary; each value will get the string 0b prepended.

The default is to use auto detection for input files, and raw binary format for
output files.
Note that if filename contains a colon, the format field is no longer optional
since the filename part following the colon would otherwise be misinterpreted
as format.
As an abbreviation, the form -U filename is equivalent to specifying -U
flash:w:filename:a. This will only work if filename does not have a colon in it.

-v Enable verbose output.

-V Disable automatic verify check when uploading data.

-y Tells AVRDUDE to use the last four bytes of the connected parts’ EEPROM
memory to track the number of times the device has been erased. When this
option is used and the ‘-e’ flag is specified to generate a chip erase, the previous
counter will be saved before the chip erase, it is then incremented, and written
back after the erase cycle completes. Presumably, the device would only be
erased just before being programmed, and thus, this can be utilized to give an
indication of how many erase-rewrite cycles the part has undergone. Since the
FLASH memory can only endure a finite number of erase-rewrite cycles, one
can use this option to track when a part is nearing the limit. The typical limit
for Atmel AVR FLASH is 1000 cycles. Of course, if the application needs the
last four bytes of EEPROM memory, this option should not be used.

-Y cycles

Instructs AVRDUDE to initialize the erase-rewrite cycle counter residing at the
last four bytes of EEPROM memory to the specified value. If the application
needs the last four bytes of EEPROM memory, this option should not be used.

Chapter 2: Command Line Options 10

2.2 Example Command Line Invocations

Download the file diag.hex to the ATmega128 chip using the STK500 programmer con-
nected to the default serial port:� �

% avrdude -p m128 -c stk500 -e -U flash:w:diag.hex

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9702

avrdude: erasing chip

avrdude: done.

avrdude: performing op: 1, flash, 0, diag.hex

avrdude: reading input file "diag.hex"

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: writing flash (19278 bytes):

Writing | ## | 100% 7.60s

avrdude: 19456 bytes of flash written

avrdude: verifying flash memory against diag.hex:

avrdude: load data flash data from input file diag.hex:

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: input file diag.hex contains 19278 bytes

avrdude: reading on-chip flash data:

Reading | ## | 100% 6.83s

avrdude: verifying ...

avrdude: 19278 bytes of flash verified

avrdude: safemode: Fuses OK

avrdude done. Thank you.

%
 	

Chapter 2: Command Line Options 11

Upload the flash memory from the ATmega128 connected to the STK500 programmer and
save it in raw binary format in the file named c:/diag flash.bin:� �

% avrdude -p m128 -c stk500 -U flash:r:"c:/diag flash.bin":r

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9702

avrdude: reading flash memory:

Reading | ## | 100% 46.10s

avrdude: writing output file "c:/diag flash.bin"

avrdude: safemode: Fuses OK

avrdude done. Thank you.

%
 	

Chapter 2: Command Line Options 12

Using the default programmer, download the file diag.hex to flash, eeprom.hex to EEP-
ROM, and set the Extended, High, and Low fuse bytes to 0xff, 0x89, and 0x2e respectively:� �

% avrdude -p m128 -u -U flash:w:diag.hex \

> -U eeprom:w:eeprom.hex \

> -U efuse:w:0xff:m \

> -U hfuse:w:0x89:m \

> -U lfuse:w:0x2e:m

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9702

avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed

To disable this feature, specify the -D option.

avrdude: erasing chip

avrdude: reading input file "diag.hex"

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: writing flash (19278 bytes):

Writing | ## | 100% 7.60s

avrdude: 19456 bytes of flash written

avrdude: verifying flash memory against diag.hex:

avrdude: load data flash data from input file diag.hex:

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: input file diag.hex contains 19278 bytes

avrdude: reading on-chip flash data:

Reading | ## | 100% 6.84s

avrdude: verifying ...

avrdude: 19278 bytes of flash verified

[... other memory status output skipped for brevity ...]

avrdude done. Thank you.

%
 	

Chapter 2: Command Line Options 13

Connect to the JTAG ICE mkII which serial number ends up in 1C37 via USB, and enter
terminal mode:� �

% avrdude -c jtag2 -p m649 -P usb:1c:37 -t

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9603

[... terminal mode output skipped for brevity ...]

avrdude done. Thank you.
 	
List the serial numbers of all JTAG ICEs attached to USB. This is done by specifying an
invalid serial number, and increasing the verbosity level.� �

% avrdude -c jtag2 -p m128 -P usb:xx -v

[...]

Using Port : usb:xxx

Using Programmer : jtag2

avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C6B

avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C3A

avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C30

avrdude: usbdev_open(): did not find any (matching) USB device "usb:xxx"
 	

Chapter 3: Terminal Mode Operation 14

3 Terminal Mode Operation

AVRDUDE has an interactive mode called terminal mode that is enabled by the ‘-t’ option.
This mode allows one to enter interactive commands to display and modify the various de-
vice memories, perform a chip erase, display the device signature bytes and part parameters,
and to send raw programming commands. Commands and parameters may be abbreviated
to their shortest unambiguous form. Terminal mode also supports a command history so
that previously entered commands can be recalled and edited.

3.1 Terminal Mode Commands

The following commands are implemented:

dump memtype addr nbytes

Read nbytes from the specified memory area, and display them in the usual
hexadecimal and ASCII form.

dump Continue dumping the memory contents for another nbytes where the previous
dump command left off.

write memtype addr byte1 ... byteN

Manually program the respective memory cells, starting at address addr, using
the values byte1 through byteN. This feature is not implemented for bank-
addressed memories such as the flash memory of ATMega devices.

erase Perform a chip erase.

send b1 b2 b3 b4

Send raw instruction codes to the AVR device. If you need access to a feature
of an AVR part that is not directly supported by AVRDUDE, this command
allows you to use it, even though AVRDUDE does not implement the command.

sig Display the device signature bytes.

part Display the current part settings and parameters. Includes chip specific infor-
mation including all memory types supported by the device, read/write timing,
etc.

?
help Give a short on-line summary of the available commands.

quit Leave terminal mode and thus AVRDUDE.

In addition, the following commands are supported on the STK500 programmer:

vtarg voltage

Set the target’s supply voltage to voltage Volts.

varef voltage

Set the adjustable voltage source to voltage Volts. This voltage is normally
used to drive the target’s Aref input on the STK500.

fosc freq[M|k]
Set the master oscillator to freq Hz. An optional trailing letter M multiplies
by 1E6, a trailing letter k by 1E3.

Chapter 3: Terminal Mode Operation 15

fosc off Turn the master oscillator off.

sck period

STK500 only: Set the SCK clock period to period microseconds.

JTAG ICE only: Set the JTAG ICE bit clock period to period microseconds.
Note that unlike STK500 settings, this setting will be reverted to its default
value (approximately 1 microsecond) when the programming software signs off
from the JTAG ICE. This parameter can also be used on the JTAG ICE mkII
to specify the ISP clock period when operating the ICE in ISP mode.

parms STK500 only: Display the current voltage and master oscillator parameters.

JTAG ICE only: Display the current target supply voltage and JTAG bit clock
rate/period.

3.2 Terminal Mode Examples

Display part parameters, modify eeprom cells, perform a chip erase:

Chapter 3: Terminal Mode Operation 16

� �
% avrdude -p m128 -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9702

avrdude: current erase-rewrite cycle count is 52 (if being tracked)

avrdude> part

>>> part

AVR Part : ATMEGA128

Chip Erase delay : 9000 us

PAGEL : PD7

BS2 : PA0

RESET disposition : dedicated

RETRY pulse : SCK

serial program mode : yes

parallel program mode : yes

Memory Detail :

Page Polled

Memory Type Paged Size Size #Pages MinW MaxW ReadBack

----------- ------ ------ ---- ------ ----- ----- ---------

eeprom no 4096 8 0 9000 9000 0xff 0xff

flash yes 131072 256 512 4500 9000 0xff 0x00

lfuse no 1 0 0 0 0 0x00 0x00

hfuse no 1 0 0 0 0 0x00 0x00

efuse no 1 0 0 0 0 0x00 0x00

lock no 1 0 0 0 0 0x00 0x00

calibration no 1 0 0 0 0 0x00 0x00

signature no 3 0 0 0 0 0x00 0x00

avrdude> dump eeprom 0 16

>>> dump eeprom 0 16

0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude> write eeprom 0 1 2 3 4

>>> write eeprom 0 1 2 3 4

avrdude> dump eeprom 0 16

>>> dump eeprom 0 16

0000 01 02 03 04 ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude> erase

>>> erase

avrdude: erasing chip

avrdude> dump eeprom 0 16

>>> dump eeprom 0 16

0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude>
 	

Program the fuse bits of an ATmega128 (disable M103 compatibility, enable high speed ex-
ternal crystal, enable brown-out detection, slowly rising power). Note since we are working
with fuse bits the -u (unsafe) option is specified, which allows you to modify the fuse bits.
First display the factory defaults, then reprogram:

Chapter 3: Terminal Mode Operation 17

� �
% avrdude -p m128 -u -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9702

avrdude: current erase-rewrite cycle count is 52 (if being tracked)

avrdude> d efuse

>>> d efuse

0000 fd |. |

avrdude> d hfuse

>>> d hfuse

0000 99 |. |

avrdude> d lfuse

>>> d lfuse

0000 e1 |. |

avrdude> w efuse 0 0xff

>>> w efuse 0 0xff

avrdude> w hfuse 0 0x89

>>> w hfuse 0 0x89

avrdude> w lfuse 0 0x2f

>>> w lfuse 0 0x2f

avrdude>
 	

Chapter 4: Configuration File 18

4 Configuration File

AVRDUDE reads a configuration file upon startup which describes all of the parts and
programmers that it knows about. The advantage of this is that if you have a chip that
is not currently supported by AVRDUDE, you can add it to the configuration file without
waiting for a new release of AVRDUDE. Likewise, if you have a parallel port programmer
that is not supported by AVRDUDE, chances are good that you can copy and existing
programmer definition, and with only a few changes, make your programmer work with
AVRDUDE.

AVRDUDE first looks for a system wide configuration file in a platform dependent
location. On Unix, this is usually /usr/local/etc/avrdude.conf, while on Windows it
is usally in the same location as the executable file. The name of this file can be changed
using the ‘-C’ command line option. After the system wide configuration file is parsed,
AVRDUDE looks for a per-user configuration file to augment or override the system wide
defaults. On Unix, the per-user file is .avrduderc within the user’s home directory. On
Windows, this file is the avrdude.rc file located in the same directory as the executable.

4.1 AVRDUDE Defaults

default_parallel = "default-parallel-device";
Assign the default parallel port device. Can be overidden using the ‘-P’ option.

default_serial = "default-serial-device";
Assign the default serial port device. Can be overidden using the ‘-P’ option.

default_programmer = "default-programmer-id";
Assign the default programmer id. Can be overidden using the ‘-c’ option.

4.2 Programmer Definitions

The format of the programmer definition is as follows:
programmer

id = <id1> [, <id2> [, <id3>] ...] ; # <idN> are quoted strings

desc = <description> ; # quoted string

type = par | stk500 ; # programmer type

baudrate = <num> ; # baudrate for serial ports

vcc = <num1> [, <num2> ...] ; # pin number(s)

reset = <num> ; # pin number

sck = <num> ; # pin number

mosi = <num> ; # pin number

miso = <num> ; # pin number

errled = <num> ; # pin number

rdyled = <num> ; # pin number

pgmled = <num> ; # pin number

vfyled = <num> ; # pin number

;

4.3 Part Definitions
part

id = <id> ; # quoted string

desc = <description> ; # quoted string

Chapter 4: Configuration File 19

devicecode = <num> ; # numeric

chip_erase_delay = <num> ; # micro-seconds

pagel = <num> ; # pin name in hex, i.e., 0xD7

bs2 = <num> ; # pin name in hex, i.e., 0xA0

reset = dedicated | io;

retry_pulse = reset | sck;

pgm_enable = <instruction format> ;

chip_erase = <instruction format> ;

memory <memtype>

paged = <yes/no> ; # yes / no

size = <num> ; # bytes

page_size = <num> ; # bytes

num_pages = <num> ; # numeric

min_write_delay = <num> ; # micro-seconds

max_write_delay = <num> ; # micro-seconds

readback_p1 = <num> ; # byte value

readback_p2 = <num> ; # byte value

pwroff_after_write = <yes/no> ; # yes / no

read = <instruction format> ;

write = <instruction format> ;

read_lo = <instruction format> ;

read_hi = <instruction format> ;

write_lo = <instruction format> ;

write_hi = <instruction format> ;

loadpage_lo = <instruction format> ;

loadpage_hi = <instruction format> ;

writepage = <instruction format> ;

;

;

4.3.1 Instruction Format

Instruction formats are specified as a comma seperated list of string values containing
information (bit specifiers) about each of the 32 bits of the instruction. Bit specifiers may
be one of the following formats:

1 The bit is always set on input as well as output

0 the bit is always clear on input as well as output

x the bit is ignored on input and output

a the bit is an address bit, the bit-number matches this bit specifier’s position
within the current instruction byte

aN the bit is the Nth address bit, bit-number = N, i.e., a12 is address bit 12 on
input, a0 is address bit 0.

i the bit is an input data bit

o the bit is an output data bit

Each instruction must be composed of 32 bit specifiers. The instruction specification
closely follows the instruction data provided in Atmel’s data sheets for their parts. For
example, the EEPROM read and write instruction for an AT90S2313 AVR part could be
encoded as:

read = "1 0 1 0 0 0 0 0 x x x x x x x x",

Chapter 4: Configuration File 20

"x a6 a5 a4 a3 a2 a1 a0 o o o o o o o o";

write = "1 1 0 0 0 0 0 0 x x x x x x x x",

"x a6 a5 a4 a3 a2 a1 a0 i i i i i i i i";

4.4 Other Notes

• The devicecode parameter is the device code used by the STK500 and is obtained
from the software section (avr061.zip) of Atmel’s AVR061 application note available
from http://www.atmel.com/atmel/acrobat/doc2525.pdf.

• Not all memory types will implement all instructions.
• AVR Fuse bits and Lock bits are implemented as a type of memory.
• Example memory types are: flash, eeprom, fuse, lfuse (low fuse), hfuse (high fuse),

efuse (extended fuse), signature, calibration, lock.
• The memory type specified on the AVRDUDE command line must match one of the

memory types defined for the specified chip.
• The pwroff_after_write flag causes AVRDUDE to attempt to power the device off

and back on after an unsuccessful write to the affected memory area if VCC programmer
pins are defined. If VCC pins are not defined for the programmer, a message indicating
that the device needs a power-cycle is printed out. This flag was added to work around
a problem with the at90s4433/2333’s; see the at90s4433 errata at:
http://www.atmel.com/atmel/acrobat/doc1280.pdf

• The boot loader from application note AVR109 (and thus also the AVR Butterfly) does
not support writing of fuse bits. Writing lock bits is supported, but is restricted to
the boot lock bits (BLBxx). These are restrictions imposed by the underlying SPM
instruction that is used to program the device from inside the boot loader. Note that
programming the boot lock bits can result in a “shoot-into-your-foot” scenario as the
only way to unprogram these bits is a chip erase, which will also erase the boot loader
code.
The boot loader implements the “chip erase” function by erasing the flash pages of the
application section.
Reading fuse and lock bits is fully supported.
Note that due to the unability to write the fuse bits, the safemode functionality does
not make sense for these boot loaders.

http://www.atmel.com/atmel/acrobat/doc2525.pdf
http://www.atmel.com/atmel/acrobat/doc1280.pdf

Appendix A: Platform Dependent Information 21

Appendix A Platform Dependent Information

A.1 Unix

A.1.1 Unix Installation

To build and install from the source tarball on Unix like systems:

$ gunzip -c avrdude-5.4.tar.gz | tar xf -
$ cd avrdude-5.4
$./configure
$ make
$ su root -c ’make install’

The default location of the install is into /usr/local so you will need to be sure that
/usr/local/bin is in your PATH environment variable.

If you do not have root access to your system, you can do the the following instead:

$ gunzip -c avrdude-5.4.tar.gz | tar xf -
$ cd avrdude-5.4
$./configure --prefix=$HOME/local
$ make
$ make install

A.1.1.1 FreeBSD Installation

AVRDUDE is installed via the FreeBSD Ports Tree as follows:

% su - root
cd /usr/ports/devel/avrdude
make install

If you wish to install from a pre-built package instead of the source, you can use the
following instead:

% su - root
pkg_add -r avrdude

Of course, you must be connected to the Internet for these methods to work, since that
is where the source as well as the pre-built package is obtained.

A.1.1.2 Linux Installation

On rpm based linux systems (such as RedHat, SUSE, Mandrake, etc), you can build and
install the rpm binaries directly from the tarball:

$ su - root
rpmbuild -tb avrdude-5.4.tar.gz
rpm -Uvh /usr/src/redhat/RPMS/i386/avrdude-5.4-1.i386.rpm

Note that the path to the resulting rpm package, differs from system to system. The
above example is specific to RedHat.

Appendix A: Platform Dependent Information 22

A.1.2 Unix Configuration Files

When AVRDUDE is build using the default ‘--prefix’ configure option, the default con-
figuration file for a Unix system is located at /usr/local/etc/avrdude.conf. This can be
overridden by using the ‘-C’ command line option. Additionally, the user’s home directory
is searched for a file named .avrduderc, and if found, is used to augment the system default
configuration file.

A.1.2.1 FreeBSD Configuration Files

When AVRDUDE is installed using the FreeBSD ports system, the system configuration
file is always /usr/local/etc/avrdude.conf.

A.1.2.2 Linux Configuration Files

When AVRDUDE is installed using from an rpm package, the system configuration file will
be always be /etc/avrdude.conf.

A.1.3 Unix Port Names

The parallel and serial port device file names are system specific. The following table lists
the default names for a given system.
System Default Parallel Port Default Serial Port
FreeBSD /dev/ppi0 /dev/cuaa0
Linux /dev/parport0 /dev/ttyS0
Solaris /dev/printers/0 /dev/term/a

On FreeBSD systems, AVRDUDE uses the ppi(4) interface for accessing the parallel
port and the sio(4) driver for serial port access.

On Linux systems, AVRDUDE uses the ppdev interface for accessing the parallel port
and the tty driver for serial port access.

On Solaris systems, AVRDUDE uses the ecpp(7D) driver for accessing the parallel port
and the asy(7D) driver for serial port access.

A.1.4 Unix Documentation

AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The
manual page is installed in /usr/local/man/man1 area, while the HTML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Note that these locations can be altered by various configure options such as ‘--prefix’.

A.2 Windows

A.2.1 Installation

A Windows executable of avrdude is included in WinAVR which can be found at
http://sourceforge.net/projects/winavr. WinAVR is a suite of executable, open
source software development tools for the AVR for the Windows platform.

To build avrdude from the source You must have Cygwin (http://www.cygwin.com/).
To build and install from the source tarball for Windows (using Cygwin):

http://sourceforge.net/projects/winavr
http://www.cygwin.com/

Appendix A: Platform Dependent Information 23

$ set PREFIX=<your install directory path>
$ export PREFIX
$ gunzip -c avrdude-5.4.tar.gz | tar xf -
$ cd avrdude-5.4
$./configure LDFLAGS="-static" --prefix=$PREFIX --datadir=$PREFIX
--sysconfdir=$PREFIX/bin --enable-versioned-doc=no
$ make
$ make install

A.2.2 Configuration Files

A.2.2.1 Configuration file names

AVRDUDE on Windows looks for a system configuration file name of avrdude.conf and
looks for a user override configuration file of avrdude.rc.

A.2.2.2 How AVRDUDE finds the configuration files.

AVRDUDE on Windows has a different way of searching for the system and user configu-
ration files. Below is the search method for locating the configuration files:
1. The directory from which the application loaded.
2. The current directory.
3. The Windows system directory. On Windows NT, the name of this directory is

SYSTEM32.
4. Windows NT: The 16-bit Windows system directory. The name of this directory is

SYSTEM.
5. The Windows directory.
6. The directories that are listed in the PATH environment variable.

A.2.3 Port Names

A.2.3.1 Serial Ports

When you select a serial port (i.e. when using an STK500) use the Windows serial port
device names such as: com1, com2, etc.

A.2.3.2 Parallel Ports

AVRDUDE will only accept 3 Windows parallel port names: lpt1, lpt2, or lpt3. Each of
these names corresponds to a fixed parallel port base address:

lpt1 0x378

lpt2 0x278

lpt3 0x3BC

On your desktop PC, lpt1 will be the most common choice. If you are using a laptop,
you might have to use lpt3 instead of lpt1. Select the name of the port the corresponds to
the base address of the parallel port that you want.

A.2.4 Using the parallel port

Appendix A: Platform Dependent Information 24

A.2.4.1 Windows NT/2K/XP

On Windows NT, 2000, and XP user applications cannot directly access the parallel port.
However, kernel mode drivers can access the parallel port. giveio.sys is a driver that can
allow user applications to set the state of the parallel port pins.

Before using AVRDUDE, the giveio.sys driver must be loaded. The accompanying
command-line program, loaddrv.exe, can do just that.

To make things even easier there are 3 batch files that are also included:
1. install giveio.bat Install and start the giveio driver.
2. status giveio.bat Check on the status of the giveio driver.
3. remove giveio.bat Stop and remove the giveio driver from memory.

These 3 batch files calls the loaddrv program with various options to install, start, stop,
and remove the driver.

When you first execute install giveio.bat, loaddrv.exe and giveio.sys must be in the
current directory. When install giveio.bat is executed it will copy giveio.sys from your
current directory to your Windows directory. It will then load the driver from the Windows
directory. This means that after the first time install giveio is executed, you should be able
to subsequently execute the batch file from any directory and have it successfully start the
driver.

Note that you must have administrator privilege to load the giveio driver.

A.2.4.2 Windows 95/98

On Windows 95 and 98 the giveio.sys driver is not needed.

A.2.5 Documentation

AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The
manual page is installed in /usr/local/man/man1 area, while the HTML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Note that these locations can be altered by various configure options such as ‘--prefix’
and ‘--datadir’.

A.2.6 Credits.

Thanks to:
• Dale Roberts for the giveio driver.
• Paula Tomlinson for the loaddrv sources.
• Chris Liechti <cliechti@gmx.net> for modifying loaddrv to be command line driven and

for writing the batch files.

Appendix B: Troubleshooting 25

Appendix B Troubleshooting

In general, please report any bugs encountered via
http://savannah.nongnu.org/bugs/?group=avrdude.
• Problem: I’m using a serial programmer under Windows and get the following error:

avrdude: serial_open(): can’t set attributes for device "com1",
Solution: This problem seems to appear with certain versions of Cygwin. Specifying
"/dev/com1" instead of "com1" should help.

• Problem: I’m using linux and my AVR910 programmer is really slow.
Solution (short): setserial port low_latency

Solution (long): There are two problems here. First, the system may wait some time
before it passes data from the serial port to the program. Under Linux the following
command works around this (you may need root privileges for this).
setserial port low_latency

Secondly, the serial interface chip may delay the interrupt for some time. This be-
haviour can be changed by setting the FIFO-threshold to one. Under Linux this can
only be done by changing the kernel source in drivers/char/serial.c. Search the file
for UART_FCR_TRIGGER_8 and replace it with UART_FCR_TRIGGER_1. Note that overall
performance might suffer if there is high throughput on serial lines. Also note that you
are modifying the kernel at your own risk.

• Problem: I’m not using linux and my AVR910 programmer is really slow.
Solutions: The reasons for this are the same as above. If you know how to work around
this on your OS, please let us know.

• Problem: Updating the flash ROM from terminal mode does not work with the JTAG
ICEs.
Solution: None at this time. Currently, the JTAG ICE code cannot write to the flash
ROM one byte at a time.

• Problem: Page-mode programming the EEPROM (using the -U option) does not erase
EEPROM cells before writing, and thus cannot overwrite any previous value != 0xff.
Solution: None. This is an inherent feature of the way JTAG EEPROM programming
works, and is documented that way in the Atmel AVR datasheets. In order to suc-
cessfully program the EEPROM that way, a prior chip erase (with the EESAVE fuse
unprogrammed) is required. This also applies to the STK500 in high-voltage program-
ming mode.

• Problem: How do I turn off the DWEN fuse?
Solution: If the DWEN (debugWire enable) fuse is activated, the /RESET pin is not
functional anymore, so normal ISP communication cannot be established. There are
two options to deactivate that fuse again: high-voltage programming, or getting the
JTAG ICE mkII talk debugWire, and prepare the target AVR to accept normal ISP
communication again.
The first option requires a programmer that is capable of high-voltage programming
(either serial or parallel, depending on the AVR device), for example the STK500.
In high-voltage programming mode, the /RESET pin is activated initially using a

http://savannah.nongnu.org/bugs/?group=avrdude

Appendix B: Troubleshooting 26

12 V pulse (thus the name high voltage), so the target AVR can subsequently be
reprogrammed, and the DWEN fuse can be cleared. Typically, this operation cannot
be performed while the AVR is located in the target circuit though.
The second option requires a JTAG ICE mkII that can talk the debugWire protocol.
The ICE needs to be connected to the target using the JTAG-to-ISP adapter, so the
JTAG ICE mkII can be used as a debugWire initiator as well as an ISP programmer.
AVRDUDE will then be activated using the jtag2isp programmer type. The initial
ISP communication attempt will fail, but AVRDUDE then tries to iniate a debugWire
reset. When successful, this will leave the target AVR in a state where it can accept
standard ISP communication. The ICE is then signed off (which will make it signing
off from the USB as well), so AVRDUDE has to be called again afterwards. This time,
standard ISP communication can work, so the DWEN fuse can be cleared.
The pin mapping for the JTAG-to-ISP adapter is:
JTAG pin ISP pin
1 3
2 6
3 1
4 2
6 5
9 4

• Problem: Multiple USBasp programmers connected simultaneously are not found.
Solution: none at this time. The simplicity of the USBasp programmer doesn’t offer
a method to distinguish multiple programmers that are connected simultaneously, so
effectively only one USBasp is supported.

• Problem: I cannot do . . . when the target is in debugWire mode.
Solution: debugWire mode imposes several limitations.
The debugWire protocol is Atmel’s proprietary one-wire (plus ground) protocol to
allow an in-circuit emulation of the smaller AVR devices, using the /RESET line.
DebugWire mode is initiated by activating the DWEN fuse, and then power-cycling
the target. While this mode is mainly intented for debugging/emulation, it also offers
limited programming capabilities. Effectively, the only memory areas that can be read
or programmed in this mode are flash ROM and EEPROM. It is also possible to read
out the signature. All other memory areas cannot be accessed. There is no chip erase
functionality in debugWire mode; instead, while reprogramming the flash ROM, each
flash ROM page is erased right before updating it. This is done transparently by the
JTAG ICE mkII (or AVR Dragon). The only way back from debugWire mode is to
initiate a special sequence of commands to the JTAG ICE mkII (or AVR Dragon), so
the debugWire mode will be temporarily disabled, and the target can be accessed using
normal ISP programming. This sequence is automatically initiated by using the JTAG
ICE mkII or AVR Dragon in ISP mode, when they detect that ISP mode cannot be
entered.

	Introduction
	History and Credits

	Command Line Options
	Option Descriptions
	Example Command Line Invocations

	Terminal Mode Operation
	Terminal Mode Commands
	Terminal Mode Examples

	Configuration File
	AVRDUDE Defaults
	Programmer Definitions
	Part Definitions
	Instruction Format

	Other Notes

	Platform Dependent Information
	Unix
	Unix Installation
	FreeBSD Installation
	Linux Installation

	Unix Configuration Files
	FreeBSD Configuration Files
	Linux Configuration Files

	Unix Port Names
	Unix Documentation

	Windows
	Installation
	Configuration Files
	Configuration file names
	How AVRDUDE finds the configuration files.

	Port Names
	Serial Ports
	Parallel Ports

	Using the parallel port
	Windows NT/2K/XP
	Windows 95/98

	Documentation
	Credits.

	Troubleshooting

