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Abstract

This is the proof document of the IsarMathLib project version
1.11.0. IsarMathLib is a library of formalized mathematics for Is-
abelle2019 (ZF logic).
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1 Introduction to the IsarMathLib project
theory Introduction imports ZF.equalities
begin

This theory does not contain any formalized mathematics used in other
theories, but is an introduction to IsarMathLib project.



1.1 How to read IsarMathLib proofs - a tutorial

Isar (the Isabelle’s formal proof language) was designed to be similar to
the standard language of mathematics. Any person able to read proofs in
a typical mathematical paper should be able to read and understand Isar
proofs without having to learn a special proof language. However, Isar is
a formal proof language and as such it does contain a couple of constructs
whose meaning is hard to guess. In this tutorial we will define a notion
and prove an example theorem about that notion, explaining Isar syntax
along the way. This tutorial may also serve as a style guide for IsarMathLib
contributors. Note that this tutorial aims to help in reading the presentation
of the Isar language that is used in IsarMathLib proof document and HTML
rendering on the FormalMath.org site, but does not teach how to write proofs
that can be verified by Isabelle. This presentation is different than the
source processed by Isabelle (the concept that the source and presentation
look different should be familiar to any LaTeX user). To learn how to write
Isar proofs one needs to study the source of this tutorial as well.

The first thing that mathematicians typically do is to define notions. In Isar
this is done with the definition keyword. In our case we define a notion of
two sets being disjoint. We will use the infix notation, i.e. the string {is
disjoint with} put between two sets to denote our notion of disjointness.
The left side of the = symbol is the notion being defined, the right side says
how we define it. In Isabelle/ZF 0 is used to denote both zero (of natural
numbers) and the empty set, which is not surprising as those two things are
the same in set theory.

definition
AreDisjoint (infix {is disjoint with} 90) where
A {is disjoint with} B=A N B =10

We are ready to prove a theorem. Here we show that the relation of be-
ing disjoint is symmetric. We start with one of the keywords ”theorem”,
”lemma” or ”corollary”. In Isar they are synonymous. Then we provide a
name for the theorem. In standard mathematics theorems are numbered. In
Isar we can do that too, but it is considered better to give theorems mean-
ingful names. After the ”shows” keyword we give the statement to show.
The <— symbol denotes the equivalence in Isabelle/ZF. Here we want to
show that ” A is disjoint with B iff and only if B is disjoint with A”. To prove
this fact we show two implications - the first one that A {is disjoint with}
B implies B {is disjoint with} A and then the converse one. Each of these
implications is formulated as a statement to be proved and then proved in a
subproof like a mini-theorem. Each subproof uses a proof block to show the
implication. Proof blocks are delimited with curly brackets in Isar. Proof
block is one of the constructs that does not exist in informal mathematics,
so it may be confusing. When reading a proof containing a proof block I sug-
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gest to focus first on what is that we are proving in it. This can be done by
looking at the first line or two of the block and then at the last statement. In
our case the block starts with "assume A {is disjoint with} B and the last
statement is "then have B {is disjoint with} A”. It is a typical pattern
when someone needs to prove an implication: one assumes the antecedent
and then shows that the consequent follows from this assumption. Impli-
cations are denoted with the — symbol in Isabelle. After we prove both
implications we collect them using the ”moreover” construct. The keyword
”ultimately” indicates that what follows is the conclusion of the statements
collected with ”moreover”. The ”show” keyword is like "have”, except that
it indicates that we have arrived at the claim of the theorem (or a subproof).

theorem disjointness_symmetric:
shows A {is disjoint with} B <— B {is disjoint with} A
proof -
have A {is disjoint with} B — B {is disjoint withl} A
proof -
{ assume A {is disjoint with} B
then have A N B = 0 using AreDisjoint_def by simp
hence B N A = 0 by auto
then have B {is disjoint with} A
using AreDisjoint_def by simp
} thus thesis by simp
qed
moreover have B {is disjoint with} A — A {is disjoint with} B
proof -
{ assume B {is disjoint with} A
then have B N A = 0 using AreDisjoint_def by simp
hence A N B = 0 by auto
then have A {is disjoint with} B
using AreDisjoint_def by simp
} thus thesis by simp
qed
ultimately show thesis by blast
qed

1.2 Overview of the project

The Fol1, ZF1 and Nat_ZF_IML theory files contain some background material
that is needed for the remaining theories.

Order_ZF and Order_ZF_la reformulate material from standard Isabelle’s
Order theory in terms of non-strict (less-or-equal) order relations. Order_zF_1
on the other hand directly continues the Order theory file using strict order
relations (less and not equal). This is useful for translating theorems from
Metamath.

In NatOrder_ZF we prove that the usual order on natural numbers is linear.

The func1 theory provides basic facts about functions. func_ZF continues
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this development with more advanced topics that relate to algebraic proper-
ties of binary operations, like lifting a binary operation to a function space,
associative, commutative and distributive operations and properties of func-
tions related to order relations. func_ZF_1 is about properties of functions
related to order relations.

The standard Isabelle’s Finite theory defines the finite powerset of a set
as a certain "datatype” (7) with some recursive properties. IsarMathLib’s
Finitel and Finite_ZF_1 theories develop more facts about this notion.
These two theories are obsolete now. They will be gradually replaced by
an approach based on set theory rather than tools specific to Isabelle. This
approach is presented in Finite_ZF theory file.

In FinOrd_ZF we talk about ordered finite sets.

The EquivClass1 theory file is a reformulation of the material in the standard
Isabelle’s EquivClass theory in the spirit of ZF set theory.

FiniteSeq_ZF discusses the notion of finite sequences (a.k.a. lists).

InductiveSeq_ZF provides the definition and properties of (what is known in
basic calculus as) sequences defined by induction, i. e. by a formula of the
form ap = x, apn+1 = f(an).

Fold_ZF shows how the familiar from functional programming notion of fold
can be interpreted in set theory.

Partitions_ZF is about splitting a set into non-overlapping subsets. This is
a common trick in proofs.

Semigroup_ZF treats the expressions of the form ag-aq - .. - an, (i.e. products
of finite sequences), where ”-” is an associative binary operation.

CommutativeSemigroup_ZF is another take on a similar subject. This time
we consider the case when the operation is commutative and the result of
depends only on the set of elements we are summing (additively speaking),
but not the order.

The Topology_ZF series covers basics of general topology: interior, closure,
boundary, compact sets, separation axioms and continuous functions.
Group_ZF, Group_ZF_1, Group_ZF_1b and Group_ZF_2 provide basic facts of the
group theory. Group_ZF_3 considers the notion of almost homomorphisms
that is nedeed for the real numbers construction in Real_ZF.

The TopologicalGroup connects the Topology_ZF and Group_ZF series and
starts the subject of topological groups with some basic definitions and facts.
In DirectProduct_ZF we define direct product of groups and show some its
basic properties.

The OrderedGroup_ZF theory treats ordered groups. This is a suprisingly
large theory for such relatively obscure topic.

Ring_ZF defines rings. Ring_ZF_1 covers the properties of rings that are
specific to the real numbers construction in Real_ZF.
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The OrderedRing_ZF theory looks at the consequences of adding a linear
order to the ring algebraic structure.

Field_ZF and OrderedField_ZF contain basic facts about (you guessed it)
fields and ordered fields.

Int_ZF_IML theory considers the integers as a monoid (multiplication) and an
abelian ordered group (addition). In Int_2ZF_1 we show that integers form
a commutative ring. Int_ZF_2 contains some facts about slopes (almost
homomorphisms on integers) needed for real numbers construction, used in
Real_ZF_1.

In the IntDiv_ZF_IML theory we translate some properties of the integer
quotient and reminder functions studied in the standard Isabelle’s IntDiv_ZF
theory to the notation used in IsarMathLib.

The Real_ZF and Real_ZF_1 theories contain the construction of real numbers
based on the paper [2] by R. D. Arthan (not Cauchy sequences, not Dedekind
sections). The heavy lifting is done mostly in Group_ZF_3, Ring_ZF_1 and
Int_ZF_2. Real_ZF contains the part of the construction that can be done
starting from generic abelian groups (rather than additive group of integers).
This allows to show that real numbers form a ring. Real_ZF_1 continues the
construction using properties specific to the integers and showing that real
numbers constructed this way form a complete ordered field.

Cardinal_ZF provides a couple of theorems about cardinals that are mostly
used for studying properties of topological properties (yes, this is kind of
meta). The main result (proven without AC) is that if two sets can be
injectively mapped into an infinite cardinal, then so can be their union.
There is also a definition of the Axiom of Choice specific for a given cardinal
(so that the choice function exists for families of sets of given cardinality).
Some properties are proven for such predicates, like that for finite families of
sets the choice function always exists (in ZF) and that the axiom of choice
for a larger cardinal implies one for a smaller cardinal.

Group_ZF_4 considers conjugate of subgroup and defines simple groups. A
nice theorem here is that endomorphisms of an abelian group form a ring.
The first isomorphism theorem (a group homomorphism A induces an iso-
morphism between the group divided by the kernel of h and the image of h)
is proven.

Turns out given a property of a topological space one can define a local ver-
sion of a property in general. This is studied in the the Topology_ZF_properties_2
theory and applied to local versions of the property of being finite or com-
pact or Hausdorff (i.e. locally finite, locally compact, locally Hausdorff).
There are a couple of nice applications, like one-point compactification that
allows to show that every locally compact Hausdorff space is regular. Also
there are some results on the interplay between hereditability of a property
and local properties.
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For a given surjection f : X — Y, where X is a topological space one can
consider the weakest topology on Y which makes f continuous, let’s call it
a quotient topology generated by f. The quotient topology generated by an
equivalence relation r on X is actually a special case of this setup, where f
is the natural projection of X on the quotient X/r. The properties of these
two ways of getting new topologies are studied in Topology_ZF_8 theory.
The main result is that any quotient topology generated by a function is
homeomorphic to a topology given by an equivalence relation, so these two
approaches to quotient topologies are kind of equivalent.

As we all know, automorphisms of a topological space form a group. This
fact is proven in Topology_ZF_9 and the automorphism groups for co-cardinal,
included-set, and excluded-set topologies are identified. For order topologies
it is shown that order isomorphisms are homeomorphisms of the topology
induced by the order. Properties preserved by continuous functions are stud-
ied and as an application it is shown for example that quotient topological
spaces of compact (or connected) spaces are compact (or connected, resp.)

The Topology_ZF_10 theory is about products of two topological spaces. It
is proven that if two spaces are Ty (or 11, T, regular, connected) then their
product is as well.

Given a total order on a set one can define a natural topology on it gener-
ated by taking the rays and intervals as the base. The Topology_ZF_11 the-
ory studies relations between the order and various properties of generated
topology. For example one can show that if the order topology is connected,
then the order is complete (in the sense that for each set bounded from
above the set of upper bounds has a minimum). For a given cardinal xk we
can consider generalized notion of k — separability. Turns out k-separability
is related to (order) density of sets of cardinality x for order topologies.
Being a topological group imposes additional structure on the topology of the
group, in particular its separation properties. In Topological_Group_ZF_1.thy
theory it is shown that if a topology is Tp, then it must be T3 , and that the
topology in a topological group is always regular.

For a given normal subgroup of a topological group we can define a topology

on the quotient group in a natural way. At the end of the Topological_Group_ZF_2.thy
theory it is shown that such topology on the quotient group makes it a topo-

logical group.

The Topological_Group_ZF_3.thy theory studies the topologies on subgroups

of a topological group. A couple of nice basic properties are shown, like

that the closure of a subgroup is a subgroup, closure of a normal subgroup

is normal and, a bit more surprising (to me) property that every locally-
compact subgroup of a Ty group is closed.

In Complex_ZF we construct complex numbers starting from a complete or-
dered field (a model of real numbers). We also define the notation for writing
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about complex numbers and prove that the structure of complex numbers
constructed there satisfies the axioms of complex numbers used in Meta-
math.

MMI_prelude defines the mmisar0O context in which most theorems translated
from Metamath are proven. It also contains a chapter explaining how the
translation works.

In the Metamath_interface theory we prove a theorem that the mmisarO
context is valid (can be used) in the complex0 context. All theories us-
ing the translated results will import the Metamath_interface theory. The
Metamath_sampler theory provides some examples of using the translated
theorems in the complex0 context.

The theories MMI_logic_and_sets, MMI_Complex, MMI_Complex_1 and MMI_Complex_2
contain the theorems imported from the Metamath’s set.mm database. As
the translated proofs are rather verbose these theories are not printed in
this proof document. The full list of translated facts can be found in the
Metamath_theorems.txt file included in the IsarMathLib distribution. The
MMI_examples provides some theorems imported from Metamath that are

printed in this proof document as examples of how translated proofs look
like.

end

2 First Order Logic

theory Foll imports ZF.Trancl
begin

Isabelle/ZF builds on the first order logic. Almost everything one would
like to have in this area is covered in the standard Isabelle libraries. The
material in this theory provides some lemmas that are missing or allow for
a more readable proof style.

2.1 Notions and lemmas in FOL

This section contains mostly shortcuts and workarounds that allow to use
more readable coding style.

The next lemma serves as a workaround to problems with applying the
definition of transitivity (of a relation) in our coding style (any attempt to
do something like using trans_def puts Isabelle in an infinite loop).

lemma Foll_L2: assumes
Al: Vxyz (x,y) Er Ay, z) €r — (x, 2) €T
shows trans(r)

proof -
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from A1 have
Vxyz (x,y)€r —(y,z)e€r — (x, z) €Er
using imp_conj by blast
then show thesis unfolding trans_def by blast
qed

Another workaround for the problem of Isabelle simplifier looping when the
transitivity definition is used.

lemma Foll_L3: assumes Al: trans(r) and A2: {( a,b) € r A (b,c) €r
shows ( a,c) € r

proof -
from A1 have Vxyz. (x, y) €r — (y, z2) €r — (x, z) €
unfolding trans_def by blast
with A2 show thesis using imp_conj by fast

qed

There is a problem with application of the definition of asymetry for rela-
tions. The next lemma is a workaround.

lemma Foll_L4:
assumes Al: antisym(r) and A2: ( a,b) € r (b,a) €r
shows a=b
proof -
from A1 have V x y. (x,y) € r — (y,x) € r — x=y
unfolding antisym_def by blast
with A2 show a=b using imp_conj by fast
qed

The definition below implements a common idiom that states that (perhaps
under some assumptions) exactly one of given three statements is true.

definition
Exactly_1_of_3_holds(p,q,r) =
(pvVgvr) A (p — g A - r) A (@ — —p A -r) A (r — —p A =q)

The next lemma allows to prove statements of the form Exactly_1_of_3_holds(p,q,r).

lemma Foll_L5:
assumes pVqVr
and p — —q A —r
and ¢ — —p A —r
and r — —p A 7q
shows Exactly_1_of_3_holds(p,q,r)
proof -
from assms have
(pvgqvr) A (p — g A r) AN (@ — p A 1) A (r — —p A Q)
by blast
then show Exactly_1_of_3_holds (p,q,r)
unfolding Exactly_1_of_3_holds_def by fast
qed

If exactly one of p, ¢, holds and p is not true, then ¢ or 7.
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lemma Foll_L6:
assumes Al: —p and A2: Exactly_1_of_3_holds(p,q,r)
shows qVr
proof -
from A2 have
(pvgqvr) A (p — g A —r) A (@ — pA 1) A (r — —p A —q)
unfolding Exactly_1_of_3_holds_def by fast
hence p V q V r by blast
with Al show q V r by simp
qed

If exactly one of p, ¢, r holds and ¢ is true, then r can not be true.

lemma Foll_L7:
assumes Al: q and A2: Exactly_1_of_3_holds(p,q,r)
shows —r
proof -
from A2 have
(pvgqvr) A (p — g A -r) AN (@ — p A 1) A (r — —p A Q)
unfolding Exactly_1_of_3_holds_def by fast
with Al show —r by blast
qed

The next lemma demonstrates an elegant form of the Exactly_1_of_3_holds(p,q,T)
predicate.

lemma Foll_L8:
shows Exactly_1_of_3_holds(p,q,r) <— (p<—qé¢—r) A = (pAgAr)
proof
assume Exactly_1_of_3_holds(p,q,r)
then have
(pvgvr) A (p — g A -r) A (@ — —p A 1) A (r — —p A Q)
unfolding Exactly_1_of_3_holds_def by fast
thus (p<—q+—r) A = (pAgAr) by blast
next assume (p<—q<—r) A = (pAgAr)
hence
(pvgvr) AN (p — q A =r) A (@ — p A 1) A (r — —p A Q)
by auto
then show Exactly_1_of_3_holds(p,q,r)
unfolding Exactly_1_of_3_holds_def by fast
qed

A property of the Exactly_1_of_3_holds predicate.

lemma Foll L8A: assumes Al: Exactly_1_of_3_holds(p,q,r)

shows p «+— —(q V 1)
proof -

from A1 have (pvqvr) A (p — —q A -r) A (@ — —p A -r) A (r —
-p A =q)

unfolding Exactly_1_of_3_holds_def by fast

then show p +— —(q V r) by blast

qed
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Exclusive or definition. There is one also defined in the standard Isabelle,
denoted xor, but it relates to boolean values, which are sets. Here we define
a logical functor.

definition
Xor (infixl Xor 66) where
p Xor q = (pva) A =(p A @

The ”exclusive or” is the same as negation of equivalence.

lemma Foll_L9: shows p Xor q +— —(p<—q)
using Xor_def by auto

Equivalence relations are symmetric.

lemma equiv_is_sym: assumes Al: equiv(X,r) and A2: (x,y) € T
shows (y,x) € r
proof -
from A1l have sym(r) using equiv_def by simp
then have Vx y. (x,y) € r — (y,x) € r
unfolding sym_def by fast
with A2 show (y,x) € r by blast
qed

end

3 ZF set theory basics

theory ZF1 imports ZF.equalities
begin

The standard Isabelle distribution contains lots of facts about basic set
theory. This theory file adds some more.

3.1 Lemmas in Zermelo-Fraenkel set theory

Here we put lemmas from the set theory that we could not find in the
standard Isabelle distribution.

If one collection is contained in another, then we can say the same about
their unions.

lemma collection_contain: assumes ACB shows (JA C [JB
proof

fix x assume x € [JA

then obtain X where x€X and X€A by auto

with assms show x € (JB by auto
qed
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If all sets of a nonempty collection are the same, then its union is the same.

lemma ZF1_1_L1: assumes C#0 and VyeC. b(y) = A
shows (|JyeC. b(y)) = A using assms by blast

The union af all values of a constant meta-function belongs to the same set
as the constant.

lemma ZF1_1_L2: assumes A1:C#0 and A2: VxeC. b(x) € A
and A3: Vx y. x€C A yeC — b(x) = b(y)
shows (|JxeC. b(x))€A
proof -
from A1 obtain x where D1: x€C by auto
with A3 have VyeC. b(y) = b(x) by blast
with A1 have (|JyeC. b(y)) = b(x)
using ZF1_1_L1 by simp
with D1 A2 show thesis by simp
qed

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. I am surprised Isabelle can not handle this
automatically.

lemma ZF1_1_L4: assumes Al: VxeX.VyeY. a(x,y) = b(x,y)
shows {a(x,y). (x,y) € XxY} = {b(x,y). (x,y) € XxY}
proof
show {a(x, y). (x,y) € X x Y} C {b(x, y). (x,y) € X x Y}
proof
fix z assume z € {a(x, y) . (x,y) € X x Y}
with A1 show =z € {b(x,y).(x,y) € XxY} by auto
qed
show {b(x, y). (x,y) € X x Y} C {a(x, y). (x,y) € X x Y}
proof
fix z assume z € {b(x, y). (x,y) € X x Y}
with A1 show z € {a(x,y).(x,y) € XxXY} by auto
qed
qed

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. This is similar to ZF1_1_L4, except that the
set definition varies over peXxY rather than ( x,y)eXxY.

lemma ZF1_1_L4A: assumes Al: VxeX.VyeY. a({ x,y)) = b(x,y)
shows {a(p). p € XxY} = {b(x,y). (x,y) € XxY}
proof
{ fix z assume z € {a(p). peXxY}
then obtain p where D1: z=a(p) p€XxY by auto
let x = fst(p) let y = snd(p)
from A1 D1 have z € {b(x,y). (x,y) € XxY} by auto
} then show {a(p). p € XxY¥} C {b(x,y). (x,y) € XxY} by blast
next
{ fix z assume z € {b(x,y). (x,y) € XxY}
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then obtain x y where D1: (x,y) € XXY z=b(x,y) by auto
let p = ( x,7)
from A1 D1 have peXxY z = a(p) by auto
then have z € {a(p). p € XxY} by auto
} then show {b(x,y). (x,y) € XxY} C {a(p). p € XxY} by blast
qed

A lemma about inclusion in cartesian products. Included here to remember
that we need the U x V # () assumption.

lemma prod_subset: assumes UxV#0 UxV C XxY shows UCX and VCY
using assms by auto

A technical lemma about sections in cartesian products.

lemma section_proj: assumes A C XxY and UxV C Aand x € U y € V
shows U C {teX. (t,y) € A} and V C {teY. (x,t) € A}
using assms by auto

If two meta-functions are the same on a set, then they define the same set
by separation.

lemma ZF1_1_L4B: assumes Vx€X. a(x) = b(x)
shows {a(x). x€X} = {b(x). xe€X}
using assms by simp

A set defined by a constant meta-function is a singleton.
lemma ZF1_1_L5: assumes X#0 and VxeX. b(x) = ¢
shows {b(x). x€X} = {c} using assms by blast
Most of the time, auto does this job, but there are strange cases when the
next lemma is needed.

lemma subset_with_property: assumes Y = {x€X. b(x)}
shows Y C X
using assms by auto

We can choose an element from a nonempty set.

lemma nonempty_has_element: assumes X#0 shows Jdx. x€X
using assms by auto

In Isabelle/ZF the intersection of an empty family is empty. This is exactly
lemma Inter_O from Isabelle’s equalities theory. We repeat this lemma
here as it is very difficult to find. This is one reason we need comments
before every theorem: so that we can search for keywords.

lemma inter_empty_empty: shows (0 = 0 by (rule Inter_0)

If an intersection of a collection is not empty, then the collection is not
empty. We are (ab)using the fact the the intersection of empty collection is
defined to be empty.
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lemma inter_nempty_nempty: assumes [|A # 0 shows A#0
using assms by auto

For two collections S, T of sets we define the product collection as the col-
lections of cartesian products A x B, where A€ S, B e T.

definition
ProductCollection(T,S) = |JUET.{UxV. VeS}

The union of the product collection of collections S, T is the cartesian prod-
uct of |JS and YT

lemma ZF1_1_L6: shows |J ProductCollection(S,T) = S x T
using ProductCollection_def by auto

An intersection of subsets is a subset.

lemma ZF1_1_L7: assumes Al: I#0 and A2: VieI. P(i) C X
shows ( ((i€Il. P(i) ) C X
proof -
from A1 obtain iy where iy € I by auto
with A2 have ( ((i€I. P(i) ) C P(ip) and P(ip) C X
by auto
thus ( (i€Il. P(i) ) C€ X by auto
qed

Isabelle/ZF has a "THE” construct that allows to define an element if there
is only one such that is satisfies given predicate. In pure ZF we can express
something similar using the indentity proven below.

lemma ZF1_1_18: shows |J {x} = x by auto

Some properties of singletons.

lemma ZF1_1_L9: assumes Al: 3! x. x€A A p(x)
shows
Ja. {x€A. p(x)} = {a}
U {x€a. ox)} € A
e(lJ {x€A. v
proof -
from A1 show Ja. {x€A. ¢(x)} = {a} by auto
then obtain a where I: {xcA. ¢(x)} = {a} by auto
then have |J {x€A. ¢(x)} = a by auto
moreover
from I have a € {x€A. ¢(x)} by simp
hence acA and ¢(a) by auto
ultimately show |J {x€A. ¢(x)} € A and (| {x€A. ¢)})
by auto
qed

A simple version of ZF1_1_L9.

corollary singleton_extract: assumes J! x. x€A
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shows (|J 4) € A
proof -
from assms have 3! x. x€A A True by simp
then have |J {x€A. True} € A by (rule ZF1_1_L9)
thus (| A) € A by simp
qed

A criterion for when a set defined by comprehension is a singleton.

lemma singleton_comprehension:
assumes Al: yeX and A2: VxeX. VyeX. P(x) = P(y)
shows (J{P(x). x€X}) = P(y)
proof -
let A = {P(x). xeX}
have 3! c. ¢ € A
proof
from A1 show dJc. ¢ € A by auto
next
fix a b assume a € A and b € A
then obtain x t where
x € Xa=Pkx) and t € X b = P(t)
by auto
with A2 show a=b by blast
qed
then have (|JA) € A by (rule singleton_extract)
then obtain x where x € X and (|JA) = P(x)

by auto
from Al A2 x € X have P(x) = P(y)
by blast
with «(((JA) = P(x)) show (|JA) = P(y) by simp
qed

Adding an element of a set to that set does not change the set.

lemma set_elem_add: assumes x€X shows X U {x} = X using assms
by auto

Here we define a restriction of a collection of sets to a given set. In romantic
math this is typically denoted X N M and means {X NA: A€ M}. Note
there is also restrict(f, A) defined for relations in ZF.thy.

definition

RestrictedTo (infixl {restricted to} 70) where
M {restricted to} X = {X N A . A € M}

A lemma on a union of a restriction of a collection to a set.

lemma union_restrict:
shows |J (M {restricted to} X) = (UM N X
using RestrictedTo_def by auto

Next we show a technical identity that is used to prove sufficiency of some
condition for a collection of sets to be a base for a topology.
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lemma ZF1_1_L10: assumes Al: VUeC. JA€B. U = (JA
shows JUU {J{aeB. U = |JA}. UeC} = UC
proof
show |J(JUeCc. J{A € B . U = [JA}) C |JC by blast
show |JC C Y (uec. U{a € B . U = UAhH
proof
fix x assume x € |JC
show x € J(Juec. UY{a € B . U= JAD
proof -
from & € [JC obtain U where UcC A x€U by auto
with A1l obtain A where A€B A U = (JA by auto
from UeC A x€U) AeB A U = UM show x€ |J(Juec. JY{p € B . U
= U
by auto
qed
qed
qed

Standard Isabelle uses a notion of cons(A,a) that can be thought of as
Au{a}.

lemma consdef: shows cons(a,A) = A U {a}
using cons_def by auto

If a difference between a set and a singleton is empty, then the set is empty
or it is equal to the singleton.
lemma singl_diff_empty: assumes A - {x} = 0

shows A = 0 V A = {x}

using assms by auto

If a difference between a set and a singleton is the set, then the only element
of the singleton is not in the set.
lemma singl_diff_eq: assumes Al: A - {x} = A
shows x ¢ A
proof -
have x ¢ A - {x} by auto
with A1 show x ¢ A by simp
qed

A basic property of sets defined by comprehension.
lemma comprehension: assumes a € {x€X. p(x)}
shows acX and p(a) using assms by auto
The image of a set by a greater relation is greater.
lemma image_rel_mono: assumes rCs shows r(4A) C s(4)

using assms by auto

A technical lemma about relations: if x is in its image by a relation U and
that image is contained in some set C, then the image of the singleton {z}
by the relation U U C x C' equals C.
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lemma image_greater_rel:
assumes x € U{x} and U{x} C C
shows (U U CxC){x} = C
using assms image_Un_left by blast

end

4 Natural numbers in IsarMathLib

theory Nat_ZF_IML imports ZF.Arith
begin

The ZF set theory constructs natural numbers from the empty set and the
notion of a one-element set. Namely, zero of natural numbers is defined
as the empty set. For each natural number n the next natural number is
defined as n U {n}. With this definition for every non-zero natural number
we get the identity n = {0,1,2,..,n —1}. It is good to remember that when
we see an expression like f : n — X. Also, with this definition the relation
”less or equal than” becomes ”C” and the relation ”less than” becomes ”€”.

4.1 Induction

The induction lemmas in the standard Isabelle’s Nat.thy file like for example
nat_induct require the induction step to be a higher order statement (the
one that uses the = sign). I found it difficult to apply from Isar, which
is perhaps more of an indication of my Isar skills than anything else. Any-
way, here we provide a first order version that is easier to reference in Isar
declarative style proofs.

The next theorem is a version of induction on natural numbers that I was
thought in school.

theorem ind_on_nat:
assumes Al: ncnat and A2: P(0) and A3: Vkénat. P(k)—P(succ(k))
shows P(n)
proof -
note Al A2
moreover
{ fix x
assume x€nat P(x)
with A3 have P(succ(x)) by simp }
ultimately show P(n) by (rule nat_induct)
qed

A nonzero natural number has a predecessor.

lemma Nat_ZF_1_L3: assumes Al: n € nat and A2: n#0
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shows dkenat. n = succ(k)
proof -
from A1 have n € {0} U {succ(k). ké&nat}
using nat_unfold by simp
with A2 show thesis by simp
qed

What is succ, anyway?

lemma succ_explained: shows succ(n) = n U {n}
using succ_iff by auto

Empty set is an element of every natural number which is not zero.

lemma empty_in_every_succ: assumes Al: n € nat
shows 0 € succ(n)
proof -
note Al
moreover have 0 € succ(0) by simp
moreover
{ fix k assume k € nat and A2: 0 € succ(k)
then have succ(k) C succ(succ(k)) by auto
with A2 have 0 € succ(succ(k)) by auto
} then have Vk € nat. 0 € succ(k) — 0 € succ(succ(k))
by simp
ultimately show 0 € succ(n) by (rule ind_on_nat)
qed

If one natural number is less than another then their successors are in the
same relation.

lemma succ_ineq: assumes Al: n € nat
shows Vi € n. succ(i) € succ(n)
proof -
note Al
moreover have Vk € 0. succ(k) € succ(0) by simp
moreover
{ fix k assume A2: Vi€k. succ(i) € succ(k)
{ fix i assume i € succ(k)
then have i € k¥ V i = k by auto
moreover
{ assume i€k
with A2 have succ(i) € succ(k) by simp
hence succ(i) € succ(succ(k)) by auto }
moreover
{ assume i =k
then have succ(i) € succ(succ(k)) by auto }
ultimately have succ(i) € succ(succ(k)) by auto
} then have Vi € succ(k). succ(i) € succ(succ(k))
by simp
} then have Vk € nat.
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( (Viek. succ(i) € succ(k)) — (Vi € succ(k). succ(i) € succ(succ(k)))

by simp
ultimately show Vi € n. succ(i) € succ(n) by (rule ind_on_nat)
qed

For natural numbers if k& C n the similar holds for their successors.

lemma succ_subset: assumes Al: k € nat n € nat and A2: kCn
shows succ(k) C succ(n)
proof -
from A1 have T: 0rd(k) and Ord(n)
using nat_into_Ord by auto
with A2 have succ(k) < succ(n)
using subset_imp_le by simp
then show succ(k) C succ(n) using le_imp_subset
by simp
qed

For any two natural numbers one of them is contained in the other.

lemma nat_incl_total: assumes Al: i € nat j € nat
shows i C j VvV jCi
proof -
from A1 have T: Ord(i)  0rd(j)
using nat_into_Ord by auto
then have i€j V i=j V j€i using Ord_linear
by simp
moreover
{ assume ic€j
with T have iCj Vv jCi
using 1t_def lel le_imp_subset by simp }
moreover
{ assume i=j
then have iCj VvV jCi by simp }
moreover
{ assume j€i
with T have iCj VvV jCi
using 1t_def lel le_imp_subset by simp }
ultimately show i C j V j C i by auto
qed

The set of natural numbers is the union of all successors of natural numbers.

lemma nat_union_succ: shows nat = ((Jn € nat. succ(n))
proof
show nat C (|Jn € nat. succ(n)) by auto
next
{ fix k assume A2: k € (Un € nat. succ(n))
then obtain n where T: n € nat and I: k € succ(n)
by auto
then have k < n using nat_into_Ord 1t_def
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by simp
with T have k € nat using le_in_nat by simp
} then show (|Jn € nat. succ(n)) C nat by auto
qed

Successors of natural numbers are subsets of the set of natural numbers.

lemma succnat_subset_nat: assumes Al: n € nat shows succ(n) C nat
proof -

from A1 have succ(n) C ((Jn € nat. succ(n)) by auto

then show succ(n) C nat using nat_union_succ by simp
qed

Element of a natural number is a natural number.

lemma elem_nat_is_nat: assumes Al: n € nat and A2: kén
shows k <n k € nat k < n (k,n) € Le
proof -
from A1 A2 show k < n using nat_into_Ord 1lt_def by simp
with Al show k € nat using lt_nat_in_nat by simp
from &k < n show k < n using lel by simp
with A1 (& € nat) show (k,n) € Le using Le_def
by simp
qed

The set of natural numbers is the union of its elements.

lemma nat_union_nat: shows nat = (] nat
using elem_nat_is_nat by blast

A natural number is a subset of the set of natural numbers.

lemma nat_subset_nat: assumes Al: n € nat shows n C nat
proof -

from A1l have n C |J nat by auto

then show n C nat using nat_union_nat by simp
qged

Adding natural numbers does not decrease what we add to.

lemma add_nat_le: assumes Al: n € nat and A2: k € nat
shows
n < n #+ k
n #+ k
n k #+ n
proof -
from A1 A2 have n < n 0 < k n € nat k € nat
using nat_le_refl nat_0_le by auto
then have n #+ 0 < n #+ k by (rule add_le_mono)
with Al show n < n #+ k using add_O_right by simp
then show n C n #+ k using le_imp_subset by simp
then show n C k #+ n using add_commute by simp
qed

n C
-
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Result of adding an element of k£ is smaller than of adding k.

lemma add_1t_mono:
assumes k € nat and j€k
shows
(n #+ j) < (n #+ k)
(n #+ j) € (n #+ k)
proof -
from assms have j < k using elem_nat_is_nat by blast
moreover note k € nat)
ultimately show (n #+ j) < (n #+ k) (0 #+ j) € (n #+ k)
using add_1t_mono2 1tD by auto
qged

A technical lemma about a decomposition of a sum of two natural numbers:
if a number ¢ is from m + n then it is either from m or can be written as a
sum of m and a number from n. The proof by induction w.r.t. to m seems
to be a bit heavy-handed, but I could not figure out how to do this directly
from results from standard Isabelle/ZF.

lemma nat_sum_decomp: assumes Al: n € nat and A2: m € nat
shows Vi € m#+ n. 1 € m VvV (3j € n. 1 =m #+ j)
proof -
note Al
moreover from A2 have Vi e m #+ 0. i e m V (Ij € 0. i = m #+ j)
using add_O_right by simp
moreover have Vkenat.
MVMiem#+k. ienV (dj €k, i=mnmt#+j) —
(Vi € m #+ succ(k). 1 € m V (3] € succ(k). i = m #+ j))
proof -
{ fix k assume A3: k € nat
{ assume A4: Vi e m#+ k. i emV (I € k. i =m #+ j)
{ fix i assume i € m #+ succ(k)
then have i € m #+ k V i = m #+ k using add_succ_right
by auto
moreover from A4 A3 have
iem#+k — 1ie€mV (3] € suce(k). i =m #+ j)

by auto
ultimately have i €¢ m vV (3j € succ(k). i = m #+ j)
by auto
} then have Vi € m #+ succ(k). i € m V (Fj € succ(k). i = m #+ j)
by simp

} then have (Vi e m#+ k. i emV (3j € k. i =m #+ j)) —
(Vi € m #+ succ(k). i €mV (Fj € succ(k). i = m #+ j))
by simp
} then show thesis by simp
qed
ultimately show Vi € m #+ n. i € m vV (3j € n. 1 = m #+ j)
by (rule ind_on_nat)
qed
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A variant of induction useful for finite sequences.

lemma fin_nat_ind: assumes Al: n € nat and A2: k € succ(n)
and A3: P(0) and A4: Vjen. P(j) — P(succ(j))
shows P (k)
proof -
from A2 have k € n V k=n by auto
with Al have k € nat using elem_nat_is_nat by blast
moreover from A3 have 0 € succ(n) — P(0) by simp
moreover from Al A4 have
Vk € nat. (k € succ(n) — P(k)) — (succ(k) € succ(n) — P(succ(k)))
using nat_into_Ord Ord_succ_mem_iff by auto
ultimately have k € succ(n) — P(k)
by (rule ind_on_nat)
with A2 show P(k) by simp
qed

Some properties of positive natural numbers.

lemma succ_plus: assumes n € nat k € nat
shows
succ(n #+ j) € nat
succ(n) #+ succ(j) = succ(succ(n #+ j))
using assms by auto

4.2 Intervals

In this section we consider intervals of natural numbers i.e. sets of the form
{n+j:5€0.k—1}.

The interval is determined by two parameters: starting point and length.
Recall that in standard Isabelle’s Arith.thy the symbol #+ is defined as the
sum of natural numbers.

definition

NatInterval(n,k) = {n #+ j. jek}

Subtracting the beginning af the interval results in a number from the length
of the interval. It may sound weird, but note that the length of such interval
is a natural number, hence a set.

lemma inter_diff_in_len:
assumes Al: k € nat and A2: i € NatInterval(n,k)
shows i #- n € k
proof -
from A2 obtain j where I: i = n #+ j and II: j € k
using NatInterval_def by auto
from A1 II have j € nat using elem_nat_is_nat by blast
moreover from I have i #- n = natify(j) using diff_add_inverse
by simp
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ultimately have i #- n = j by simp
with IT show thesis by simp
qed

Intervals don’t overlap with their starting point and the union of an interval
with its starting point is the sum of the starting point and the length of the
interval.

lemma length_start_decomp: assumes Al: n € nat k € nat
shows
n N NatInterval(n,k) = 0
n U NatInterval(n,k) n #+ k
proof -
{ fix i assume A2: i € n and i € NatInterval(n,k)
then obtain j where I: i = n #+ j and II: j € k
using NatInterval_def by auto
from A1 have k € nat using elem_nat_is_nat by blast
with IT have j € nat using elem_nat_is_nat by blast
with A1 I have n < i using add_nat_le by simp
moreover from A1 A2 have i < n using elem_nat_is_nat by blast
ultimately have False using le_imp_not_lt by blast
} thus n N NatInterval(n,k) = 0 by auto
from Al have n C n #+ k using add_nat_le by simp
moreover
{ fix i assume i € NatInterval(n,k)
then obtain j where III: i = n #+ j and IV: j € k
using NatInterval_def by auto
with A1 have j < k using elem_nat_is_nat by blast
with A1 IIT have i € n #+ k using add_lt_mono2 1tD
by simp }
ultimately have n U NatInterval(n,k) C n #+ k by auto
moreover from Al have n #+ k C n U NatInterval(n,k)
using nat_sum_decomp NatInterval_def by auto
ultimately show n U NatInterval(n,k) = n #+ k by auto
qed

Sme properties of three adjacent intervals.

lemma adjacent_intervals3: assumes n € nat k € nat m € nat
shows
n #+ k #+ m = (n #+ k) U NatInterval(n #+ k,m)
n #+ k #+ m = n U NatInterval(n,k #+ m)
n #+ k #+ m = n U NatInterval(n,k) U NatInterval(n #+ k,m)
using assms add_assoc length_start_decomp by auto

end

5 Order relations - introduction

theory Order_ZF imports Foll
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begin

This theory file considers various notion related to order. We redefine the
notions of a total order, linear order and partial order to have the same
terminology as Wikipedia (I found it very consistent across different areas
of math). We also define and study the notions of intervals and bounded sets.
We show the inclusion relations between the intervals with endpoints being
in certain order. We also show that union of bounded sets are bounded.
This allows to show in Finite_ZF.thy that finite sets are bounded.

5.1 Definitions
In this section we formulate the definitions related to order relations.

A relation r is "total” on a set X if for all elements a,b of X we have a is
in relation with b or b is in relation with a. An example is the < relation on
numbers.

definition
IsTotal (infixl {is total on} 65) where
r {is total on} X = (Va€X.VbeX. ( a,b) € r V ( b,a) € r)

A relation r is a partial order on X if it is reflexive on X (i.e. (z,x) for
every x € X), antisymmetric (if (z,y) € r and (y,z) € r, then z = y) and
transitive (x,y) € r and (y, z) € r implies (x, z) € 7).

definition

IsPartOrder(X,r) = (refl(X,r) A antisym(r) A trans(r))

We define a linear order as a binary relation that is antisymmetric, transitive
and total. Note that this terminology is different than the one used the
standard Order.thy file.

definition

IsLinOrder(X,r) = ( antisym(r) A trans(r) A (r {is total on} X))

A set is bounded above if there is that is an upper bound for it, i.e. there
are some u such that (z,u) € r for all z € A. In addition, the empty set is
defined as bounded.

definition
IsBoundedAbove(A,r) = ( A=0 V (Ju. Vx€A. { x,u) € 1))

We define sets bounded below analogously.

definition
IsBoundedBelow(A,r) = (A=0 V (J1. VxeA. ( 1,x) € 1))

A set is bounded if it is bounded below and above.

definition
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IsBounded(A,r) = (IsBoundedAbove(A,r) A IsBoundedBelow(A,r))
The notation for the definition of an interval may be mysterious for some
readers, see lemma Order_ZF_2_L1 for more intuitive notation.
definition
Interval(r,a,b) = r{a} N r—-{b}
We also define the maximum (the greater of) two elemnts in the obvious
way.
definition
Greater0f(r,a,b) = (if ( a,b> € r then b else a)
The definition a a minimum (the smaller of) two elements.
definition

Smaller0f(r,a,b) = (if ( a,b) € r then a else b)

We say that a set has a maximum if it has an element that is not smaller
that any other one. We show that under some conditions this element of
the set is unique (if exists).

definition
HasAmaximum(r,A) = IMeA.Vx€A. ( x,M) € r
A similar definition what it means that a set has a minimum.
definition
HasAminimum(r,A) = ImeEA.Vx€A. (m,x) € T
Definition of the maximum of a set.
definition
Maximum(r,A) = THE M. MeA A (Vx€A. { x,M) € 1)
Definition of a minimum of a set.
definition

Minimum(r,A) = THE m. meA A (Vx€A. ( m,x) € 1)

The supremum of a set A is defined as the minimum of the set of upper
bounds, i.e. the set {u.Voea(a,u) € 7} = [\,car{a}. Recall that in Is-
abelle/ZF r-(A) denotes the inverse image of the set A by relation r (i.e.
r-(A)={z : (z,y) € r for some y € A}).

definition
Supremum(r,A) = Minimum(r,[)acA. r{a})

Infimum is defined analogously.

definition
Infimum(r,A) = Maximum(r,(|a€A. r-{a})

We define a relation to be complete if every nonempty bounded above set
has a supremum.
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definition
IsComplete (_ {is complete}) where
r {is complete} =
VA. IsBoundedAbove(A,r) A A#0 — HasAminimum(r,()acA. r{a})

The essential condition to show that a total relation is reflexive.

lemma Order_ZF_1_L1: assumes r {is total on} X and a€eX
shows (a,a) € r using assms IsTotal_def by auto

A total relation is reflexive.

lemma total_is_refl:
assumes r {is total on} X
shows refl(X,r) using assms Order_ZF_1_L1 refl_def by simp

A linear order is partial order.

lemma Order_ZF_1_L2: assumes IsLinOrder(X,r)
shows IsPartOrder(X,r)
using assms IsLinOrder_def IsPartOrder_def refl_def Order_ZF_1_L1
by auto

Partial order that is total is linear.

lemma Order_ZF_1_L3:
assumes IsPartOrder(X,r) and r {is total on} X
shows IsLinOrder(X,r)
using assms IsPartOrder_def IsLinOrder_def
by simp

Relation that is total on a set is total on any subset.

lemma Order_ZF_1_L4: assumes r {is total on} X and ACX
shows r {is total on} A
using assms IsTotal_def by auto

A linear relation is linear on any subset.

lemma ord_linear_subset: assumes IsLinOrder(X,r) and ACX
shows IsLinOrder(A,r)
using assms IsLinOrder_def Order_ZF_1_L4 by blast

If the relation is total, then every set is a union of those elements that are
nongreater than a given one and nonsmaller than a given one.

lemma Order_ZF_1_L5:
assumes r {is total on} X and ACX and acX
shows A = {x€A. (x,a) € r} U {x€A. (a,x) € r}
using assms IsTotal_def by auto

A technical fact about reflexive relations.

lemma refl_add_point:
assumes refl(X,r) and A C B U {x} and B C X and
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x € X and VyeB. (y,x) € r
shows VacA. (a,x) € r
using assms refl_def by auto

5.2 Intervals
In this section we discuss intervals.

The next lemma explains the notation of the definition of an interval.

lemma Order_ZF_2_L1:
shows x € Interval(r,a,b) «— ( a,x) €r A { x,b) €
using Interval_def by auto

Since there are some problems with applying the above lemma (seems that
simp and auto don’t handle equivalence very well), we split Order_zF_2_L1
into two lemmas.

lemma Order_ZF_2_L1A: assumes x € Interval(r,a,b)
shows ( a,x) € r (x,b) €r
using assms Order_ZF_2_L1 by auto

Order_ZF_2_L1, implication from right to left.

lemma Order_ZF_2_L1B: assumes ( a,x) € r ( x,b) € r
shows x € Interval(r,a,b)
using assms Order_ZF_2_L1 by simp

If the relation is reflexive, the endpoints belong to the interval.

lemma Order_ZF_2_L2: assumes refl(X,r)
and acX beX and ( a,b) € r
shows
a € Interval(r,a,b)
b € Interval(r,a,b)
using assms refl_def Order_ZF_2_L1 by auto

Under the assumptions of Order_zF_2_L2, the interval is nonempty.

lemma Order_ZF_2_L2A: assumes refl(X,r)
and acX beX and ( a,b) € r
shows Interval(r,a,b) # 0
proof -
from assms have a € Interval(r,a,b)
using Order_ZF_2_L2 by simp
then show Interval(r,a,b) # 0 by auto
qed

If a,b,c,d are in this order, then [b,c] C [a,d]. We only need trasitivity for
this to be true.

lemma Order_ZF_2_L3:
assumes Al: trans(r) and A2:( a,b)er ( b,c)er ( c,d)er
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shows Interval(r,b,c) C Interval(r,a,d)
proof
fix x assume A3: x € Interval(r, b, c)
note Al
moreover from A2 A3 have ( a,b) € r A ( b,x) € r using Order_ZF_2_L1A
by simp
ultimately have T1: ( a,x) € r by (rule Foll_L3)
note A1l
moreover from A2 A3 have ( x,¢c) € r A ( ¢c,d) € r using Order_ZF_2_L1A
by simp
ultimately have ( x,d) € r by (rule Foll_L3)
with T1 show x € Interval(r,a,d) using Order_ZF_2_L1B
by simp
qed

For reflexive and antisymmetric relations the interval with equal endpoints
consists only of that endpoint.

lemma Order_ZF_2_L4:
assumes Al: refl(X,r) and A2: antisym(r) and A3: aeX
shows Interval(r,a,a) = {a}
proof
from A1 A3 have ( a,a) € r using refl_def by simp
with A1 A3 show {a} C Interval(r,a,a) using Order_ZF_2_L2 by simp
from A2 show Interval(r,a,a) C {a} using Order_ZF_2_L1A Foll_L4
by fast
qed

For transitive relations the endpoints have to be in the relation for the
interval to be nonempty.

lemma Order_ZF_2_L5: assumes Al: trans(r) and A2: ( a,b) ¢ r
shows Interval(r,a,b) = 0
proof -
{ assume Interval(r,a,b)#0 then obtain x where x € Interval(r,a,b)
by auto
with A1 A2 have False using Order_ZF_2_L1A Foll_L3 by fast
} thus thesis by auto
qed

If a relation is defined on a set, then intervals are subsets of that set.

lemma Order_ZF_2_L6: assumes Al: r C XxX
shows Interval(r,a,b) C X
using assms Interval_def by auto

5.3 Bounded sets

In this section we consider properties of bounded sets.

For reflexive relations singletons are bounded.
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lemma Order_ZF_3_L1: assumes refl(X,r) and acX
shows IsBounded({a},r)
using assms refl_def IsBoundedAbove_def IsBoundedBelow_def
IsBounded_def by auto

Sets that are bounded above are contained in the domain of the relation.

lemma Order_ZF_3_L1A: assumes r C XxX
and IsBoundedAbove(A,r)
shows ACX using assms IsBoundedAbove_def by auto

Sets that are bounded below are contained in the domain of the relation.

lemma Order_ZF_3_L1B: assumes r C XxX
and IsBoundedBelow(A,r)
shows ACX using assms IsBoundedBelow_def by auto

For a total relation, the greater of two elements, as defined above, is indeed
greater of any of the two.

lemma Order_ZF_3_L2: assumes r {is total on} X
and xeX yeX
shows
(x,Greater0f (r,x,y))
(y,Greater0f (r,x,y))
(SmallerOf(r,x,y),x)
(SmallerOf (r,x,y),y) €
using assms IsTotal_def Order_ZF_1_L1 GreaterOf_def Smaller(Qf_def
by auto

S
S
S

H R R K

If A is bounded above by u, B is bounded above by w, then AU B is bounded
above by the greater of u, w.

lemma Order_ZF_3_L2B:
assumes Al: r {is total on} X and A2: trans(r)
and A3: ueX weX
and A4: VxeA. ( x,u) € r Vx€B. ( x,w) € r
shows Vx€AUB. (x,Greater0f(r,u,w)) € r
proof
let v = GreaterOf(r,u,w)
from A1 A3 have T1: ( u,v) € r and T2: ( w,v) € r
using Order_ZF_3_L2 by auto
fix x assume A5: x€AUB show (x,v) € r
proof -
{ assume x€A
with A4 T1 have ( x,u) € r A ( u,v) € r by simp
with A2 have (x,v) € r by (rule Foll_L3) }
moreover
{ assume x¢A
with A5 A4 T2 have ( x,w) € r A ( w,v) € r by simp
with A2 have (x,v) € r by (rule Foll_L3) }
ultimately show thesis by auto
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qed
qed

For total and transitive relation the union of two sets bounded above is
bounded above.

lemma Order_ZF_3_L3:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedAbove(A,r) IsBoundedAbove(B,r)
and A4: r C XxX
shows IsBoundedAbove(AUB,r)
proof -
{ assume A=0 V B=0
with A3 have IsBoundedAbove(AUB,r) by auto }
moreover
{ assume - (A =0V B = 0)
then have T1: A#0 B##0 by auto
with A3 obtain u w where D1: VxeA. ( x,u) € r Vx€B. ( x,w) € r
using IsBoundedAbove_def by auto
let U = GreaterOf(r,u,w)
from T1 A4 D1 have ueX weX by auto
with A1 A2 D1 have Vx€AUB.( x,U) € r
using Order_ZF_3_L2B by blast
then have IsBoundedAbove (AUB,r)
using IsBoundedAbove_def by auto }
ultimately show thesis by auto
qed

For total and transitive relations if a set A is bounded above then AU {a}
is bounded above.

lemma Order_ZF_3_L4:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedAbove(A,r) and A4: acX and A5: r C XxX
shows IsBoundedAbove(AU{a},r)
proof -
from A1 have refl(X,r)
using total_is_refl by simp
with assms show thesis using
Order_ZF_3_L1 IsBounded_def Order_ZF_3_L3 by simp
qed

If A is bounded below by [, B is bounded below by m, then AU B is bounded
below by the smaller of u,w.

lemma Order_ZF_3_L5B:
assumes Al: r {is total on} X and A2: trans(r)
and A3: 1€X meX
and A4: VxeA. ( 1,x) € r Vx€B. (m,x) € r
shows Vx€AUB. (Smaller0Of(r,l,m),x) € r

proof
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let k¥ = SmallerOf(r,1,m)
from A1 A3 have T1: ( k,1) € r and T2: ( k,m) € r
using Order_ZF_3_L2 by auto
fix x assume A5: x€AUB show (k,x) € r
proof -
{ assume x€A
with A4 T1 have ( k,1) € r A ( 1,x) € r by simp
with A2 have (k,x) € r by (rule Foll_L3) }
moreover
{ assume x¢A
with A5 A4 T2 have ( k,m) € r A ( m,x) € r by simp
with A2 have (k,x) € r by (rule Foll_L3) }
ultimately show thesis by auto
qed
qed

For total and transitive relation the union of two sets bounded below is
bounded below.

lemma Order_ZF_3_L6:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedBelow(A,r) IsBoundedBelow(B,r)
and A4: r C XxX
shows IsBoundedBelow(AUB,r)
proof -
{ assume A=0 V B=0
with A3 have thesis by auto }
moreover
{ assume - (A =0V B =0)
then have T1: A#0 B#0 by auto
with A3 obtain 1 m where D1: VxeA. ( 1,x) € r Vx€B. (m,x) € r
using IsBoundedBelow_def by auto
let L = SmallerO0f(r,1,m)
from T1 A4 D1 have T1: 1€X meX by auto
with A1 A2 D1 have Vx€AUB.( L,x) € r
using Order_ZF_3_L5B by blast
then have IsBoundedBelow(AUB,r)
using IsBoundedBelow_def by auto }
ultimately show thesis by auto
qed

For total and transitive relations if a set A is bounded below then AU {a}
is bounded below.

lemma Order_ZF_3_L7:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedBelow(A,r) and A4: acX and A5: r C XxX
shows IsBoundedBelow(AU{a},r)
proof -
from A1 have refl(X,r)
using total_is_refl by simp
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with assms show thesis using
Order_ZF_3_L1 IsBounded_def Order_ZF_3_L6 by simp
qed

For total and transitive relations unions of two bounded sets are bounded.

theorem Order_ZF_3_T1:
assumes r {is total on} X and trans(r)
and IsBounded(A,r) IsBounded(B,r)
and r C XxX
shows IsBounded(AUB,r)
using assms Order_ZF_3_L3 Order_ZF_3_L6 Order_ZF_3_L7 IsBounded_def
by simp

For total and transitive relations if a set A is bounded then A U {a} is
bounded.

lemma Order_ZF_3_L8:
assumes r {is total on} X and trans(r)
and IsBounded(A,r) and acX and r C XxX
shows IsBounded(AU{a},r)
using assms total_is_refl Order_ZF_3_L1 Order_ZF_3_T1 by blast

A sufficient condition for a set to be bounded below.

lemma Order_ZF_3_L9: assumes Al: VacA. (1,a) € r
shows IsBoundedBelow(A,r)
proof -
from A1 have J1. VxeA. (1,x) € r
by auto
then show IsBoundedBelow(A,r)
using IsBoundedBelow_def by simp
qed

A sufficient condition for a set to be bounded above.

lemma Order_ZF_3_L10: assumes Al: VachA. (a,u) € r
shows IsBoundedAbove(A,r)
proof -
from A1 have Ju. Vxe€A. (x,u) € r
by auto
then show IsBoundedAbove(A,r)
using IsBoundedAbove_def by simp
qed

Intervals are bounded.

lemma Order_ZF_3_L11: shows
IsBoundedAbove (Interval(r,a,b),r)
IsBoundedBelow(Interval(r,a,b),r)
IsBounded(Interval(r,a,b),r)

proof -
{ fix x assume x € Interval(r,a,b)
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then have ( x,b) € r ( a,x) € r
using Order_ZF_2_L1A by auto
} then have
Ju. Vx€Interval(r,a,b). { x,u)
J1. Vx€lnterval(r,a,b). ( 1,x)
by auto
then show
IsBoundedAbove(Interval(r,a,b),r)
IsBoundedBelow(Interval(r,a,b),r)
IsBounded(Interval(r,a,b),r)
using IsBoundedAbove_def IsBoundedBelow_def IsBounded_def
by auto
qed

er
er

A subset of a set that is bounded below is bounded below.

lemma Order_ZF_3_L12: assumes Al: IsBoundedBelow(A,r) and A2: BCA
shows IsBoundedBelow(B,r)
proof -
{ assume A = 0
with assms have IsBoundedBelow(B,r)
using IsBoundedBelow_def by auto }
moreover
{ assume A # 0
with A1 have 31. VxeA. (1,x) € r
using IsBoundedBelow_def by simp
with A2 have 31.Vx€B. (1,x) € r by auto
then have IsBoundedBelow(B,r) using IsBoundedBelow_def
by auto }
ultimately show IsBoundedBelow(B,r) by auto
qed

A subset of a set that is bounded above is bounded above.

lemma Order_ZF_3_L13: assumes Al: IsBoundedAbove(A,r) and A2: BCA
shows IsBoundedAbove(B,r)
proof -
{ assume A = 0
with assms have IsBoundedAbove(B,r)
using IsBoundedAbove_def by auto }
moreover
{ assume A # 0
with A1 have Ju. Vxe€A. (x,u) € r
using IsBoundedAbove_def by simp
with A2 have Ju.Vx€B. (x,u) € r by auto
then have IsBoundedAbove(B,r) using IsBoundedAbove_def
by auto }
ultimately show IsBoundedAbove(B,r) by auto
qed

If for every element of X we can find one in A that is greater, then the A
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can not be bounded above. Works for relations that are total, transitive and
antisymmetric, (i.e. for linear order relations).

lemma Order_ZF_3_L14:
assumes Al: r {is total on} X
and A2: trans(r) and A3: antisym(r)
and A4: r C XxX and A5: X#0
and A6: VxeX. JachA. x#a A (x,a) € r
shows —IsBoundedAbove(A,r)
proof -
{ from A5 A6 have I: A#0 by auto
moreover assume IsBoundedAbove(A,r)
ultimately obtain u where II: Vx€A. ( x,u) € r
using IsBounded_def IsBoundedAbove_def by auto
with A4 I have ueX by auto
with A6 obtain b where beA and III: u#b and (u,b) € r
by auto
with II have (b,u) € r (u,b) € r by auto
with A3 have b=u by (rule Foll_L4)
with IIT have False by simp
} thus —IsBoundedAbove(A,r) by auto
qed

The set of elements in a set A that are nongreater than a given element is
bounded above.

lemma Order_ZF_3_L15: shows IsBoundedAbove({x€A. (x,a) € r},r)
using IsBoundedAbove_def by auto

If A is bounded below, then the set of elements in a set A that are nongreater
than a given element is bounded.

lemma Order_ZF_3_L16: assumes Al: IsBoundedBelow(A,r)
shows IsBounded({x€A. (x,a) € r},r)
proof -
{ assume A=0
then have IsBounded({x€A. (x,a) € r},r)
using IsBoundedBelow_def IsBoundedAbove_def IsBounded_def
by auto }
moreover
{ assume A#0
with Al obtain 1 where I: Vx€A. (1,x) € r
using IsBoundedBelow_def by auto
then have Vye{xcA. (x,a) € r}. (1,y) € r by simp
then have IsBoundedBelow({x€A. (x,a) € r},r)
by (rule Order_ZF_3_L9)
then have IsBounded({x€A. (x,a) € r},r)
using Order_ZF_3_L15 IsBounded_def by simp }
ultimately show thesis by blast
qed

end
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6 More on order relations

theory Order_ZF_1 imports ZF.Order ZF1
begin

In Order_ZzF we define some notions related to order relations based on the
nonstrict orders (< type). Some people however prefer to talk about these
notions in terms of the strict order relation (< type). This is the case for the
standard Isabelle Order.thy and also for Metamath. In this theory file we
repeat some developments from Order_ZzF using the strict order relation as
a basis. This is mostly useful for Metamath translation, but is also of some
general interest. The names of theorems are copied from Metamath.

6.1 Definitions and basic properties

In this section we introduce some definitions taken from Metamath and
relate them to the ones used by the standard Isabelle Order.thy.

The next definition is the strict version of the linear order. What we write
as R Orders A is written ROrdA in Metamath.

definition

StrictOrder (infix Orders 65) where
R Orders A = Vx y z. (x€A A yeA A z€d) —
({(x,y) € R +— —(x=y V (y,%X) € R)) A
({x,y) € R A (y,z) € R — (x,2) € R)

The definition of supremum for a (strict) linear order.

definition
Sup(B,A,R) =
U {x € A. (VyeB. {(x,y) ¢ R) A
(Vyeh. (y,x) € R — (3z€B. (y,z) € R))}

Definition of infimum for a linear order. It is defined in terms of supremum.

definition
Infim(B,A,R) = Sup(B,A,converse(R))

If relation R orders a set A, (in Metamath sense) then R is irreflexive,
transitive and linear therefore is a total order on A (in Isabelle sense).

lemma orders_imp_tot_ord: assumes Al: R Orders A
shows
irrefl(A,R)
trans[A] (R)
part_ord(A,R)
linear(A,R)
tot_ord(A,R)
proof -
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from A1 have I:
Vxy z. (x€EA A yEA N z€ED) —
((x,y) € R +— —(x=y V (y,x) € R)) A
({x,y) € R A (y,2) € R — (x,2) € R)
unfolding StrictOrder_def by simp
then have Vxe€A. (x,x) ¢ R by blast
then show irrefl(A,R) using irrefl_def by simp
moreover
from I have
Vx€eA. VyeA. Vzeh. (x,y) € R — (y,z) € R — (x,z) € R
by blast
then show trans[A](R) unfolding trans_on_def by blast
ultimately show part_ord(A,R) using part_ord_def
by simp
moreover
from I have
VxeA. Vyeh. (x,y) € RV x=y V (y,x) € R
by blast
then show linear(A,R) unfolding linear_def by blast
ultimately show tot_ord(A,R) using tot_ord_def
by simp
qed

A converse of orders_imp_tot_ord. Together with that theorem this shows
that Metamath’s notion of an order relation is equivalent to Isabelles tot_ord
predicate.

lemma tot_ord_imp_orders: assumes Al: tot_ord(A,R)
shows R Orders A
proof -

from A1 have
I: linear(A,R) and
II: irrefl(A,R) and
III: trans[A](R) and
IV: part_ord(A,R)
using tot_ord_def part_ord_def by auto

from IV have asym(R N AxA)
using part_ord_Imp_asym by simp

then have V: Vx y. (x,y) € (R N AxA) — -((y,x) € (R N AxA))
unfolding asym_def by blast

from I have VI: VxeA. VyeA. (x,y) € RV x=y V (y,x) € R
unfolding linear_def by blast

from IIT have VII:
VxeA. Vyeh. Vzed. (x,y) € R — (y,2) € R — (x,2) € R
unfolding trans_on_def by blast

{fixxyz
assume T: x€A ycA z€A
have (x,y) € R +— —(x=y V (y,x) € R)
proof

assume A2: (x,y) € R
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with V T have —({y,x) € R) by blast
moreover from II T A2 have x#y using irrefl_def
by auto
ultimately show —(x=y V (y,x) € R) by simp
next assume —(x=y V (y,x) € R)
with VI T show (x,y) € R by auto
qed
moreover from VII T have
(x,y) € R A (y,2) € R — (x,2) € R
by blast
ultimately have ((x,y) € R +— —(x=y V (y,x) € R)) A
((x,y) € R A (y,2) € R — (x,z) € R)
by simp
} then have Vx y z. (x€A A yEA A z€A) —
({x,y) € R +— —(x=y V (y,x) € R)) A
({x,y) € R A {y,z) € R — (x,2) € R)
by auto
then show R Orders A using StrictOrder_def by simp
qed

6.2 Properties of (strict) total orders

In this section we discuss the properties of strict order relations. This con-
tinues the development contained in the standard Isabelle’s Order.thy with
a view towards using the theorems translated from Metamath.

A relation orders a set iff the converse relation orders a set. Going one
way we can use the the lemma tot_od_converse from the standard Isabelle’s
Order.thy.The other way is a bit more complicated (note that in Isabelle for
converse(converse(r)) = r one needs r to consist of ordered pairs, which
does not follow from the StrictOrder definition above).

lemma cnvso: shows R Orders A +— converse(R) Orders A
proof
let r = converse(R)
assume R Orders A
then have tot_ord(A,r) using orders_imp_tot_ord tot_ord_converse
by simp
then show r Orders A using tot_ord_imp_orders
by simp
next
let r = converse(R)
assume r Orders A
then have A2: Vx y z. (x€A A yeA A z€d) —
(x,y) € T +— —(x=y V (y,x) € 1)) A
(x,y) € r A (y,z) € r — (x,2) € 1)
using StrictOrder_def by simp
{fixxyz
assume xcA A yeA N z€A
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with A2 have
It (y,x) €r +— —(x=y V (x,y) € ) and
II: (y,x) € r A (2,y) €r — (2,x) €T

by auto

from I have (x,y) € R +— —(x=y V (y,x) € R)
by auto

moreover from II have (x,y) € R A (y,z) € R — (x,2z) € R
by auto

ultimately have ((x,y) € R +— —(x=y V (y,x) € R)) A
((x,y) € R A (y,2) € R — (x,z) € R) by simp
} then have Vx y z. (x€A A yeA A z€d) —
({(x,y) € R «— —(x=y V (y,%X) € R)) A
({x,y) € R A {(y,z) € R — (x,2) € R)
by auto
then show R Orders A using StrictOrder_def by simp
qed

Supremum is unique, if it exists.

lemma supeu: assumes Al: R Orders A and A2: x€A and
A3: VyeB. (x,y) ¢ R and A4: VyeA. (y,x) € R — ( 3z€B. (y,z) € R)
shows
J1x. xeAAN(VyeB. (x,y) ¢ R) A (VyeA. (y,x) € R — ( Jz€B. (y,z) €
R))
proof
from A2 A3 A4 show
3 x. xeAA(VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — ( 3z€B. (y,z)
€ R))
by auto
next fix x; xo
assume A5:
x1 € AN (VyeB. (x1,y) ¢ R) A (Vy€A. (y,x1) € R — ( Jz€B. (y,z)
€ R))
x2 € A A (VyeB. (x2,y) ¢ R) A (Vy€A. (y,x2) € R — ( Jz€B. (y,z)
€ R)
from A1l have linear(A,R) using orders_imp_tot_ord tot_ord_def
by simp
then have VxeA. VyeA. (x,y) € RV x=y V (y,x) € R
unfolding linear_def by blast
with A5 have (x1,x3) € R V x1=x3 V (x2,%1) € R by blast
moreover
{ assume (x;,x2) € R
with A5 obtain z where z€B and (x;,z) € R by auto
with A5 have False by auto }
moreover
{ assume (x3,x1) € R
with A5 obtain z where z€B and (x2,z) € R by auto
with A5 have False by auto }
ultimately show x; = x5 by auto
qed
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Supremum has expected properties if it exists.

lemma sup_props: assumes Al: R Orders A and
A2: JxeA. (VyeB. (x,y) ¢ R) A (Vy€hA. (y,x) € R — ( Jz€B. (y,z) €
R))
shows
Sup(B,A,R) € A
VyeB. (Sup(B,A,R),y) ¢ R
VyeA. (y,Sup(B,A,R)) € R — ( Jz€B. (y,z) € R )
proof -
let s = {xeA. (VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — ( Jz€B. (y,z)
€ER)D}
from A2 obtain x where
x€A and (VyeB. (x,y) ¢ R) and VyeA. (y,x) € R — ( 3z€B. (y,z)
€R)
by auto
with A1 have I:
J1x. xeAA(VyeB. (x,y) ¢ R) A (Vye€A. (y,x) € R — ( Jz€B. (y,z)
€ R)
using supeu by simp
then have ( |JS ) € A by (rule ZF1_1_L9)
then show Sup(B,A,R) € A using Sup_def by simp
from I have II:
(VyeB. (US ,y) ¢ R) A (VyeA. (y,US) € R — ( IzeB. (y,z) € R))
by (rule ZF1_1_L9)
hence VyeB. (|JS,y) ¢ R by blast
moreover have III: (|JS) = Sup(B,A,R) using Sup_def by simp
ultimately show VyeB. (Sup(B,A,R),y) ¢ R by simp
from II have IV: VyeA. (y,UUS) € R — ( 3z€B. (y,z) € R)
by blast
{ fix y assume A3: ycA and (y,Sup(B,A,R)) € R
with III have (y,|JS) € R by simp
with IV A3 have 3z€B. (y,z) € R by blast
} thus VyeA. (y,Sup(B,A,R)) € R — ( Jz€B. (y,z) € R)
by simp
qed

Elements greater or equal than any element of B are greater or equal than
supremum of B.

lemma supnub: assumes Al: R Orders A and A2:
Jxeh. (VyeB. (x,y) ¢ R) A (VyeA. (y,x) € R — ( 3z€B. (y,z) € R))
and A3: c € A and A4: VzeB. (c,z) ¢ R
shows (c, Sup(B,A,R)) ¢ R
proof -
from Al A2 have
VyeA. (y,Sup(B,A,R)) € R — ( 3z€B. (y,z) € R )
by (rule sup_props)
with A3 A4 show (c, Sup(B,A,R)) ¢ R by auto
qed
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end

7 Even more on order relations

theory Order_ZF_la imports Order_ZF
begin

This theory is a continuation of Order_ZF and talks about maximuma and
minimum of a set, supremum and infimum and strict (not reflexive) versions
of order relations.

7.1 DMaximum and minimum of a set

In this section we show that maximum and minimum are unique if they
exist. We also show that union of sets that have maxima (minima) has a
maximum (minimum). We also show that singletons have maximum and
minimum. All this allows to show (in Finite_ZF) that every finite set has
well-defined maximum and minimum.

For antisymmetric relations maximum of a set is unique if it exists.

lemma Order_ZF_4_L1: assumes Al: antisym(r) and A2: HasAmaximum(r,A)
shows 3 'M. MeA A (VxeA. ( x,M) € 1)
proof
from A2 show IM. M € A A (Vx€A. (x, M) € 1)
using HasAmaximum_def by auto
fix M1 M2 assume
A2: M1 € A A (Vx€EA. (x, M) € 1) M2 € A A (Vx€EA. (x, M2) € 1)
then have (M1,M2) € r (M2,M1) € r by auto
with Al show M1=M2 by (rule Foll_L4)
qed

For antisymmetric relations minimum of a set is unique if it exists.

lemma Order_ZF_4_L2: assumes Al: antisym(r) and A2: HasAminimum(r,A)
shows J'm. meA A (Vx€A. ( m,x) € 1)
proof
from A2 show dJm. m € A A (Vx€A. (m, x) € 1)
using HasAminimum_def by auto
fix m1 m2 assume
A2: m1 € A A (Vx€A. (ml, x) € r) m2 € A A (Vx€A. (m2, X) € 1)
then have (m1,m2) € r (m2,m1) € r by auto
with Al show m1=m2 by (rule Foll_L4)
qed

Maximum of a set has desired properties.

lemma Order_ZF_4_L3: assumes Al: antisym(r) and A2: HasAmaximum(r,A)
shows Maximum(r,A) € A Vx€A. (x,Maximum(r,A)) € r
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proof -
let Max = THE M. MeA A (Vx€A. ( x,M) € 1)
from A1 A2 have 3 I!M. MeA A (VxeA. ( x,M) € 1)
by (rule Order_ZF_4_L1)
then have Max € A A (Vx€A. ( x,Max) € 1)
by (rule thel)
then show Maximum(r,A) € A Vx€A. (x,Maximum(r,A)) € r
using Maximum_def by auto
qed

Minimum of a set has desired properties.

lemma Order_ZF_4_L4: assumes Al: antisym(r) and A2: HasAminimum(r,A)
shows Minimum(r,A) € A Vx€A. (Minimum(r,A),x) € T
proof -
let Min = THE m. meA A (Vx€A. ( m,x) € 1)
from A1 A2 have 3 !m. meA A (Vx€A. ( m,x) € 1)
by (rule Order_ZF_4_1L2)
then have Min € A A (Vx€A. ( Min,x) € 1)
by (rule thel)
then show Minimum(r,A) € A Vx€A. (Minimum(r,A),x) € r
using Minimum_def by auto
qed

For total and transitive relations a union a of two sets that have maxima
has a maximum.

lemma Order_ZF_4_L5:
assumes Al: r {is total on} (AUB) and A2: trans(r)
and A3: HasAmaximum(r,A) HasAmaximum(r,B)
shows HasAmaximum(r,AUB)
proof -
from A3 obtain M K where
D1: McA A (Vx€A. ( x,M) € r) KEB A (Vx€B. ( x,K) € 1)
using HasAmaximum_def by auto
let L = Greater0f(r,M,K)
from D1 have Ti: M € AUB K € AUB
VxeA. ( x,M) € r VxeB. ( x,K) € r
by auto
with A1 A2 have Vx€AUB.( x,L) € r by (rule Order_ZF_3_L2B)
moreover from T1 have L € AUB using GreaterOf_def IsTotal_def
by simp
ultimately show HasAmaximum(r,AUB) using HasAmaximum_def by auto
qed

For total and transitive relations A union a of two sets that have minima
has a minimum.

lemma Order_ZF_4_16:
assumes Al: r {is total on} (AUB) and A2: trans(r)
and A3: HasAminimum(r,A) HasAminimum(r,B)
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shows HasAminimum(r,AUB)
proof -
from A3 obtain m k where
D1: meA A (Vx€A. ( m,x) € ) k€B A (Vxe€B. ( k,x) € 1)
using HasAminimum_def by auto
let 1 = Smaller0f(r,m,k)
from D1 have Ti: m € AUB k € AUB
VxeA. (m,x) € r VxeB. ( k,x) € r
by auto
with A1 A2 have Vx€AUB.( 1,x) € r by (rule Order_ZF_3_L5B)
moreover from T1 have 1 € AUB using SmallerOf_def IsTotal_def
by simp
ultimately show HasAminimum(r,AUB) using HasAminimum_def by auto
qed

Set that has a maximum is bounded above.

lemma Order_ZF_4_L7:
assumes HasAmaximum(r,A)
shows IsBoundedAbove(A,r)
using assms HasAmaximum_def IsBoundedAbove_def by auto

Set that has a minimum is bounded below.

lemma Order_ZF_4_L8A:
assumes HasAminimum(r,A)
shows IsBoundedBelow(A,r)
using assms HasAminimum_def IsBoundedBelow_def by auto

For reflexive relations singletons have a minimum and maximum.

lemma Order_ZF_4_L8: assumes refl(X,r) and acX
shows HasAmaximum(r,{a}) HasAminimum(r,{a})
using assms refl_def HasAmaximum_def HasAminimum_def by auto

For total and transitive relations if we add an element to a set that has a
maximum, the set still has a maximum.

lemma Order_ZF_4_19:
assumes Al: r {is total on} X and A2: trans(r)
and A3: ACX and A4: acX and A5: HasAmaximum(r,A)
shows HasAmaximum(r,AU{a})
proof -
from A3 A4 have AU{a} C X by auto
with A1 have r {is total on} (AU{a})
using Order_ZF_1_L4 by blast
moreover from A1 A2 A4 A5 have
trans(r) HasAmaximum(r,A) by auto
moreover from Al A4 have HasAmaximum(r,{a})
using total_is_refl Order_ZF_4_L8 by blast
ultimately show HasAmaximum(r,AU{a}) by (rule Order_ZF_4_L5)
qed
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For total and transitive relations if we add an element to a set that has a
minimum, the set still has a minimum.

lemma Order_ZF_4_L10:
assumes Al: r {is total on} X and A2: trans(r)
and A3: ACX and A4: acX and A5: HasAminimum(r,A)
shows HasAminimum(r,AU{a})
proof -
from A3 A4 have AU{a} C X by auto
with A1 have r {is total on} (AU{a})
using Order_ZF_1_L4 by blast
moreover from Al A2 A4 A5 have
trans(r) HasAminimum(r,A) by auto
moreover from Al A4 have HasAminimum(r,{a})
using total_is_refl Order_ZF_4_L8 by blast
ultimately show HasAminimum(r,AU{a}) by (rule Order_ZF_4_L6)
qed

If the order relation has a property that every nonempty bounded set attains
a minimum (for example integers are like that), then every nonempty set
bounded below attains a minimum.

lemma Order_ZF_4_L11:
assumes Al: r {is total on} X and
A2: trans(r) and
A3: r C XxX and
Ad: VA. IsBounded(A,r) A A#0 — HasAminimum(r,A) and
A5: B#0 and A6: IsBoundedBelow(B,r)
shows HasAminimum(r,B)
proof -
from A5 obtain b where T: beB by auto
let L = {x€B. (x,b) € r}
from A3 A6 T have T1: beX using Order_ZF_3_L1B by blast
with A1 T have T2: b € L
using total_is_refl refl_def by simp
then have L # 0 by auto
moreover have IsBounded(L,r)
proof -
have L C B by auto
with A6 have IsBoundedBelow(L,r)
using Order_ZF_3_L12 by simp
moreover have IsBoundedAbove(L,r)
by (rule Order_ZF_3_L15)
ultimately have IsBoundedAbove(L,r) A IsBoundedBelow(L,r)
by blast
then show IsBounded(L,r) using IsBounded_def
by simp
qed
ultimately have IsBounded(L,r) A L # 0 by blast
with A4 have HasAminimum(r,L) by simp
then obtain m where I: mel and II: Vx€L. (m,x) € r
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using HasAminimum_def by auto
then have III: (m,b) € r by simp
from I have meB by simp
moreover have Vx€B. (m,x) € r
proof
fix x assume A7: x€B
from A3 A6 have BCX using Order_ZF_3_L1B by blast
with A1 A7 T1 have x € L U {x€B. (b,x) € r}
using Order_ZF_1_L5 by simp
then have x€L V (b,x) € r by auto
moreover
{ assume x€L
with II have (m,x) € r by simp }
moreover
{ assume (b,x) € r
with A2 III have trans(r) and (m,b) € r A (b,x) € r
by auto
then have (m,x) € r by (rule Fol1_L3) }
ultimately show (m,x) € r by auto
qed
ultimately show HasAminimum(r,B) using HasAminimum_def
by auto
qed

A dual to Order_zZF_4_L11: If the order relation has a property that every
nonempty bounded set attains a maximum (for example integers are like
that), then every nonempty set bounded above attains a maximum.

lemma Order_ZF_4_L11A:
assumes Al: r {is total on} X and
A2: trans(r) and
A3: r C XxX and
Ad: VA. IsBounded(A,r) A A#0 — HasAmaximum(r,A) and
A5: B#0 and A6: IsBoundedAbove(B,r)
shows HasAmaximum(r,B)
proof -

from A5 obtain b where T: beB by auto
let U = {x€B. (b,x) € r}
from A3 A6 T have T1: beX using Order_ZF_3_L1A by blast
with A1 T have T2: b € U

using total_is_refl refl_def by simp
then have U # 0 by auto
moreover have IsBounded(U,r)
proof -

have U C B by auto

with A6 have IsBoundedAbove(U,r)

using Order_ZF_3_L13 by blast
moreover have IsBoundedBelow(U,r)
using IsBoundedBelow_def by auto
ultimately have IsBoundedAbove(U,r) A IsBoundedBelow(U,r)
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by blast
then show IsBounded(U,r) using IsBounded_def
by simp
qed
ultimately have IsBounded(U,r) A U # 0 by blast
with A4 have HasAmaximum(r,U) by simp
then obtain m where I: meU and II: VxeU. (x,m) € r
using HasAmaximum_def by auto
then have III: (b,m) € r by simp
from I have meB by simp
moreover have Vx€B. (x,m) € r
proof
fix x assume A7: x€B
from A3 A6 have BCX using Order_ZF_3_L1A by blast
with A1 A7 T1 have x € {x€B. (x,b) € r} U T
using Order_ZF_1_L5 by simp
then have x€U V (x,b) € r by auto
moreover
{ assume x€U
with II have (x,m) € r by simp }
moreover
{ assume (x,b) € r
with A2 III have trans(r) and (x,b) € r A (b,m) € r
by auto
then have (x,m) € r by (rule Foll_L3) }
ultimately show (x,m) € r by auto
qed
ultimately show HasAmaximum(r,B) using HasAmaximum_def
by auto
qed

If a set has a minimum and L is less or equal than all elements of the set,
then L is less or equal than the minimum.

lemma Order_ZF_4_L12:
assumes antisym(r) and HasAminimum(r,A) and VacA. (L,a) € r
shows (L,Minimum(r,A)) € r
using assms Order_ZF_4_L4 by simp

If a set has a maximum and all its elements are less or equal than M, then
the maximum of the set is less or equal than M.

lemma Order_ZF_4_L13:
assumes antisym(r) and HasAmaximum(r,A) and VacA. (a,M) € r
shows (Maximum(r,A),M) € r
using assms Order_ZF_4_L3 by simp

If an element belongs to a set and is greater or equal than all elements of
that set, then it is the maximum of that set.

lemma Order_ZF_4_L14:
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assumes Al: antisym(r) and A2: M € A and
A3: VacA. (a,M) € r
shows Maximum(r,A) = M
proof -
from A2 A3 have I: HasAmaximum(r,A) using HasAmaximum_def
by auto
with A1 have 3 !M. MeA A (Vx€A. (x,M) € 1)
using Order_ZF_4_L1 by simp
moreover from A2 A3 have MeA A (Vxe€A. (x,M) € r) by simp
moreover from A1 I have
Maximum(r,A) € A A (Vx€A. (x,Maximum(r,A)) € r)
using Order_ZF_4_L3 by simp
ultimately show Maximum(r,A) = M by auto
qed

If an element belongs to a set and is less or equal than all elements of that
set, then it is the minimum of that set.

lemma Order_ZF_4_L15:
assumes Al: antisym(r) and A2: m € A and
A3: VacA. (m,a) € r
shows Minimum(r,A) =m
proof -
from A2 A3 have I: HasAminimum(r,A) using HasAminimum_def
by auto
with A1 have J'!'m. meA A (Vx€A. (m,x) € 1)
using Order_ZF_4_L2 by simp
moreover from A2 A3 have meA A (Vx€A. (m,x) € r) by simp
moreover from A1 I have
Minimum(r,A) € A A (Vx€A. (Minimum(r,A),x) € r)
using Order_ZF_4_L4 by simp
ultimately show Minimum(r,A) = m by auto
qed

If a set does not have a maximum, then for any its element we can find one
that is (strictly) greater.

lemma Order_ZF_4_L16:
assumes Al: antisym(r) and A2: r {is total on} X and
A3: ACX and
A4: —HasAmaximum(r,A) and
A5: x€cA
shows JyecA. (x,y) € r A y#x
proof -
{ assume A6: VyeA. (x,y) ¢ r V y=x
have VyeA. (y,x) € r
proof
fix y assume A7: ye€A
with A6 have (x,y) ¢ r V y=x by simp
with A2 A3 A5 A7 show (y,x) € r
using IsTotal_def Order_ZF_1_L1 by auto
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qed
with A5 have JxcA.VyeA. (y,x) € r
by auto
with A4 have False using HasAmaximum_def by simp
} then show JyeA. (x,y) € r A y#x by auto
qed

7.2 Supremum and Infimum
In this section we consider the notions of supremum and infimum a set.

Elements of the set of upper bounds are indeed upper bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L1: assumes u € ([()a€A. r{a}) and acA
shows (a,u) € r
using assms by auto

Elements of the set of lower bounds are indeed lower bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L2: assumes 1 € ((JacA. r-{a}) and acA
shows (1,a) € r
using assms by auto

If the set of upper bounds has a minimum, then the supremum is less or equal
than any upper bound. We can probably do away with the assumption that
A is not empty, (ab)using the fact that intersection over an empty family is
defined in Isabelle to be empty.

lemma Order_ZF_5_L3: assumes Al: antisym(r) and A2: A#0 and
A3: HasAminimum(r,()acA. r{a}) and
A4: YVachA. (a,u) € r
shows (Supremum(r,A),u) € r
proof -
let U = (NacA. r{a}
from A4 have VacA. u € r{a} using image_singleton_iff
by simp
with A2 have u€U by auto
with A1 A3 show (Supremum(r,A),u) € r
using Order_ZF_4_L4 Supremum_def by simp
qed

Infimum is greater or equal than any lower bound.

lemma Order_ZF_5_L4: assumes Al: antisym(r) and A2: A#0 and
A3: HasAmaximum(r,()acA. r-{a}) and
A4: Yaeh. (1,a) € r
shows (1,Infimum(r,A)) € r
proof -
let L = (acA. r-{a}
from A4 have VacA. 1 € r-{a} using vimage_singleton_iff
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by simp
with A2 have 1€L by auto
with A1 A3 show (1,Infimum(r,A)) € r
using Order_ZF_4_L3 Infimum_def by simp
qed

If z is an upper bound for A and is greater or equal than any other upper
bound, then z is the supremum of A.

lemma Order_ZF_5_L5: assumes Al: antisym(r) and A2: A#0 and
A3: VxeA. (x,z) € r and
A4: Vy. (VxeA. (x,y) € r) — (z,y) € ¢
shows
HasAminimum(r,()ach. r{a})
z = Supremum(r,A)
proof -
let B = ()acA. r{a}
from A2 A3 A4 have I: z € B VyeB. (z,y) € r
by auto
then show HasAminimum(r,()acA. r{al})
using HasAminimum_def by auto
from A1 I show z = Supremum(r,A)
using Order_ZF_4_L15 Supremum_def by simp
qed

If a set has a maximum, then the maximum is the supremum.

lemma Order_ZF_5_L6:
assumes Al: antisym(r) and A2: A#0 and
A3: HasAmaximum(r,A)
shows
HasAminimum(r,()acA. r{a})
Maximum(r,A) = Supremum(r,A)
proof -
let M = Maximum(r,A)
from A1 A3 have I: M € A and II: VxeA. (x,M) € r
using Order_ZF_4_L3 by auto
from I have III: Vy. (Vx€A. (x,y) € r) — (M,y) € r
by simp
with A1 A2 II show HasAminimum(r,()acA. r{a})
by (rule Order_ZF_5_L5)
from A1 A2 IT III show M = Supremum(r,A)
by (rule Order_ZF_5_L5)
qed

Properties of supremum of a set for complete relations.

lemma Order_ZF_5_L7:
assumes Al: r C XxX and A2: antisym(r) and
A3: r {is complete} and
A4: ACX A#0 and A5: Ixe€X. Vy€A. (y,x) € r
shows
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Supremum(r,A) € X
VxeA. (x,Supremum(r,A)) € r
proof -

from A5 have IsBoundedAbove(A,r) using IsBoundedAbove_def
by auto

with A3 A4 have HasAminimum(r,()acA. r{a})
using IsComplete_def by simp

with A2 have Minimum(r,()acA. r{a}) € ( ()acA. r{a} )
using Order_ZF_4_L4 by simp

moreover have Minimum(r,()a€A. r{a}) = Supremum(r,A)
using Supremum_def by simp

ultimately have I: Supremum(r,A) € ( ()acA. r{a} )
by simp

moreover from A4 obtain a where acA by auto

ultimately have (a,Supremum(r,A)) € r using Order_ZF_5_L1
by simp

with Al show Supremum(r,A) € X by auto

from I show Vx€A. (x,Supremum(r,A)) € r using Order_ZF_5_L1
by simp

qed

If the relation is a linear order then for any element y smaller than the
supremum of a set we can find one element of the set that is greater than y.

lemma Order_ZF_5_L8:
assumes Al: r C XxX and A2: IsLinOrder(X,r) and
A3: r {is complete} and
A4: ACX A#0 and A5: JxeX. Vye€A. (y,x) € r and
A6: (y,Supremum(r,A)) € r y #* Supremum(r,A)
shows JzeA. (y,z) e r ANy # z
proof -
from A2 have
I: antisym(r) and
II: trans(r) and
III: r {is total on} X
using IsLinOrder_def by auto
from A1 A6 have T1: ye€X by auto
{ assume A7: Vz € A. (y,z) ¢ r V y=z
from A4 I have antisym(r) and A#0 by auto
moreover have VxeA. (x,y) € r
proof
fix x assume A8: x€A
with A4 have T2: x€X by auto
from A7 A8 have (y,x) ¢ r V y=x by simp
with III T1 T2 show (x,y) € r
using IsTotal_def total_is_refl refl_def by auto
qed
moreover have Vu. (Vx€A. (x,u) € r) — (y,u) € r
proof-
{ fix u assume A9: Vx€A. (x,u) € r

o6



from A4 A5 have IsBoundedAbove(A,r) and A#0
using IsBoundedAbove_def by auto
with A3 A4 A6 I A9 have
(y,Supremum(r,A)) € r A (Supremum(r,A),u) € r
using IsComplete_def Order_ZF_5_L3 by simp
with II have (y,u) € r by (rule Foll_L3)
} then show Vu. (Vxe€A. (x,u) € r) — (y,u) € r
by simp
qed
ultimately have y = Supremum(r,A)
by (rule Order_ZF_5_L5)
with A6 have False by simp
} then show 3Jze€A. (y,z) € r A y # z by auto
qed

7.3 Strict versions of order relations

One of the problems with translating formalized mathematics from Meta-
math to IsarMathLib is that Metamath uses strict orders (of the < type)
while in IsarMathLib we mostly use nonstrict orders (of the < type). This
doesn’t really make any difference, but is annoying as we have to prove
many theorems twice. In this section we prove some theorems to make it
easier to translate the statements about strict orders to statements about
the corresponding non-strict order and vice versa.

We define a strict version of a relation by removing the y = x line from the
relation.

definition
StrictVersion(r) = r - {(x,x). x € domain(r)}

A reformulation of the definition of a strict version of an order.

lemma def_of_strict_ver: shows
(x,y) € StrictVersion(r) +— (x,y) € ¥ A x#y
using StrictVersion_def domain_def by auto

The next lemma is about the strict version of an antisymmetric relation.

lemma strict_of_antisym:
assumes Al: antisym(r) and A2: (a,b) € StrictVersion(r)
shows (b,a) ¢ StrictVersion(r)
proof -
{ assume A3: (b,a) € StrictVersion(r)
with A2 have (a,b) € r and (b,a) € r
using def_of_strict_ver by auto
with A1 have a=b by (rule Foll_L4)
with A2 have False using def_of_strict_ver
by simp
} then show (b,a) ¢ StrictVersion(r) by auto
qed
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The strict version of totality.

lemma strict_of_tot:
assumes r {is total on} X and a€X beX a#b
shows (a,b) € StrictVersion(r) V (b,a) € StrictVersion(r)
using assms IsTotal_def def_of_strict_ver by auto

A trichotomy law for the strict version of a total and antisymmetric relation.
It is kind of interesting that one does not need the full linear order for this.

lemma strict_ans_tot_trich:
assumes Al: antisym(r) and A2: r {is total on} X
and A3: acX beX
and A4: s = StrictVersion(r)
shows Exactly_1_of_3_holds({a,b) € s, a=b,(b,a) € s)

proof -
let p = (a,b) € s
let q = a=b

let r = (b,a) € s
from A2 A3 A4 have p V q V r
using strict_of_tot by auto
moreover from Al A4 have p — —q A —r
using def_of_strict_ver strict_of_antisym by simp
moreover from A4 have q — —-p A —r
using def_of_strict_ver by simp
moreover from A1 A4 have r — —p A —q
using def_of_strict_ver strict_of_antisym by auto
ultimately show Exactly_1_of_3_holds(p, q, r)
by (rule Foll_L5)
qed

A trichotomy law for linear order. This is a special case of strict_ans_tot_trich.

corollary strict_lin_trich: assumes Al: IsLinOrder(X,r) and
A2: aeX DbeX and
A3: s = StrictVersion(r)
shows Exactly_1_of_3_holds({a,b) € s, a=b,(b,a) € s)
using assms IsLinOrder_def strict_ans_tot_trich by auto

For an antisymmetric relation if a pair is in relation then the reversed pair
is not in the strict version of the relation.

lemma geq_impl_not_less:
assumes Al: antisym(r) and A2: (a,b) € r
shows (b,a) ¢ StrictVersion(r)
proof -
{ assume A3: (b,a) € StrictVersion(r)
with A2 have (a,b) € StrictVersion(r)
using def_of_strict_ver by auto
with A1 A3 have False using strict_of_antisym
by blast
} then show (b,a) ¢ StrictVersion(zr) by auto
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qed

If an antisymmetric relation is transitive, then the strict version is also
transitive, an explicit version strict_of_transB below.

lemma strict_of_transA:
assumes Al: trans(r) and A2: antisym(r) and
A3: s= StrictVersion(r) and A4: (a,b) € s (b,c) € s
shows (a,c) € s
proof -
from A3 A4 have I: (a,b) € r A (b,c) € 1
using def_of_strict_ver by simp
with A1 have (a,c) € r by (rule Foll_L3)
moreover
{ assume a=c
with I have (a,b) € r and (b,a) € r by auto
with A2 have a=b by (rule Foll_L4)
with A3 A4 have False using def_of_strict_ver by simp
} then have a#c by auto
ultimately have (a,c) € StrictVersion(r)
using def_of_strict_ver by simp
with A3 show thesis by simp
qed

If an antisymmetric relation is transitive, then the strict version is also
transitive.

lemma strict_of_transB:
assumes Al: trans(r) and A2: antisym(r)
shows trans(StrictVersion(r))
proof -
let s = StrictVersion(r)
from A1 A2 have
Vxyz (x,7) €EsA(y, z) €Es — (x, 2) €s
using strict_of_transA by blast
then show trans(StrictVersion(r)) by (rule Foll_L2)
qed

The next lemma provides a condition that is satisfied by the strict version
of a relation if the original relation is a complete linear order.

lemma strict_of_compl:

assumes Al: r C XxX and A2: IsLinOrder(X,r) and

A3: r {is complete} and

Ad: ACX A0 and A5: s = StrictVersion(r) and

A6: JueX. VyehA. (y,u) € s

shows

JxeX. (Vyed. (x,y) ¢ s ) AN (VyeX. (y,x) € s — (Jz€A. (y,z) € 8))
proof -

let x = Supremum(r,A)

from A2 have I: antisym(r) using IsLinOrder_def
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by simp
moreover from A5 A6 have JueX. VyeA. (y,u) € r
using def_of_strict_ver by auto
moreover note Al A3 A4
ultimately have II: x € X Vy€A. (y,x) € r
using Order_ZF_5_L7 by auto
then have III: JxeX. Vy€A. (y,x) € r by auto
from A5 I II have x € X Vye€A. (x,y) ¢ s
using geq_impl_not_less by auto
moreover from A1 A2 A3 A4 A5 III have
VyeX. (y,x) € s — (Jz€A. (y,z) € s)
using def_of_strict_ver Order_ZF_5_L8 by simp
ultimately show
dxeX. (VyeA. (x,y) ¢ s ) A (VyeX. (y,x) € s — (Jz€A. (y,z) €
s))
by auto
qed

Strict version of a relation on a set is a relation on that set.

lemma strict_ver_rel: assumes Al: r C AXA
shows StrictVersion(r) C AxA
using assms StrictVersion_def by auto

end

8 Order on natural numbers

theory NatOrder_ZF imports Nat_ZF_IML Order_ZF
begin

This theory proves that < is a linear order on N. < is defined in Isabelle’s
Nat theory, and linear order is defined in Order_ZF theory. Contributed by
Seo Sanghyeon.

8.1 Order on natural numbers
This is the only section in this theory.

To prove that < is a total order, we use a result on ordinals.

lemma NatOrder_ZF_1_L1:
assumes acnat and bé€nat
shows a < b Vb <a
proof -
from assms have I: Ord(a) A 0rd(b)
using nat_into_0Ord by auto
then have a € b Va=bVbe€a
using Ord_linear by simp
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with T have a < bV a=bV b<a
using 1tI by auto
with I show a < b Vb < a
using le_iff by auto
qed

< is antisymmetric, transitive, total, and linear. Proofs by rewrite using
definitions.

lemma NatOrder_ZF_1_L2:
shows
antisym(Le)
trans(Le)
Le {is total on} nat
IsLinOrder (nat,Le)
proof -
show antisym(Le)
using antisym_def Le_def le_anti_sym by auto
moreover show trans(Le)
using trans_def Le_def le_trans by blast
moreover show Le {is total on} nat
using IsTotal_def Le_def NatOrder_ZF_1_L1 by simp
ultimately show IsLinOrder(nat,Le)
using IsLinOrder_def by simp
qed

The order on natural numbers is linear on every natural number. Recall
that each natural number is a subset of the set of all natural numbers (as
well as a member).

lemma natord_lin_on_each_nat:
assumes Al: n € nat shows IsLinOrder(n,Le)

proof -
from A1 have n C nat using nat_subset_nat
by simp
then show thesis using NatOrder_ZF_1_L2 ord_linear_subset
by blast
qed
end

9 Functions - introduction
theory funcl imports ZF.func Foll ZF1
begin

This theory covers basic properties of function spaces. A set of functions
with domain X and values in the set Y is denoted in Isabelle as X — Y. It
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just happens that the colon ”:” is a synonym of the set membership symbol
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€ in Isabelle/ZF so we can write f : X — Y instead of f € X — Y. This is
the only case that we use the colon instead of the regular set membership
symbol.

9.1 Properties of functions, function spaces and (inverse) im-
ages.

Functions in ZF are sets of pairs. This means that if f : X — Y then
f € X xY. This section is mostly about consequences of this understanding
of the notion of function.

We define the notion of function that preserves a collection here. Given two
collection of sets a function preserves the collections if the inverse image
of sets in one collection belongs to the second one. This notion does not
have a name in romantic math. It is used to define continuous functions
in Topology_ZF_2 theory. We define it here so that we can use it for other
purposes, like defining measurable functions. Recall that £-(A) means the
inverse image of the set A.

definition

PresColl(f,S,T) = V A€T. f-(A)€S
A definition that allows to get the first factor of the domain of a binary
function f: X xY — Z.
definition

fstdom(f) = domain(domain(f))
If a function maps A into another set, then A is the domain of the function.
lemma funcl_1_L1: assumes f:A—C shows domain(f) = A

using assms domain_of_fun by simp

Standard Isabelle defines a function(f) predicate. The next lemma shows
that our functions satisfy that predicate. It is a special version of Isabelle’s
fun_is_function.

lemma fun_is_fun: assumes f:X—Y shows function(f)
using assms fun_is_function by simp
A lemma explains what fstdom is for.

lemma fstdomdef: assumes Al: f: XxXY — Z and A2: Y#0
shows fstdom(f) = X

proof -
from A1 have domain(f) = XxY using funcl_1_L1
by simp
with A2 show fstdom(f) = X unfolding fstdom_def by auto
qed

A version of the Pi_type lemma from the standard Isabelle/ZF library.

62



lemma funcl_1_L1A: assumes Al: f:X—Y and A2: VxeX. £(x) € Z
shows f:X—Z
proof -
{ fix x assume x€X
with A2 have f(x) € Z by simp }
with A1 show f:X—Z by (rule Pi_type)
qed

A variant of func1_1_L1A.

lemma funci_1_L1B: assumes Al: f:X—Y and A2: YCZ
shows f:X—Z
proof -
from A1 A2 have VxeX. f(x) € Z
using apply_funtype by auto
with Al show f:X—Z using funcl_1_L1A by blast
qed

There is a value for each argument.

lemma funci_1_L2: assumes Al: f:X—Y xe&X
shows JyeY. (x,y) € f
proof-
from A1l have f(x) € Y using apply_type by simp
moreover from Al have ( x,f(x))€ f using apply_Pair by simp
ultimately show thesis by auto
qed

The inverse image is the image of converse. True for relations as well.
lemma vimage_converse: shows r-(A) = converse(r) ()

using vimage_iff image_iff converse_iff by auto
The image is the inverse image of converse.
lemma image_converse: shows converse(r)-(A) = r(A)

using vimage_iff image_iff converse_iff by auto
The inverse image by a composition is the composition of inverse images.
lemma vimage_comp: shows (r 0 s)-(A) = s-(r-(4))

using vimage_converse converse_comp image_comp image_converse by simp
A version of vimage_comp for three functions.
lemma vimage_comp3: shows (r 0 s 0 t)-(A) = t-(s-(r-(A)))

using vimage_comp by simp
Inverse image of any set is contained in the domain.

lemma func1_1_L3: assumes Al: f:X—Y shows f-(D) C X
proof-
have Vx. x€f-(D) — x € domain(f)
using vimage_iff domain_iff by auto
with A1 have Vx. (x € £-(D)) — (x€X) using funcl_1_L1 by simp
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then show thesis by auto
qed

The inverse image of the range is the domain.

lemma funcl_1_L4: assumes f:X—Y shows f-(Y) = X
using assms funcl_1_L3 funcl_1_L2 vimage_iff by blast

The arguments belongs to the domain and values to the range.

lemma funci_1_L5:
assumes Al: ( x,y) € f and A2: f:X—Y
shows x€X A yeY
proof
from A1 A2 show x€X using apply_iff by simp
with A2 have f(x)€ Y using apply_type by simp
with A1 A2 show ye€Y using apply_iff by simp
qed

Function is a subset of cartesian product.

lemma fun_subset_prod: assumes Al: f:X—Y shows f C XxY
proof
fix p assume p € £
with A1 have IxeX. p = (x, £(x))
using Pi_memberD by simp
then obtain x where I: p = (x, £(x))
by auto
with Al (p € £) have x€X A f(x) € Y
using funcl_1_L5 by blast
with I show p € XxY by auto
qed

The (argument, value) pair belongs to the graph of the function.

lemma func1_1_L5A:
assumes Al: f:X—Y x€X y = £(x)
shows (x,y) € £ y € range(f)
proof -
from A1 show (x,y) € f using apply_Pair by simp
then show y € range(f) using rangel by simp
qed

The next theorem illustrates the meaning of the concept of function in ZF.

theorem fun_is_set_of_pairs: assumes Al: f:X—Y
shows f = {(x, f(x)). x € X}
proof
from A1 show {(x, f(x)). x € X} C f using funcl_1_L5A
by auto
next
{ fix p assume p € f
with A1 have p € XxY using fun_subset_prod
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by auto
with A1 (p € £) have p € {(x, f(x)). x € X}
using apply_equality by auto
} thus £ C {(x, £(x)). x € X} by auto
qed

The range of function that maps X into Y is contained in Y.

lemma funcl_1_L5B:
assumes Al: f:X—Y shows range(f) C Y
proof
fix y assume y € range(f)
then obtain x where ( x,y) € f
using range_def converse_def domain_def by auto
with Al show ye€Y using funcl_1_L5 by blast
qed

The image of any set is contained in the range.

lemma funcl_1_L6: assumes Al: f:X—Y
shows f(B) C range(f) and £(B) C Y
proof -
show f(B) C range(f) using image_iff rangel by auto
with Al show f(B) C Y using funcl_1_L5B by blast
qed

The inverse image of any set is contained in the domain.

lemma funcl_1_L6A: assumes Al: f:X—Y shows f-(A)CX
proof
fix x
assume A2: x€f-(A) then obtain y where ( x,y) € £
using vimage_iff by auto
with Al show x€X using funcl_1_L5 by fast
qed

Image of a greater set is greater.

lemma funci_1_L8: assumes Al: ACB shows f(A)C f(B)
using assms image_Un by auto

A set is contained in the the inverse image of its image. There is similar
theorem in equalities.thy (function_image_vimage) which shows that the
image of inverse image of a set is contained in the set.

lemma funci_1_L9: assumes Al: f:X—Y and A2: ACX
shows A C f-(£f(4))

proof -
from A1 A2 have VxeA. ( x,f(x)) € f using apply_Pair by auto
then show thesis using image_iff by auto

qed

The inverse image of the image of the domain is the domain.
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lemma inv_im_dom: assumes Al: f:X—Y shows f-(£(X)) =
proof
from A1 show f-(£(X)) C X using funci1_1_L3 by simp
from A1 show X C f-(£(X)) using funci1_1_L9 by simp
qed

A technical lemma needed to make the func1_1_L11 proof more clear.

lemma func1_1_L10:
assumes Al: £ C XxY and A2: Tly. (yeY A (x,y) € £)
shows Jly. (x,y) € £
proof
from A2 show Jy. (x, y) € £ by auto
fix y n assume (x,y) € f and (x,n) € f
with A1 A2 show y=n by auto
qed

If f C X xY and for every x € X there is exactly one y € Y such that
(z,y) € f then f maps X to Y.

lemma func1l_1_L11:
assumes f C XxY and VxeX. Jly. yeY A (x,y) € £
shows f: X—Y using assms funcl_1_L10 Pi_iff_old by simp

A set defined by a lambda-type expression is a fuction. There is a similar
lemma in func.thy, but I had problems with lambda expressions syntax so I
could not apply it. This lemma is a workaround for this. Besides, lambda
expressions are not readable.

lemma funcl_1_L11A: assumes Al: VxeX. b(x) € Y
shows {( x,y) € XxY. b(x) = y} : XY
proof -
let £ = {( x,y) € XxY. b(x) = y?}
have £ C XXY by auto
moreover have VxeX. J!y. yeY A ( x,y) € £
proof
fix x assume A2: xeX
show J!y. yeY A (x, y) € {(x,y) € XxY . b(x) = y?}
proof
from A2 A1 show
dy. yeY A (x, y) € {{(x,y) € XxY . b(x) = y}
by simp
next
fix y y1
assume yeY A (x, y) € {(x,y) € XxY . b(x) = y}
and yleY A (x, y1) € {(x,y) € XxY . b(x) = y?}
then show y = y1 by simp
qed
qed
ultimately show {({ x,y) € XxY. b(x) = y} : X—Y
using funci_1_L11 by simp
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qed

The next lemma will replace func1_1_L11A one day.

lemma ZF_fun_from_total: assumes Al: VxeX. b(x) € Y
shows {(x,b(x)). x€X} : X—Y
proof -
let £ = {(x,b(x)). x€X}
{ fix x assume A2: x€X
have J'y. yeY A (x, y) € £
proof
from A1 A2 show Jy. yeY A (x, y) € £
by simp
next fix y yl assume yeY A (x, y) € £
and yleY A (x, yl1) € £
then show y = y1 by simp
qed
} then have VxeX. Jly. yeY A ( x,y) € £
by simp
moreover from A1 have f C XxY by auto
ultimately show thesis using funci_1_L11
by simp
qed

The value of a function defined by a meta-function is this meta-function.

lemma funci_1_L11B:
assumes Al: f:X—=Y xe&X
and A2: f = {( x,y) € XxY. b(x) = y}
shows f(x) = b(x)
proof -
from Al have ( x,f(x)) € f using apply_iff by simp
with A2 show thesis by simp
qed

The next lemma will replace func1_1_L11B one day.

lemma ZF_fun_from_tot_val:
assumes Al: f:X—Y x€&X
and A2: f = {(x,b(x)). x€X}
shows f(x) = b(x)
proof -
from Al have ( x,f(x)) € f using apply_iff by simp
with A2 show thesis by simp
qed

Identical meaning as ZF_fun_from_tot_val, but phrased a bit differently.

lemma ZF_fun_from_tot_valO:
assumes f:X—Y and f = {(x,b(x)). x€X}
shows VxeX. f(x) = b(x)
using assms ZF_fun_from_tot_val by simp
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Another way of expressing that lambda expression is a function.

lemma lam_is_fun_range: assumes f={(x,g(x)). xeX}
shows f:X—range(f)
proof -
have VxeX. g(x) € range({(x,g(x)). x€X}) unfolding range_def
by auto
then have {(x,g(x)). x€X} : X—range({(x,g(x)). x€X}) by (rule ZF_fun_from_total)
with assms show thesis by auto
qed

Yet another way of expressing value of a function.

lemma ZF_fun_from_tot_vall:

assumes x€X shows {(x,b(x)). x€X}(x)=b(x)
proof -

let £ = {(x,b(x)). x€X}

have f:X—range(f) using lam_is_fun_range by simp

with assms show thesis using ZF_fun_from_tot_val0 by simp
qed

We can extend a function by specifying its values on a set disjoint with the
domain.

lemma funcl_1_L11C: assumes Al: f:X—Y and A2: VxeA. b(x)€B
and A3: XNA = 0 and Dg: g = £ U {(x,b(x)). x€A}
shows
g : XUA — YUB
VxeX. gx) = £(x)
VxeA. gx) = b(x)
proof -
let h = {(x,b(x)). x€A}
from A1 A2 A3 have
I: £:X=Y h : A—=B XNA =0
using ZF_fun_from_total by auto
then have fUh : XUA — YUB
by (rule fun_disjoint_Un)
with Dg show g : XUA — YUB by simp
{ fix x assume A4: x€A
with A1 A3 have (fUh)(x) = h(x)
using funcl_1_L1 fun_disjoint_apply2
by blast
moreover from I A4 have h(x) = b(x)
using ZF_fun_from_tot_val by simp
ultimately have (fUh) (x) = b(x)
by simp
with Dg show VxeA. g(x) = b(x) by simp
fix x assume A5: x€X
with A3 I have x ¢ domain(h)
using funci_1_L1 by auto
then have (fUh) (x) = f(x)

e
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using fun_disjoint_applyl by simp
} with Dg show Vxe€X. g(x) = f(x) by simp
qed

We can extend a function by specifying its value at a point that does not
belong to the domain.

lemma funci_1_L11D: assumes Al: f:X—Y and A2: a¢X
and Dg: g = £ U {(a,b)}
shows
g : XU{a} — YU{b}
VxeX. gx) = £(x)
g(a) = b
proof -
let b = {(a,b)}
from A1 A2 Dg have I:
f:X—Y Vzxed{a}. be{p} Xn{a} =0 g=1f U {(x,b). xe{a}}
by auto
then show g : XU{a} — YU{b}
by (rule funcl_1_L11C)
from I show VxeX. g(x) = f(x)
by (rule funci_1_L11C)
from I have Vxe{a}. g(x) = b
by (rule funcl_1_L11C)
then show g(a) = b by auto
qed

A technical lemma about extending a function both by defining on a set
disjoint with the domain and on a point that does not belong to any of
those sets.

lemma funci_1_L11E:

assumes Al: f:X—Y and

A2: VxeA. b(x)eB and

A3: XNA = 0 and A4: a¢ XUA

and Dg: g = £ U {(x,b(x)). x€A} U {(a,c)}

shows

g : XUAU{a} — YUBU{c}

VxeX. gx) = £(x)

VxeA. gx) = b(x)

ga) = c¢

proof -

let h = £ U {(x,b(x)). x€A}

from assms show g : XUAU{a} — YUBU{c}
using funcl1_1_L11C funcl_1_L11D by simp

from A1 A2 A3 have I:
£:X—>Y Vx€A. b(x)EB XNA =0 h =f U {(x,b(x)). xcA}
by auto

from assms have
II: h : XUA — YUB a¢ XUA g =h U {(a,c)}
using funcl_1_L11C by auto
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then have III: VxeXUA. g(x) = h(x) by (rule funcil_1_L11D)
moreover from I have VxeX. h(x) = £(x)
by (rule funcl_1_L11C)
ultimately show VxzeX. g(x) = £(x) by simp
from I have Vx€A. h(x) = b(x) by (rule funcl_1_L11C)
with IIT show VxecA. g(x) = b(x) by simp
from II show g(a) = ¢ by (rule funcl_1_L11D)
qed

A way of defining a function on a union of two possibly overlapping sets. We
decompose the union into two differences and the intersection and define a
function separately on each part.

lemma fun_union_overlap: assumes Vx€AMB. h(x) € Y Vx€A-B. f(x) €
Y VxeB-A. g(x) € Y

shows {(x,if x€A-B then f(x) else if x€B-A then g(x) else h(x)). x
€ AUB}: AUB — Y
proof -

let F = {(x,if x€A-B then f(x) else if x€B-A then g(x) else h(x)). x
€ ANB?

from assms have Vxc€AUB. (if x€A-B then f(x) else if x€B-A then g(x)
else h(x)) € Y

by auto

then show thesis by (rule ZF_fun_from_total)

qed

Inverse image of intersection is the intersection of inverse images.

lemma invim_inter_inter_invim: assumes f:X—Y
shows f-(ANB) = £-(A) N £-(B)
using assms fun_is_fun function_vimage_Int by simp

The inverse image of an intersection of a nonempty collection of sets is the
intersection of the inverse images. This generalizes invim_inter_inter_invim
which is proven for the case of two sets.

lemma funcil_1_L12:
assumes Al: B C Pow(Y) and A2: B#0 and A3: f:X—Y
shows f-((\B) = ((NUeB. £-(U))
proof
from A2 show f-((\B) C ((U€B. £-(U)) by blast
show (NUeB. £-(U)) C £-(B)
proof
fix x assume A4: x € (((UEB. £-(1))
from A3 have VUeB. £f-(U) C X using funcl_1_L6A by simp
with A4 have VUeB. xe€X by auto
with A2 have x€X by auto
with A3 have J!y. ( x,y) € f using Pi_iff_old by simp
with A2 A4 show x € f-((B) using vimage_iff by blast
qged
qed
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The inverse image of a set does not change when we intersect the set with
the image of the domain.

lemma inv_im_inter_im: assumes f:X—Y
shows f-(A N £(X)) = £-(A)
using assms invim_inter_inter_invim inv_im_dom funcl_1_L6A
by blast

If the inverse image of a set is not empty, then the set is not empty. Proof
by contradiction.

lemma funcl_1_L13: assumes Al:f-(A) # 0 shows A#0
using assms by auto

If the image of a set is not empty, then the set is not empty. Proof by
contradiction.

lemma funcl_1_L13A: assumes Al: f(A)#0 shows A#0
using assms by auto

What is the inverse image of a singleton?

lemma funci_1_L14: assumes fcX—Y
shows f-({y}) = {xeX. f(x) = y}
using assms funci_1_L6A vimage_singleton_iff apply_iff by auto

A lemma that can be used instead fun_extension_iff to show that two
functions are equal

lemma func_eq: assumes f: X—=Y g: X—=Z
and VxeX. f(x) = g(x)
shows f = g using assms fun_extension_iff by simp

Function defined on a singleton is a single pair.

lemma func_singleton_pair: assumes Al: f : {a}—X
shows f = {(a, f(a))}
proof -
let g = {(a, £(a))}
note Al
moreover have g : {a} — {f(a)} using singleton_fun by simp
moreover have Vx € {a}. £(x) = g(x) using singleton_apply
by simp
ultimately show f = g by (rule func_eq)
qed

A single pair is a function on a singleton. This is similar to singleton_fun
from standard Isabelle/ZF.

lemma pair_func_singleton: assumes Al: y € Y
shows {(x,y)} : {x} — Y

proof -
have {(x,y)} : {x} — {y} using singleton_fun by simp
moreover from A1 have {y} C Y by simp
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ultimately show {(x,y)} : {x} — Y
by (rule funci_1_L1B)
qed

The value of a pair on the first element is the second one.

lemma pair_val: shows {(x,y)}(x) =y
using singleton_fun apply_equality by simp

A more familiar definition of inverse image.

lemma funcl_1_L15: assumes Al: f:X—Y
shows f-(A) = {xeX. f(x) € A}
proof -
have £-(4) = (Uyear . £-{y})
by (rule vimage_eq_UN)
with A1 show thesis using funcl_1_L14 by auto
qed

A more familiar definition of image.

lemma func_imagedef: assumes Al: f:X—Y and A2: ACX
shows f(A) = {f(x). x € A}
proof
from A1 show f(A) C {f(x). x € A}
using image_iff apply_iff by auto
show {f(x). x € A} C £(4)
proof
fix y assume y € {f(x). x € A}
then obtain x where x€A and y = f(x)
by auto
with A1 A2 have (x,y) € f using apply_iff by force
with A1 A2 x€hA) show y € f(A) using image_iff by auto
qed
qed

The image of a set contained in domain under identity is the same set.

lemma image_id_same: assumes ACX shows id(X) (A) = A
using assms id_type id_conv by auto

The inverse image of a set contained in domain under identity is the same
set.

lemma vimage_id_same: assumes ACX shows id(X)-(A) = A
using assms id_type id_conv by auto

What is the image of a singleton?

lemma singleton_image:
assumes feX—Y and xeX
shows f{x} = {f(x)}
using assms func_imagedef by auto
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If an element of the domain of a function belongs to a set, then its value
belongs to the imgage of that set.

lemma funci_1_L15D: assumes f:X—Y =xcA ACX
shows f(x) € f(A)
using assms func_imagedef by auto

Range is the image of the domain. Isabelle/ZF defines range (f) as domain(converse(£)),
and that’s why we have something to prove here.

lemma range_image_domain:
assumes Al: f:X—Y shows f(X) = range(f)
proof
show f(X) C range(f) using image_def by auto
{ fix y assume y € range(f)
then obtain x where (y,x) € converse(f) by auto
with Al have x€X using funcl_1_L5 by blast
with A1 have f(x) € f(X) using func_imagedef
by auto
with A1 «((y,x) € converse(f)) have y € f(X)
using apply_equality by auto
} then show range(f) C f(X) by auto
qed

The difference of images is contained in the image of difference.

lemma diff_image_diff: assumes Al: f: X—Y and A2: ACX
shows f(X) - £f(A) C f(X-A)
proof
fix y assume y € £(X) - £(4)
hence y € £(X) and I: y ¢ f(A) by auto
with A1 obtain x where x€X and II: y = f(x)
using func_imagedef by auto
with A1 A2 I have x¢A
using funcl_1_L15D by auto
with x€X> have x € X-A X-A C X by auto
with A1 II show y € f£(X-A)
using funcl_1_L15D by simp
qed

The image of an intersection is contained in the intersection of the images.

lemma image_of_Inter: assumes Al: f:X—Y and
A2: I#0 and A3: VieI. P(i) C X
shows f(((i€Il. P(i)) C ( Niel. £(P@E)) )
proof
fix y assume Ad: y € £(()i€Il. P(1))
from A1 A2 A3 have f((i€I. P(i)) = {f(x). x € ( (i€l. P(i) )}
using ZF1_1_L7 func_imagedef by simp
with A4 obtain x where x € ( ()i€Il. P(i) ) and y = f(x)
by auto
with A1 A2 A3 show y € ( [i€I. £(P(i)) ) using func_imagedef
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by auto
qed

The image of union is the union of images.

lemma image_of_Union: assumes Al: f:X—Y and A2: VAeM. ACX
shows f(JM) = J{f(Aa). AeM}
proof
from A2 have |JM C X by auto
{ fix y assume y € £(UM)
with A1 (UM C X obtain x where x€[JM and I: y = £(x)
using func_imagedef by auto
then obtain A where A€M and x€A by auto
with assms I have y € |J{f(A). A€M} using func_imagedef by auto
} thus £(UM) C [J{£f(a). AeM} by auto
{ fix y assume y € [J{f(4). AeM}
then obtain A where AcM and y € £(A) by auto
with assms (JM C X have y € f(|UM) using func_imagedef by auto
} thus UA{£(A). AeM} C £(UM) by auto
qed

The image of a nonempty subset of domain is nonempty.

lemma func1l_1_L15A:
assumes Al: f: X—Y and A2: ACX and A3: A#0
shows f(A) # 0
proof -
from A3 obtain x where x€A by auto
with A1 A2 have f(x) € f(A)
using func_imagedef by auto
then show f(A) # 0 by auto
qed

The next lemma allows to prove statements about the values in the domain
of a function given a statement about values in the range.

lemma funci_1_L15B:
assumes f:X—Y and ACX and Vyef(4d). P(y)
shows VxeA. P(£f(x))
using assms func_imagedef by simp

An image of an image is the image of a composition.

lemma funcl_1_L15C: assumes Al: f:X—Y and A2: g:Y—=Z
and A3: ACX

shows

g(f(Q)) = {glf(x)). xeA}

g(£(A)) = (g 0 £)(A)
proof -

from A1 A3 have {f(x). x€A} C Y
using apply_funtype by auto
with A2 have g{f(x). x€A} = {g(f(x)). x€A}
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using func_imagedef by auto

with A1 A3 show I: g(£(4)) = {g(f(x)). x€A}
using func_imagedef by simp

from A1 A3 have Vx€A. (g 0 £f)(x) = g(f(x))
using comp_fun_apply by auto

with I have g(£(A)) = {(g 0 £)(x). xcA}
by simp

moreover from A1 A2 A3 have (g 0 £)(A) = {(g 0 £)(x). x€A}
using comp_fun func_imagedef by blast

ultimately show g(£(A)) = (g 0 £)(A)
by simp

qed

What is the image of a set defined by a meta-fuction?

lemma funci_1_L17:
assumes Al: f € X—Y and A2: Vx€A. b(x) € X
shows f({b(x). x€A}) = {£(b(x)). x€A}
proof -
from A2 have {b(x). x€A} C X by auto
with Al show thesis using func_imagedef by auto
qed

What are the values of composition of three functions?

lemma funcl_1_L18: assumes Al: f:A—B g:B—C h:C—D
and A2: x€A
shows
(h0g0fH)® €D
(h0g0£)x = h(glEx))
proof -
from Al have (h 0 g 0 f) : A—D
using comp_fun by blast
with A2 show (h 0 g 0 £)(x) € D using apply_funtype
by simp
from A1 A2 have (A 0 g 0 £)(x) = h( (g 0 £)(x))
using comp_fun comp_fun_apply by blast
with A1 A2 show (A 0 g 0 £)(x) = h(g(£(x)))
using comp_fun_apply by simp
qed

A composition of functions is a function. This is a slight generalization of
standard Isabelle’s comp_fun

lemma comp_fun_subset:
assumes Al: g:A—B and A2: f:C—D and A3: B C C
shows f 0 g : A —» D
proof -
from A1 A3 have g:A—C by (rule funci_1_L1B)
with A2 show f 0 g : A — D using comp_fun by simp
qed
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This lemma supersedes the lemma comp_eq_id_iff in Isabelle/ZF. Con-
tributed by Victor Porton.

lemma comp_eq_id_iffl: assumes Al: g: B—A and A2: f: A—C
shows (VyeB. f(g(y)) =y) <— £ 0 g = id(B)
proof -
from assms have f 0 g: B—C and id(B): B—B
using comp_fun id_type by auto
then have (VyeB. (f 0 g)y = id(B)(y)) «— £ 0 g = id(B)
by (rule fun_extension_iff)
moreover from Al have

VyeB. (f 0 gy = £(gy) and VyeB. id(B)(y) =y
by auto
ultimately show (VyeB. f(gy) = y) <— f 0 g = id(B) by simp
qed

A lemma about a value of a function that is a union of some collection of
functions.

lemma fun_Union_apply: assumes Al: |JF : X—Y and
A2: fcF and A3: f:A—B and A4: x€A
shows (JF) (x) = £(x)
proof -
from A3 A4 have (x, f(x)) € f using apply_Pair
by simp
with A2 have (x, f(x)) € |JF by auto
with A1 show (UF)(x) = f(x) using apply_equality
by simp
qed

9.2 Functions restricted to a set

Standard Isabelle/ZF defines the notion restrict (f,A) of to mean a function
(or relation) f restricted to a set. This means that if f is a function defined
on X and A is a subset of X then restrict(f,A) is a function whith the
same values as f, but whose domain is A.

What is the inverse image of a set under a restricted fuction?

lemma func1_2_L1: assumes Al: f:X—Y and A2: BCX
shows restrict(f,B)-(A) = f-(A) N B
proof -
let g = restrict(£,B)
from A1 A2 have g:B—Y
using restrict_type2 by simp
with A2 A1 show g-(A) = £f-(A) N B
using funcl_1_L15 restrict_if by auto
qed

A criterion for when one function is a restriction of another. The lemma
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below provides a result useful in the actual proof of the criterion and appli-
cations.

lemma funcl_2_L2:
assumes Al: f:X—Y and A2: g € A—>Z
and A3: ACX and A4: f N AXZ =g
shows VxeA. g(x) = £(x)
proof
fix x assume x€A
with A2 have ( x,g(x)) € g using apply_Pair by simp
with A4 Al show g(x) = f(x) wusing apply_iff by auto
qed

Here is the actual criterion.

lemma funcl_2_L3:
assumes Al: f:X—Y and A2: g:A—Z
and A3: ACX and A4: f N AXZ =g
shows g = restrict(f,A)
proof
from A4 show g C restrict(f, A) using restrict_iff by auto
show restrict(f, A) C g
proof
fix z assume A5:z € restrict(f,A)
then obtain x y where Dl:zef A x€A A z = (x,y)
using restrict_iff by auto
with A1 have y = f(x) using apply_iff by auto
with A1 A2 A3 A4 D1 have y = g(x) using funcl_2_L2 by simp
with A2 D1 show z&€g using apply_Pair by simp
qed
qed

Which function space a restricted function belongs to?

lemma funcl_2_L4:
assumes Al: f:X—Y and A2: ACX and A3: VxeA. f(x) € Z
shows restrict(f,A) : A—>Z
proof -
let g = restrict(f,A)
from A1 A2 have g : A—Y
using restrict_type2 by simp
moreover {
fix x assume x€A
with A1 A3 have g(x) € Z using restrict by simp}
ultimately show thesis by (rule Pi_type)
qed

A simpler case of funci_2_L4, where the range of the original and restricted
function are the same.

corollary restrict_fun: assumes Al: f:X—Y and A2: ACX
shows restrict(f,A) : A — Y
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proof -
from assms have VxecA. f(x) € Y using apply_funtype
by auto
with assms show thesis using funcl_2_L4 by simp
qed

A composition of two functions is the same as composition with a restriction.

lemma comp_restrict:
assumes Al: f : A—B and A2: g : X — C and A3: BCX
shows g 0 £ = restrict(g,B) 0 £
proof -
from assms have g 0 £ : A — C using comp_fun_subset
by simp
moreover from assms have restrict(g,B) 0 f : A — C
using restrict_fun comp_fun by simp
moreover from Al have
VxeA. (g 0 £)(x) = (restrict(g,B) 0 f)(x)
using comp_fun_apply apply_funtype restrict
by simp
ultimately show g 0 f = restrict(g,B) O £
by (rule func_eq)
qed

A way to look at restriction. Contributed by Victor Porton.

lemma right_comp_id_any: shows r 0 id(C) = restrict(r,C)
unfolding restrict_def by auto

9.3 Constant functions

Constant functions are trivial, but still we need to prove some properties to
shorten proofs.

We define constant(= ¢) functions on a set X in a natural way as ConstantFunction(X, ¢).

definition
ConstantFunction(X,c) = Xx{c}

Constant function belongs to the function space.

lemma funci_3_L1:
assumes Al: cc€Y shows ConstantFunction(X,c) : X—Y

proof -
from A1 have Xx{c} = {({ x,y) € XxY. ¢ = y}
by auto
with A1 show thesis using funcl_1_L11A ConstantFunction_def
by simp
qed

Constant function is equal to the constant on its domain.

lemma funci_3_L2: assumes Al: xeX
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shows ConstantFunction(X,c) (x) = ¢
proof -
have ConstantFunction(X,c) € X—{c}
using funcl_3_L1 by simp
moreover from Al have ( x,c) € ConstantFunction(X,c)
using ConstantFunction_def by simp
ultimately show thesis using apply_iff by simp
qed

9.4 Injections, surjections, bijections etc.

In this section we prove the properties of the spaces of injections, surjections
and bijections that we can’t find in the standard Isabelle’s Perm.thy.

For injections the image a difference of two sets is the difference of images

lemma inj_image_dif:
assumes Al: f € inj(A,B) and A2: C C A
shows f(A-C) = £(A) - £(C)
proof
show f(A - C) C f(A) - £(C)
proof
fix y assume A3: y € f(A - C)
from A1 have f:A—B using inj_def by simp
moreover have A-C C A by auto
ultimately have f(A-C) = {f(x). x € A-C}
using func_imagedef by simp
with A3 obtain x where I: f(x) = y and x € A-C
by auto
hence x€A by auto
with (:A—B I have y € £(4)
using func_imagedef by auto
moreover have y ¢ £(C)
proof -
{ assume y € £(C)
with A2 (f:A—B) obtain xg
where II: f(x¢) =y and %9 € C
using func_imagedef by auto
with A1 A2 T xe€A) have
f € inj(A,B) f(x) = f(x9) =x€A xp € A
by auto
then have x = xg by (rule inj_apply_equality)
with « € A-C x¢ € C have False by simp
} thus thesis by auto
qed
ultimately show y € £(A) - £(C) by simp
qed
from A1 A2 show f(A) - £(C) C f(A-C)
using inj_def diff_image_diff by auto
qed
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For injections the image of intersection is the intersection of images.

lemma inj_image_inter: assumes Al: f € inj(X,Y) and A2: ACX BCX
shows f£(ANB) = £(A) N £(B)
proof
show f(ANB) C f(A) N £(B) using image_Int_subset by simp
{ from A1 have f:X—Y using inj_def by simp
fix y assume y € £(A) N £(B)
then have y € £(A) and y € £(B) by auto
with A2 (f:X—Y) obtain x4, xp where
x4 € Axp €Band I:y=1£f(x4) y==£(xp)
using func_imagedef by auto
with A2 have x4 € X xp € X and £f(x4) = f(xp) by auto
with A1 have x4 = xp using inj_def by auto
with x4 € b &p € B have f(x4) € {f(x). x € ANB} by auto
moreover from A2 :X—Y) have f(ANB) = {f(x). x € ANB}
using func_imagedef by blast
ultimately have f(x4) € £(ANB) by simp
with I have y € £(ANB) by simp
} thus £(4) N £(B) C £(A N B) by auto
qed

For surjection from A to B the image of the domain is B.

lemma surj_range_image_domain: assumes Al: f € surj(A,B)
shows f(A) = B
proof -
from Al have f(A) = range(f)
using surj_def range_image_domain by auto
with A1 show f(A) = B wusing surj_range
by simp
qed

For injections the inverse image of an image is the same set.

lemma inj_vimage_image: assumes f € inj(X,Y) and ACX
shows f-(£(4)) = A
proof -
have £f-(£f(A)) = (converse(f) 0 f)(A)
using vimage_converse image_comp by simp
with assms show thesis using left_comp_inverse image_id_same
by simp
qed

For surjections the image of an inverse image is the same set.

lemma surj_image_vimage: assumes Al: f € surj(X,Y) and A2: ACY
shows f(f-(A)) = A
proof -
have £(f-(A)) = (f 0 converse(f)) (4)
using vimage_converse image_comp by simp
with assms show thesis using right_comp_inverse image_id_same
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by simp
qed

A lemma about how a surjection maps collections of subsets in domain and
rangge.

lemma surj_subsets: assumes Al: f € surj(X,Y) and A2: B C Pow(Y)
shows { £(U). U € {f-(V). VeB} } =B
proof
{ fix W assume W € { £(U). U € {f-(V). VeB} }
then obtain U where I: U € {f-(V). VeB} and II: W = £(U) by auto
then obtain V where VeB and U = £-(V) by auto
with II have W = £(£-(V)) by simp
moreover from assms (VEB) have f € surj(X,Y) and VCY by auto
ultimately have W=V using surj_image_vimage by simp
with «VeB) have W € B by simp
thus { £(U). U € {f-(V). VeB} } C B by auto
fix W assume WeB
let U = £-(W)
from WeB» have U € {f-(V). VEB} by auto
moreover from A1l A2 (WeB) have W = £(U) using surj_image_vimage by
auto
ultimately have W € { £(U). U € {£f-(V). VEB} } by auto
} thus B C { £(U). U € {f-(V). VEB} } by auto
qed

- e

Restriction of an bijection to a set without a point is a a bijection.

lemma bij_restrict_rem:
assumes Al: f € bij(A,B) and A2: acA
shows restrict(f, A-{a}) € bij(A-{a}, B-{f(a)})
proof -
let ¢ = A-{a}
from Al have f € inj(A,B) C C A
using bij_def by auto
then have restrict(f,C) € bij(C, £(C))
using restrict_bij by simp
moreover have £(C) = B-{f(a)}
proof -
from A2 (¢ € inj(A,B)) have £(C) = £(A) - f{a}
using inj_image_dif by simp
moreover from A1 have f(A) = B
using bij_def surj_range_image_domain by auto
moreover from A1 A2 have f{a} = {f(a)}
using bij_is_fun singleton_image by blast
ultimately show f(C) = B-{f(a)} by simp
qed
ultimately show thesis by simp
qed

The domain of a bijection between X and Y is X.
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lemma domain_of_bij:

assumes Al: f € bij(X,Y) shows domain(f) = X
proof -

from A1 have f:X—Y using bij_is_fun by simp

then show domain(f) = X using funcl_1_L1 by simp
qed

The value of the inverse of an injection on a point of the image of a set
belongs to that set.

lemma inj_inv_back_in_set:
assumes Al: f € inj(A,B) and A2: CCA and A3: y € £(C)
shows
converse(f) (y) € C
f(converse(f)(y)) =y
proof -
from A1 have I: f:A—B using inj_is_fun by simp
with A2 A3 obtain x where II: x€C y = f(x)
using func_imagedef by auto
with A1 A2 show converse(f) (y) € C using left_inverse
by auto
from A1 A2 I II show f(converse(f)(y)) =y
using funcl_1_L5A right_inverse by auto
qed

For injections if a value at a point belongs to the image of a set, then the
point belongs to the set.

lemma inj_point_of_image:
assumes Al: f € inj(A,B) and A2: CCA and
A3: x€A and A4: f(x) € £(C)
shows x € C
proof -
from A1 A2 A4 have converse(f)(f(x)) € C
using inj_inv_back_in_set by simp
moreover from Al A3 have converse(f) (f(x)) = x
using left_inverse_eq by simp
ultimately show x € C by simp
qed

For injections the image of intersection is the intersection of images.

lemma inj_image_of_Inter: assumes Al: f € inj(4,B) and
A2: I#0 and A3: VieI. P(i) C A
shows f(((i€Il. P(i)) = ( (iel. £(P(i)) )
proof
from A1 A2 A3 show f(()i€I. P(i)) C ( (Ni€Il. £(P()) )
using inj_is_fun image_of_Inter by auto
from A1 A2 A3 have f:A—B and ( [)i€I. P(i) ) C A
using inj_is_fun ZF1_1_L7 by auto
then have I: f(ieIl. P(i)) = { f(x). x € ( (iel. P(i) ) }

82



using func_imagedef by simp
{ fix y assume A4: y € ( (i€Il. £(P(i)) )
let x = converse(f) (y)
from A2 obtain iy where iy € I by auto
with A1 A4 have II: y € range(f) using inj_is_fun funcl_1_L6
by auto
with A1 have III: f(x) = y using right_inverse by simp
from A1 II have IV: x € A using inj_converse_fun apply_funtype
by blast
{ fix i assume i€l
with A3 A4 III have P(i) C A and f(x) € f(P(i))
by auto
with A1 IV have x € P(i) using inj_point_of_image
by blast
} then have Vi€I. x € P(i) by simp
with A2 I have f(x) € f( [)i€I. P(i) )
by auto
with III have y € £( (i€I. P(i) ) by simp
} then show ( NiecI. £(P(i)) ) € f£( (Niel. P(1) )
by auto
qed

An injection is injective onto its range. Suggested by Victor Porton.

lemma inj_inj_range: assumes f € inj(A,B)
shows f € inj(A,range(f))
using assms inj_def range_of_fun by auto

An injection is a bijection on its range. Suggested by Victor Porton.

lemma inj_bij_range: assumes f € inj(A,B)
shows f € bij(A,range(£))
proof -
from assms have f € surj(A,range(f)) using inj_def fun_is_surj
by auto
with assms show thesis using inj_inj_range bij_def by simp
qed

A lemma about extending a surjection by one point.

lemma surj_extend_point:
assumes Al: f € surj(X,Y) and A2: a¢X and
A3: g = £ U {(a,b)}
shows g € surj(XU{a},YU{b})
proof -
from A1 A2 A3 have g : XU{a} — YU{b}
using surj_def funcl_1_L11D by simp
moreover have Vy € YU{b}. dx € XU{a}. y = g(x)
proof
fix y assume y € Y U {b}
then have y € Y V y = b by auto
moreover
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{ assume y € Y
with Al obtain x where x€X and y = f£(x)
using surj_def by auto
with A1 A2 A3 have x € XU{a} and y = g(x)
using surj_def funci_1_L11D by auto
then have dx € XU{a}. y = g(x) by auto }
moreover
{ assume y = b
with Al A2 A3 have y = g(a)
using surj_def funcl_1_L11D by auto
then have dx € XU{a}. y = g(x) by auto }
ultimately show Jx € XU{a}. y = g(x)
by auto
qed
ultimately show g € surj(Xu{al},Yu{b})
using surj_def by auto
qed

A lemma about extending an injection by one point. Essentially the same
as standard Isabelle’s inj_extend.

lemma inj_extend_point: assumes f € inj(X,Y) a¢X be¢y
shows (f U {(a,b)}) € injXuU{al},YU{b})

proof -
from assms have cons((a,b),f) € inj(cons(a, X), cons(b, Y))
using assms inj_extend by simp
moreover have cons((a,b),f) = £ U {(a,b)} and
cons(a, X) = XU{a} and cons(b, Y) = YU{b}
by auto
ultimately show thesis by simp
qed

A lemma about extending a bijection by one point.

lemma bij_extend_point: assumes f € bij(X,Y) a¢X b¢y
shows (f U {(a,b)}) € bijXu{a},YU{b})
using assms surj_extend_point inj_extend_point bij_def
by simp

A quite general form of the a='b = 1 implies a = b law.

lemma comp_inv_id_eq:
assumes Al: converse(b) 0 a = id(A) and
A2: a C AXB b € surj(4,B)
shows a = b

proof -
from A1 have (b O converse(b)) 0 a = b 0 id(A)
using comp_assoc by simp
with A2 have id(B) 0 a = b 0 id(d)
using right_comp_inverse by simp
moreover
from A2 have a C AxB and b C AXB
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using surj_def fun_subset_prod
by auto
then have id(B) 0 a = a and b 0 id(A) = b
using left_comp_id right_comp_id by auto
ultimately show a = b by simp
qed

A special case of comp_inv_id_eq - the a~'b = 1 implies a = b law for
bijections.

lemma comp_inv_id_eq_bij:
assumes Al: a € bij(A,B) b € bij(A,B) and
A2: converse(b) 0 a = id(A)
shows a = b
proof -
from A1 have a C AxB and b € surj(A,B)
using bij_def surj_def fun_subset_prod
by auto
with A2 show a = b by (rule comp_inv_id_eq)
qed

Converse of a converse of a bijection is the same bijection. This is a special
case of converse_converse from standard Isabelle’s equalities theory where
it is proved for relations.

lemma bij_converse_converse: assumes a € bij(A,B)
shows converse(converse(a)) = a

proof -

from assms have a C AxB using bij_def surj_def fun_subset_prod by
simp

then show thesis using converse_converse by simp
qed

If a composition of bijections is identity, then one is the inverse of the other.

lemma comp_id_conv: assumes Al: a € bij(A,B) b € bij(B,A) and
A2: b 0 a = id(A)
shows a = converse(b) and b = converse(a)
proof -
from Al have a € bij(A,B) and converse(b) € bij(A,B) using bij_converse_bij

by auto
moreover from assms have converse(converse(b)) 0 a = id(A)
using bij_converse_converse by simp
ultimately show a = converse(b) by (rule comp_inv_id_eq_bij)
with assms show b = converse(a) using bij_converse_converse by simp
qed

A version of comp_id_conv with weaker assumptions.

lemma comp_conv_id: assumes Al: a € bij(A,B) and A2: b:B—A and
A3: VxeA. b(a(x)) = x
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shows b € bij(B,A) and a = converse(b) and b = converse(a)
proof -
have b € surj(B,A)

proof -
have VxeA. JyeB. b(y) = x
proof -
{ fix x assume x€A
let y = a(x)

from A1 A3 x€A) have yeB and b(y) = x
using bij_def inj_def apply_funtype by auto
hence JyeB. b(y) = x by auto
} thus thesis by simp
qed
with A2 show b € surj(B,A) using surj_def by simp
qed
moreover have b € inj(B,4A)
proof -
have VweB.VyeB. b(w) = b(y) — w=y
proof -
{ fix w y assume we€B ye€B and I: b(w) = b(y)
from A1 have a € surj(4,B) unfolding bij_def by simp
with weB) obtain x,, where x,, € A and II: a(xy,) = w
using surj_def by auto
with I have b(a(x,)) = b(y) by simp
moreover from (a € surj(A,B)) (y€B) obtain x, where
xy € A and III: a(xy) =y
using surj_def by auto
moreover from A3 «x, € A «(x, € A have b(a(xy,)) = x, and b(a(xy))

]
el
<

by auto
ultimately have x,, = x, by simp
with II III have w=y by simp
} thus thesis by auto
qed
with A2 show b € inj(B,A) using inj_def by auto
qed
ultimately show b € bij(B,A) using bij_def by simp
from assms have b 0 a = id(A) using bij_def inj_def comp_eq_id_iffl
by auto
with Al (b € bij(B,A)) show a = converse(b) and b = converse(a)
using comp_id_conv by auto
qed

For a surjection the union if images of singletons is the whole range.

lemma surj_singleton_image: assumes Al: f € surj(X,Y)
shows (|JxeX. {f(x)}) =Y
proof
from A1 show (JxeXx. {f(x)}) C Y
using surj_def apply_funtype by auto
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next
{ fix y assume y € Y
with A1 have y € (UxeX. {fx)P)
using surj_def by auto
} then show Y C (|Jxe€X. {f(x)}) by auto
qed

9.5 Functions of two variables

In this section we consider functions whose domain is a cartesian product
of two sets. Such functions are called functions of two variables (although
really in ZF all functions admit only one argument). For every function of
two variables we can define families of functions of one variable by fixing the
other variable. This section establishes basic definitions and results for this
concept.

We can create functions of two variables by combining functions of one
variable.

lemma cart_prod_fun: assumes f;:X;—Y; f5:X;—Y, and

g = {(p, (1 (fst(p)),f2(snd(p)))). p € X;1xXa}

shows g: X;xXo — Y; XYy using assms apply_funtype ZF_fun_from_total
by simp

A reformulation of cart_prod_fun above in a sligtly different notation.

lemma prod_fun:

assumes f:X;—Xs g:X3—Xy

shows {((x,y),(fx,gy)). (x,y)EX1xX3}:X1xX3—>XaxXy
proof -

have {{(x,y),{(fx,gy)). (x,y)eX1xX3} = {{p,(f(fst(p)),g(snd(p)))). p €
X1 XX3}

by auto

with assms show thesis using cart_prod_fun by simp

qed

Product of two surjections is a surjection.

theorem prod_functions_surj:
assumes fesurj(A,B) gesurj(C,D)
shows {((al,a2),(fal,ga2)).(al,a2)€AXC} € surj(AxC,BxD)
proof -
let h = {{{(x, y), £&x), gly)) . (x,y) € A x C}
from assms have fun: f:A—Bg:C—D unfolding surj_def by auto
then have pfun: h : A x C —+ B X D using prod_fun by auto
{
fix b assume beBxD
then obtain bl b2 where b=(b1,b2) bl€B b2€D by auto
with assms obtain al a2 where f(al)=bl g(a2)=b2 aleA a2eC
unfolding surj_def by blast
hence ((al,a2),(b1,b2)) € h by auto
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with pfun have h(al,a2)=(b1,b2) using apply_equality by auto
with ®=(b1,b2)) @al€h @2€C> have JacAxC. h(a)=b
by auto
} hence VbeBxD. JacAxC. h(a) = b by auto
with pfun show thesis unfolding surj_def by auto
qed

For a function of two variables created from functions of one variable as in
cart_prod_fun above, the inverse image of a cartesian product of sets is the
cartesian product of inverse images.

lemma cart_prod_fun_vimage: assumes f;:X;—Y; f5:X—Y, and
g = {{p,(f1(£st(p)),f2(snd(p)))). p € X1 xX22}
shows g-(A;xAs) = £1-(A1) X f2-(A3)
proof -
from assms have g: X;xXs — Y; XYy using cart_prod_fun
by simp
then have g-(A;xA;) = {p € X;xX2. g(p) € A; XA} using funcl_ 1_L15

by simp
with assms (g: X1 XXy = Y XY show g—(A1XA2) = fl—(Al) X fg—(Ag)
using ZF_fun_from_tot_val funcl_1_L15 by auto
qed

For a function of two variables defined on X x Y, if we fix an x € X we
obtain a function on Y. Note that if domain(f) is X X Y, range(domain(£f))
extracts Y from X x Y.

definition
FixistVar(f,x) = {(y,f(x,y)). y € range(domain(f))}

For every y € Y we can fix the second variable in a binary function f :
X XY — Z to get a function on X.

definition
Fix2ndVar(f,y) = {(x,f(x,y)). x € domain(domain(f))}

We defined FixistVar and Fix2ndVar so that the domain of the function is
not listed in the arguments, but is recovered from the function. The next
lemma is a technical fact that makes it easier to use this definition.

lemma fix_var_fun_domain: assumes Al: f : XxXY — Z
shows
x€X — FixlstVar(f,x) = {(y,f(x,y)). y € Y}
yE€Y — Fix2ndVar(f,y) = f(x,y)). x € X}
proof -
from A1 have I: domain(f) = XXY using funci_1_L1 by simp
{ assume x€X
with I have range(domain(f)) = Y by auto
then have FixistVar(f,x) = {(y,f(x,y)). y € Y}
using FixlstVar_def by simp

I
-~

=
4
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} then show x€X — FixlstVar(f,x) = {(y,f(x,y)). y € Y}
by simp

{ assume yey
with I have domain(domain(f)) = X by auto
then have Fix2ndVar(f,y) = {(x,f(x,y)). x € X}

using Fix2ndVar_def by simp

} then show y€Y — Fix2ndVar(f,y) = {(x,f(x,y)). x € X}

by simp
qed

If we fix the first variable, we get a function of the second variable.

lemma fix_1st_var_fun: assumes Al: f : XXY — Z and A2: x€X
shows FixlstVar(f,x) : Y — Z
proof -
from A1 A2 have VyeY. f(x,y) € Z
using apply_funtype by simp
then have {(y,f(x,y)). y € Y} : Y — Z using ZF_fun_from_total by simp
with A1 A2 show FixlstVar(f,x) : Y — Z using fix_var_fun_domain by
simp
qed

If we fix the second variable, we get a function of the first variable.

lemma fix_2nd_var_fun: assumes Al: f : XxXY — Z and A2: yeY
shows Fix2ndVar(f,y) : X — Z
proof -
from A1 A2 have VxeX. f(x,y) € Z
using apply_funtype by simp
then have {(x,f(x,y)). x € X} : X — Z
using ZF_fun_from_total by simp
with Al A2 show Fix2ndVar(f,y) : X — Z
using fix_var_fun_domain by simp
qed

What is the value of Fix1stVar (f,x) at y € Y and the value of Fix2ndVar (f,y)
at x € X7

lemma fix_var_val:
assumes Al: f : XXY — Z and A2: x€X yevY
shows

FixlstVar(f,x) (y) = £(x,y)
Fix2ndVar(f,y) (x) = f(x,y)
proof -

let £; = {{y,£(x,y)). y € Y}

let £; = {(x,f(x,y)). x € X}

from A1 A2 have I:
FixlstVar(f,x) = f;
Fix2ndVar(f,y) = £,

using fix_var_fun_domain by auto
moreover from Al A2 have
FixlstVar(f,x) : Y — Z
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Fix2ndVar(f,y) : X — Z
using fix_1st_var_fun fix_2nd_var_fun by auto

ultimately have f; : Y - Z and f; : X — Z
by auto

with A2 have f(y) = f(x,y) and f2(x) = f(x,y)
using ZF_fun_from_tot_val by auto

with I show
FixlstVar(f,x) (y)
Fix2ndVar (f,y) (x)
by auto

qed

fx,y

(x,y)
£(x,y)

Fixing the second variable commutes with restrictig the domain.

lemma fix_2nd_var_restr_comm:
assumes Al: f : XxXY — Z and A2: y€Y and A3: X; C X
shows Fix2ndVar (restrict(f,X;xY),y) = restrict(Fix2ndVar(f,y),X;)
proof -
let g = Fix2ndVar(restrict(f,X;xY),y)
let h = restrict(Fix2ndVar(f,y),X;)
from A3 have I: X;xY C XxY by auto
with A1 have II: restrict(f,X;xY) : X;xY — Z
using restrict_type2 by simp
with A2 have g : X; — Z
using fix_2nd_var_fun by simp
moreover
from A1 A2 have III: Fix2ndVar(f,y) : X — Z
using fix_2nd_var_fun by simp
with A3 have h : X; — Z
using restrict_type2 by simp
moreover
{ fix z assume A4: z € X;
with A2 I II have g(z) = f(z,y)
using restrict fix_var_val by simp
also from A1 A2 A3 A4 have f(z,y) = h(z)
using restrict fix_var_val by auto
finally have g(z) = h(z) by simp
} then have Vz € X;. g(z) = h(z) by simp
ultimately show g = h by (rule func_eq)
qed

The next lemma expresses the inverse image of a set by function with fixed
first variable in terms of the original function.

lemma fix_1st_var_vimage:
assumes Al: f : XxXY — Z and A2: xeX
shows FixlstVar(f,x)-(4) = {y€Y. (x,y) € £-(A)}
proof -
from assms have FixlstVar(f,x)-(A) = {y€Y. FixlstVar(f,x)(y) € A}
using fix_1st_var_fun funcl_1_L15 by blast
with assms show thesis using fix_var_val funcl_1_L15 by auto
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qed

The next lemma expresses the inverse image of a set by function with fixed
second variable in terms of the original function.

lemma fix_2nd_var_vimage:
assumes Al: f : XxY — Z and A2: yeY
shows Fix2ndVar(f,y)-(4) = {x€X. (x,y) € £-(A)}
proof -
from assms have I: Fix2ndVar(f,y)-(A) = {x€X. Fix2ndVar(f,y) (x) € A}
using fix_2nd_var_fun funcl_1_L15 by blast
with assms show thesis using fix_var_val funcl_1_L15 by auto
qed

end

10 Binary operations

theory func_ZF imports funcl
begin

In this theory we consider properties of functions that are binary operations,
that is they map X x X into X.

10.1 Lifting operations to a function space

It happens quite often that we have a binary operation on some set and
we need a similar operation that is defined for functions on that set. For
example once we know how to add real numbers we also know how to add
real-valued functions: for f,g: X — R we define (f + g)(z) = f(z) + g(z).
Note that formally the + means something different on the left hand side of
this equality than on the right hand side. This section aims at formalizing
this process. We will call it "lifting to a function space”, if you have a
suggestion for a better name, please let me know.

Since we are writing in generic set notation, the definition below is a bit
complicated. Here it what it says: Given a set X and another set f (that
represents a binary function on X') we are defining f lifted to function space
over X as the binary function (a set of pairs) on the space F' = X — range(f)
such that the value of this function on pair (a, b) of functions on X is another
function ¢ on X with values defined by ¢(x) = f(a(z),b(x)).

definition
Lift2FcnSpce (infix {lifted to function space over} 65) where
f {lifted to function space over} X =

{{ p,{(x,f{fst(p) (x),snd(p) (¥))). x € X}).

p € (X—range(£))x (X—range(£))}
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The result of the lift belongs to the function space.

lemma func_ZF_1_L1:
assumes Al: f : YXY—Y
and A2: p €(X—range(f))x (X—range(f))

shows
{(x,f(fst(p) (x),snd(p) (x))). x € X} : X—range(f)
proof -
have VxeX. f(fst(p) (x),snd(p) (x)) € range(f)
proof

fix x assume xeX
let p = (fst(p) (x),snd(p) (x))
from A2 x€X have
fst(p) (x) € range(f) snd(p)(x) € range(f)
using apply_type by auto
with A1 have p € YxY
using funcl_1_L5B by blast
with A1 have (p, f(p)) € £
using apply_Pair by simp
with Al show
f(p) € range(f)
using rangel by simp
qed
then show thesis using ZF_fun_from_total by simp
qed

The values of the lift are defined by the value of the liftee in a natural way.

lemma func_ZF_1_L2:
assumes Al: £ : YXY—=Y
and A2: p € (X—range(f)) x (X—range(f)) and A3: xeX
and A4: P = {(x,f{fst(p) (x),snd(p) (x))). x € X}
shows P(x) = f({fst(p) (x),snd(p) (x))
proof -
from A1 A2 have
{(x,f(fst(p) (x) ,snd(p) (x))). x € X} : X — range(f)
using func_ZF_1_L1 by simp
with A4 have P : X — range(f) by simp
with A3 A4 show P(x) = f(fst(p) (x),snd(p) (x))
using ZF_fun_from_tot_val by simp
qed

Function lifted to a function space results in function space operator.

theorem func_ZF_1_L3:
assumes f : YxXY—Y
and F = £ {lifted to function space over} X
shows F : (X—range(f)) x (X—range(f))— (X—range(f))
using assms Lift2FcnSpce_def func_ZF_1_L1 ZF_fun_from_total
by simp

The values of the lift are defined by the values of the liftee in the natural
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way.

theorem func_ZF_1_L4:
assumes Al: f : YXY—=Y
and A2: F = f {lifted to function space over} X
and A3: s:X—range(f) r:X—range(f)

and A4: xeX

shows (F(s,r)) (x) = £f(s(x),r(x))
proof -

let p = (s,r)

let P = {(x,f(fst(p) (x),snd(p) (x))). x € X}
from A1 A3 A4 have
f @ YXY=Y p € (X—range(f))x (X—range(f))
x€X P = {(x,f(fst(p) (x),snd(p) (x))). x € X}
by auto
then have P(x) = f(fst(p) (x),snd(p) (%))
by (rule func_ZF_1_L2)
hence P(x) = f(s(x),r(x)) by auto
moreover have P = F(s,r)
proof -
from A1 A2 have F : (X—range(f))x (X—range(f))— (X—range(f))
using func_ZF_1_L3 by simp
moreover from A3 have p € (X—range(f))x (X—range(£))
by auto
moreover from A2 have
F = {{p,{(x,f{(fst(p) (x),snd(p) (x))). x € X}).
p € (X—range(£))x (X—range(£))}
using Lift2FcnSpce_def by simp
ultimately show thesis using ZF_fun_from_tot_val
by simp
qed
ultimately show (F(s,r))(x) = £(s(x),r(x)) by auto
qed

10.2 Associative and commutative operations

In this section we define associative and commutative operations and prove
that they remain such when we lift them to a function space.

” N

Typically we say that a binary operation on a set G is ”associative” if
(r-y)-z=x-(y-2) for all z,y,z € G. Our actual definition below does
not use the multiplicative notation so that we can apply it equally to the
additive notation 4+ or whatever infix symbol we may want to use. Instead,
we use the generic set theory notation and write P(z,y) to denote the value
of the operation P on a pair (z,y) € G X G.

definition

IsAssociative (infix {is associative on} 65) where

P {is associative on} G = P : GXG—G A
VWV xeG Vyeag Vzeaqa.
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( PUAPU(x,y)),2z)) = PC (x,PUy,z)) )))

A binary function f: X x X — Y is commutative if f(x,y) = f(y,x). Note
that in the definition of associativity above we talk about binary ”operation”
and here we say use the term binary ”function”. This is not set in stone,
but usually the word ”operation” is used when the range is a factor of
the domain, while the word ”function” allows the range to be a completely
unrelated set.

definition
IsCommutative (infix {is commutative on} 65) where
f {is commutative on} G = Vx€G. VyeG. f(x,y) = £(y,x)

The lift of a commutative function is commutative.

lemma func_ZF_2_L1:
assumes Al: f : GXG—G
and A2: F = f {lifted to function space over} X
and A3: s : X—range(f) r : X—range(f)
and A4: f {is commutative on} G
shows F(s,r) = F(r,s)
proof -
from A1 A2 have
F : (X—range(f)) x (X—range(f))— (X—range(£f))
using func_ZF_1_L3 by simp
with A3 have
F(s,r) : X—range(f) and F(r,s) : X—range(f)
using apply_type by auto
moreover have
vxeX. (F(s,r)) (x) = (F(r,s)) %)
proof
fix x assume x€X
from A1 have range(f)CG
using funcl_1_L5B by simp
with A3 x€X) have s(x) € G and r(x) € G
using apply_type by auto
with A1 A2 A3 A4 x€X show
(F(s,r)) (x) = (F(r,s)) ()
using func_ZF_1_L4 IsCommutative_def by simp
qed
ultimately show thesis using fun_extension_iff
by simp
qed

The lift of a commutative function is commutative on the function space.

lemma func_ZF_2_L2:
assumes f : GXG—G
and f {is commutative on} G
and F = £ {lifted to function space over} X
shows F {is commutative on} (X—range(f))
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using assms IsCommutative_def func_ZF_2_L1 by simp

The lift of an associative function is associative.

lemma func_ZF_2_L3:
assumes A2: F = f {lifted to function space over} X
and A3: s : X—range(f) r : X—range(f) q : X—range(f)
and A4: f {is associative on} G
shows F(F(s,r),q) = F(s,F(r,q))
proof -
from A4 A2 have
F : (X—range(f)) x (X—range(f)) — (X—range(f))
using IsAssociative_def func_ZF_1_L3 by auto
with A3 have I:
F(s,r) : X—range(f)
F(r,q) : X—range(f)
F(F(s,r),q) : X—range(f)
F(s,F(r,q)): X—range(f)
using apply_type by auto
moreover have
VxeX. (F(F(s,r),q)) x) = (F(s,F(r,q))) (x)
proof
fix x assume x€X
from A4 have f:GxXG—G
using IsAssociative_def by simp
then have range(£f)CG
using funcl_1_L5B by simp
with A3 x€X have
s(x) € Gr(x) € Gqx) € G
using apply_type by auto
with A2 T A3 A4 xeX) (£:GXG—G show
(F(F(s,r),q)) (x) = (F(s,F(r,q))) (x)
using func_ZF_1_L4 IsAssociative_def by simp
qed
ultimately show thesis using fun_extension_iff
by simp
qged

The lift of an associative function is associative on the function space.

lemma func_ZF_2_L4:
assumes Al: f {is associative on} G
and A2: F = f {lifted to function space over} X
shows F {is associative on} (X—range(f))
proof -
from A1 A2 have
F : (X—range(f)) x (X—range(f))— (X—range(f))
using IsAssociative_def func_ZF_1_L3 by auto
moreover from Al A2 have
Vs € X—range(f). V r € X—range(f). Vq € X—range(f).
F(F(s,z),q) = F(s,F(r,q))
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using func_ZF_2_L3 by simp
ultimately show thesis using IsAssociative_def
by simp
qed

10.3 Restricting operations

In this section we consider conditions under which restriction of the opera-
tion to a set inherits properties like commutativity and associativity.

The commutativity is inherited when restricting a function to a set.

lemma func_ZF_4_L1:
assumes Al: f:XxX—Y and A2: ACX
and A3: f {is commutative on} X
shows restrict(f,AxA) {is commutative on} A
proof -
{ fix x y assume x€A and y€A
with A2 have x€X and yeX by auto
with A3 xeh (yeh have
restrict(£f,AXA)(x,y) = restrict(f,AxA)(y,x)
using IsCommutative_def restrict_if by simp }
then show thesis using IsCommutative_def by simp
qed

Next we define what it means that a set is closed with respect to an opera-
tion.

definition
IsOpClosed (infix {is closed under} 65) where
A {is closed under} f = Vxe€A. VyeA. f(x,y) € A

Associative operation restricted to a set that is closed with resp. to this
operation is associative.

lemma func_ZF_4_L2:assumes Al: f {is associative on} X
and A2: ACX and A3: A {is closed under} f
and A4: xc€A ycA zeh
and A5: g = restrict(f,AxA)
shows g(g(x,y),z) = g(x.g(y,2z))

proof -
from A4 A2 have I: x€X yeX zeX

by auto
from A3 A4 A5 have

glg(x,y),z) = £(f(x,y),z2)

g(x,g(y,z)) = £(x,£(y,2))

using IsOpClosed_def restrict_if by auto
moreover from Al I have

£(2(x,y),2) = £(x,£(y,2))

using IsAssociative_def by simp
ultimately show thesis by simp
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qed

An associative operation restricted to a set that is closed with resp. to this
operation is associative on the set.

lemma func_ZF_4_L3: assumes Al: f {is associative on} X
and A2: ACX and A3: A {is closed under} f
shows restrict(f,AxA) {is associative on} A

proof -
let g = restrict(f,AxA)
from A1 have f:XxX—X

using IsAssociative_def by simp
moreover from A2 have AxA C XxX by auto
moreover from A3 have Vp € AxA. g(p) € A
using IsOpClosed_def restrict_if by auto
ultimately have g : AxXA—A
using funcl_2_L4 by simp
moreover from Al A2 A3 have
VxxeA VyeA V zeA.
gg(x,y),2z) = &( x,8(y,z))
using func_ZF_4_L2 by simp
ultimately show thesis
using IsAssociative_def by simp
qed

The essential condition to show that if a set A is closed with respect to an

operation, then it is closed under this operation restricted to any superset
of A.

lemma func_ZF_4_L4: assumes A {is closed under} f
and ACB and x€A y€A and g = restrict(f,BxB)
shows g(x,y) € A
using assms IsOpClosed_def restrict by auto

If a set A is closed under an operation, then it is closed under this operation
restricted to any superset of A.

lemma func_ZF_4_L5:
assumes Al: A {is closed under} f

and A2: ACB
shows A {is closed under} restrict(f,BxB)
proof -

let g = restrict(f,BxB)
from A1 A2 have VxecA. VycA. g(x,y) € A
using func_ZF_4_14 by simp
then show thesis using IsOpClosed_def by simp
qed

The essential condition to show that intersection of sets that are closed with
respect to an operation is closed with respect to the operation.

lemma func_ZF_4_L6:
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assumes A {is closed under} f

and B {is closed under} f

and x € ANB y€ ANB

shows f(x,y) € ANB using assms IsOpClosed_def by auto

Intersection of sets that are closed with respect to an operation is closed
under the operation.

lemma func_ZF_4_L7:
assumes A {is closed under} f
B {is closed under} f
shows ANB {is closed under} f
using assms IsOpClosed_def by simp

10.4 Compositions

For any set X we can consider a binary operation on the set of functions f :
X — X defined by C(f,g) = f o g. Composition of functions (or relations)
is defined in the standard Isabelle distribution as a higher order function
and denoted with the letter 0. In this section we consider the corresponding
two-argument ZF-function (binary operation), that is a subset of (X —
X)x (X = X)) x (X —X).

We define the notion of composition on the set X as the binary operation
on the function space X — X that takes two functions and creates the their
composition.

definition
Composition(X) =
{(p,fst(p) 0 snd(p)). p € X—=X)xEX—-X)}

Composition operation is a function that maps (X — X) x (X — X) into
X = X.

lemma func_ZF_5_L1: shows Composition(X) : (X—=X)x(X—=X)—=(X—X)
using comp_fun Composition_def ZF_fun_from_total by simp

The value of the composition operation is the composition of arguments.

lemma func_ZF_5_L2: assumes f:X—X and g:X—X
shows Composition(X)(f,g) = £ 0 g
proof -
from assms have
Composition(X) : (X—=X)x (X—X)— (X—X)
(f,g) € X=X xE—=X)
Composition(X) = {(p,fst(p) 0 snd(p)). p € X=X x X=X}
using func_ZF_5_L1 Composition_def by auto
then show Composition(X)(f,g) = £ 0 g
using ZF_fun_from_tot_val by auto
qed

What is the value of a composition on an argument?
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lemma func_ZF_5_L3: assumes f:X—X and g:X—X and xeX
shows (Composition(X)(f,g)) (x) = £(g(x))
using assms func_ZF_5_L2 comp_fun_apply by simp

The essential condition to show that composition is associative.

lemma func_ZF_5_L4: assumes Al: f:X—X g:X—X h:X—=X
and A2: C = Composition(X)
shows C(C(f,g),h) = C( £,C(g,h))
proof -
from A2 have C : ((X—=X)x (X—=X))—=(X—=X)
using func_ZF_5_L1 by simp
with A1 have I:
C(f,g) : X—X
Clg,h) : X=X
c(C(f,g),h) : X=X
c( £,C(g,h)) : X—X
using apply_funtype by auto
moreover have
V x € X. C(C(f,g),h)(x) = C(f,C(g,h))(x)
proof
fix x assume x€X
with A1 A2 I have
Cc(C{f,g),h) (x) = f(gh(x)))
C( £,C(g,h))(x) = £(g(x)))
using func_ZF_5_L3 apply_funtype by auto
then show C(C(f,g),h)(x) = C( £,C(g,h))(x)
by simp
qed
ultimately show thesis using fun_extension_iff by simp
qed

Composition is an associative operation on X — X (the space of functions
that map X into itself).

lemma func_ZF_5_L5: shows Composition(X) {is associative on} (X—X)
proof -
let C = Composition(X)
have VfcX—X. VgeX—X. VheX—=X.
c(c(t,g),h) = C(£,C(g,h))
using func_ZF_5_L4 by simp
then show thesis using func_ZF_5_L1 IsAssociative_def
by simp
qed

10.5 Identity function

In this section we show some additional facts about the identity function
defined in the standard Isabelle’s Perm theory.

A function that maps every point to itself is the identity on its domain.
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lemma indentity_fun: assumes Al: f:X—Y and A2:VxeX. f(x)=x
shows f = id(X)
proof -
from assms have f:X—Y and id(X):X—X and VxeX. f(x) = id(X) (x)
using id_type id_conv by auto
then show thesis by (rule func_eq)
qed

Composing a function with identity does not change the function.

lemma func_ZF_6_L1A: assumes Al: f : X=X
shows Composition(X)(f,id(X)) = f
Composition(X)(id(X),f) = £
proof -
have Composition(X) : (X—X)Xx (X—X)—(X—X)
using func_ZF_5_L1 by simp
with A1 have Composition(X){(id(X),f) : X—X
Composition(X)(f,id(X)) : X—X
using id_type apply_funtype by auto
moreover note Al
moreover from Al have
Vx€eX. (Composition(X)(id(X),f)) (x) = f(x)
VxeX. (Composition(X)(f,id(X))) (x) = f(x)
using id_type func_ZF_5_L3 apply_funtype id_conv
by auto
ultimately show Composition(X)(id(X),f) = £
Composition(X)(f,id(X)) = £
using fun_extension_iff by auto
qed

An intuitively clear, but surprsingly nontrivial fact:identity is the only func-
tion from a singleton to itself.

lemma singleton_fun_id: shows ({x} — {x}) = {id({zx}}
proof
show {id({x}} € ({x} — {x}
using id_def by simp
{ let g = id({x})
fix £ assume f : {x} — {x}
then have f : {x} — {x} and g : {x} — {x}
using id_def by auto
moreover from «( : {x} — {x} have Vx € {x}. £(x) = g(x)
using apply_funtype id_def by auto
ultimately have f = g by (rule func_eq)
} then show ({x} — {x}) C {id({x})} by auto
qed

Another trivial fact: identity is the only bijection of a singleton with itself.

lemma single_bij_id: shows bij({x},{x}) = {id({x}}
proof
show {id({x})} C bij({x},{x}) using id_bij
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by simp
{ fix £ assume f € bij({x},{x})
then have f : {x} — {x} using bij_is_fun

by simp
then have f € {id({x})} using singleton_fun_id
by simp
} then show bij({x},{x}) C {id({x})} by auto

qed

A kind of induction for the identity: if a function f is the identity on a set
with a fixpoint of f removed, then it is the indentity on the whole set.

lemma id_fixpoint_rem: assumes Al: f:X—X and
A2: peX and A3: f(p) = p and
Ad: restrict(f, X-{p}) = idX-{p})
shows f = id(X)
proof -
from A1 have f: X—X and id(X) : X—X
using id_def by auto
moreover
{ fix x assume x€X
{ assume x € X-{p}
then have f(x) = restrict(f, X-{p}) (%)
using restrict by simp
with A4 € X-{ph have f(x) = x
using id_def by simp }
with A2 A3 x€X) have f(x) = x by auto
} then have VxeX. f(x) = 1id(X) (x)
using id_def by simp
ultimately show f = id(X) by (rule func_eq)
qed

10.6 Lifting to subsets

Suppose we have a binary operation f : X x X — X written additively as
f{x,y) = x +y. Such operation naturally defines another binary operation
on the subsets of X that satisfies A+ B={z+y:x € A,y € B}. This new
operation which we will call ” f lifted to subsets” inherits many properties of
f, such as associativity, commutativity and existence of the neutral element.
This notion is useful for considering interval arithmetics.

The next definition describes the notion of a binary operation lifted to sub-
sets. It is written in a way that might be a bit unexpected, but really it is the
same as the intuitive definition, but shorter. In the definition we take a pair
p € Pow(X) x Pow(X), say p = (A, B), where A, B C X. Then we assign
this pair of sets the set {f(z,y) :x € A,y € B} ={f(2') : 2’ € A x B} The
set on the right hand side is the same as the image of A x B under f. In the
definition we don’t use A and B symbols, but write £st(p) and snd(p), resp.
Recall that in Isabelle/ZF fst(p) and snd(p) denote the first and second
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components of an ordered pair p. See the lemma 1lift_subsets_explained
for a more intuitive notation.

definition
Lift2Subsets (infix {lifted to subsets of} 65) where
f {lifted to subsets of} X =
{{p, £(fst(p)xsnd(p))). p € Pow(X) xPow(X)}

The lift to subsets defines a binary operation on the subsets.

lemma 1ift_subsets_binop: assumes Al: f : X X X — Y
shows (f {lifted to subsets of} X) : Pow(X) x Pow(X) — Pow(Y)
proof -
let F = {{p, £(£fst(p)xsnd(p))). p € Pow(X) xPow(X)}
from A1l have Vp € Pow(X) X Pow(X). f(fst(p)xsnd(p)) € Pow(Y)
using funcl_1_L6 by simp
then have F : Pow(X) X Pow(X) — Pow(Y)
by (rule ZF_fun_from_total)
then show thesis unfolding Lift2Subsets_def by simp
qed

The definition of the lift to subsets rewritten in a more intuitive notation.
We would like to write the last assertion as F(A,B) = {f(x,y). x € A, y €
B}, but Isabelle/ZF does not allow such syntax.

lemma 1lift_subsets_explained: assumes Al: f : XxX — Y
and A2: A C X B C X and A3: F = f {lifted to subsets of} X
shows
F(A,B) C Y and

F(A,B) = f(AXB)

F(A,B) = {f(p). p € AxB}

F(A,B) = {f(x,y) . (x,y) € AxB}
proof -

let p = (4,B)

from assms have
I: F : Pow(X) X Pow(X) — Pow(Y) and p € Pow(X) X Pow(X)
using lift_subsets_binop by auto

moreover from A3 have F = {(p, f(fst(p)xsnd(p))). p € Pow(X) xPow(X)}
unfolding Lift2Subsets_def by simp

ultimately show F(A,B) = f(AxB)
using ZF_fun_from_tot_val by auto

also

from A1 A2 have AxB C XxX by auto

with A1 have f(AxB) = {f(p). p € AXB}
by (rule func_imagedef)

finally show F(A,B) = {f(p) . p € AxB} by simp

also

have VxeA. Vy € B. f(x,y) = £(x,y) by simp

then have {f(p). p € AxB} = {f(x,y). (x,y) € AxB}
by (rule ZF1_1_L4A)

finally show F(A,B) = {f(x,y) . (x,y) € AxB}
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by simp
from A2 I show F(A,B) C Y using apply_funtype by blast
qed

A sufficient condition for a point to belong to a result of lifting to subsets.

lemma 1lift_subset_suff: assumes Al: f : X X X — Y and
A2: A C X B C X and A3: x€A yeB and
Ad: F = f {lifted to subsets of} X
shows f(x,y) € F(A,B)

proof -
from A3 have f(x,y) € {f(p) . p € AxB} by auto
moreover from Al A2 A4 have {f(p). p € AxB} = F(A,B)

using lift_subsets_explained by simp

ultimately show f(x,y) € F(A,B) by simp

qed

A kind of converse of 1ift_subset_apply, providing a necessary condition
for a point to be in the result of lifting to subsets.

lemma 1ift_subset_nec: assumes Al: f : X X X — Y and
A2: AC X B C X and
A3: F = f {lifted to subsets of} X and
A4: z € F(A,B)
shows Jx y. x€A A y€B A z = f(x,y)
proof -
from A1 A2 A3 have F(A,B) = {f(p). p € AxB}
using lift_subsets_explained by simp
with A4 show thesis by auto
qed

Lifting to subsets inherits commutativity.

lemma 1ift_subset_comm: assumes Al: f : X X X — Y and
A2: f {is commutative on} X and
A3: F = f {lifted to subsets of} X
shows F {is commutative on} Pow(X)
proof -
have VA € Pow(X). VB € Pow(X). F(A,B) = F(B,A)
proof -
{ fix A assume A € Pow(X)
fix B assume B € Pow(X)
have F(A,B) = F(B,A)
proof -
have Yz € F(A,B). z € F(B,A)
proof
fix z assume I: z € F(A,B)
with A1 A3 (A € Pow(X)) B € Pow(X)) have
Jx y. x€EA A yEB A z = £(x,y)
using lift_subset_nec by simp
then obtain x y where x€A and y€B and z = £(x,y)
by auto
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with A2 (A € Pow(X)) B € Pow(X)) have z = £(y,x)
using IsCommutative_def by auto
with A1 A3 I (A € Pow(X)) B € Pow(X)) (x€h) (y€B
show z € F(B,A) using lift_subset_suff by simp
qed
moreover have Vz € F(B,A). z € F(A,B)
proof
fix z assume I: z € F(B,A)
with A1 A3 (A € Pow(X)) B € Pow(X)) have
Jx y. X€B A yeEA A z = £(x,y)
using lift_subset_nec by simp
then obtain x y where x€B and y€A and z = f(x,y)
by auto
with A2 (A € Pow(X)) B € Pow(X)» have z = f(y,x)
using IsCommutative_def by auto
with A1 A3 I <A € Pow(X)) B € Pow(X)) x€B (yeh
show z € F(A,B) using lift_subset_suff by simp
qed
ultimately show F(A,B) = F(B,A) by auto
qed
} thus thesis by auto
qed
then show F {is commutative on} Pow(X)
unfolding IsCommutative_def by auto
qed

Lifting to subsets inherits associativity. To show that F'((A, B)C) = F(A, F(B,C))
we prove two inclusions and the proof of the second inclusion is very similar
to the proof of the first one.

lemma 1lift_subset_assoc: assumes Al: f : X X X — X and
A2: f {is associative on} X and
A3: F = f {lifted to subsets of} X
shows F {is associative on} Pow(X)
proof -
from A1 A3 have F : Pow(X) xPow(X) — Pow(X)
using lift_subsets_binop by simp
moreover have VA € Pow(X).VB € Pow(X). VC € Pow(X).
F(F(A,B),C) = F(A,F(B,C))
proof -
{fix ABC
assume A € Pow(X) B € Pow(X) C € Pow(X)
have F(F(A,B),C) C F(A,F(B,C))
proof
fix z assume I: z € F(F(4,B),C)
from A1 A3 (A € Pow(X)) (B € Pow(X)
have F(A,B) € Pow(X)
using lift_subsets_binop apply_funtype by blast
with A1 A3 (C € Pow(X)) I have
Jdx y. x € FA,B) Ay € C A z = £(x,y)
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using 1lift_subset_nec by simp
then obtain x y where
II: x € F(A,B) and y € C and III: z = f(x,y)
by auto
from A1 A3 (A € Pow(X)) @B € Pow(X)» II have
dst.s€AAtEBAZX-=I1f(s,t)
using lift_subset_nec by auto
then obtain s t where s€A and t€B and x = £(s,t)
by auto
with A2 (A € Pow(X)) B € Pow(X)) «C € Pow(X)) III
(seh) teB (ye© have IV: z = f(s, £(t,y))
using IsAssociative_def by blast
from A1 A3 B € Pow(X)) <« € Pow(X)» <(t€B <yel
have f(t,y) € F(B,C) using lift_subset_suff by simp
moreover from A1 A3 B € Pow(X)) (€ € Pow(X)
have F(B,C) C X using lift_subsets_binop apply_funtype
by blast
moreover note Al A3 (A € Pow(X)) (s€h) IV
ultimately show z € F(A,F(B,C))
using 1lift_subset_suff by simp
qged
moreover have F(A,F(B,C)) C F(F(A,B),C)
proof
fix z assume I: z € F(A,F(B,C))
from A1 A3 B € Pow(X)) <« € Pow(X)
have F(B,C) € Pow(X)
using lift_subsets_binop apply_funtype by blast
with A1 A3 (A € Pow(X)) I have
dxy. x € AANy€FB,C Az-==£x,y)
using 1lift_subset_nec by simp
then obtain x y where
x € A and II: y € F(B,C) and III: z = f(x,y)
by auto
from A1 A3 B € Pow(X)) <(C € Pow(X)» II have
dst.se€BAteCAy-=I1i(s,t)
using lift_subset_nec by auto
then obtain s t where s€B and teC and y = f(s,t)
by auto
with IIT have z = f(x,f(s,t)) by simp
moreover from A2 (A € Pow(X)) B € Pow(X)» (€ € Pow(X)
(xEAD (s€B t€C) have f(f(x,s),t) = £(x,f(s,t))
using IsAssociative_def by blast
ultimately have IV: z = f(f(x,s),t) by simp
from A1 A3 (A € Pow(X)) B € Pow(X)) (x€h <(s€B
have f(x,s) € F(A,B) using lift_subset_suff by simp
moreover from A1 A3 (A € Pow(X)) (B € Pow(X)
have F(A,B) C X using lift_subsets_binop apply_funtype
by blast
moreover note Al A3 «C € Pow(X)) t€C IV
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ultimately show z € F(F(A,B),C)
using lift_subset_suff by simp
qed
ultimately have F(F(A,B),C) = F(A,F(B,C)) by auto
} thus thesis by auto
qed
ultimately show thesis unfolding IsAssociative_def
by auto
qed

10.7 Distributive operations

In this section we deal with pairs of operations such that one is distributive
with respect to the other, that is a-(b+c¢) = a-b+a-c and (b+c¢)-a = b-a+c-a.
We show that this property is preserved under restriction to a set closed
with respect to both operations. In EquivClassi theory we show that this
property is preserved by projections to the quotient space if both operations
are congruent with respect to the equivalence relation.

We define distributivity as a statement about three sets. The first set is the
set on which the operations act. The second set is the additive operation (a
ZF function) and the third is the multiplicative operation.

definition
IsDistributive(X,A,M) = (VaeX.VbeX.VceX.
M(a,A(b,c)) = A(M(a,b),M(a,c)) A
M(A(b,c),a) = A(M(b,a),M(c,a) ))

The essential condition to show that distributivity is preserved by restric-
tions to sets that are closed with respect to both operations.

lemma func_ZF_7_L1:
assumes Al: IsDistributive(X,A,M)
and A2: YCX
and A3: Y {is closed under} A Y {is closed under} M
and A4: A, = restrict(A,YXY) M, = restrict(M,YxY)
and A5: a€Y beY cey

shows M.( a,A.(b,c) ) = A.( M.(a,b),M.(a,c) ) A
MT<fAT(b,c>,a ) = A M.(b,a), M.(c,a) )
proof -

from A3 A5 have A(b,c) € Y M(a,b) € Y M(a,c) € Y
M(b,a) € Y M(c,a) € Y using IsOpClosed_def by auto
with A5 A4 have
A.(b,c) € Y M (a,b) € Y M(a,c) €Y
M-(b,a) € Y M.(c,a) € Y
using restrict by auto
with A1 A2 A4 A5 show thesis
using restrict IsDistributive_def by auto
qed
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Distributivity is preserved by restrictions to sets that are closed with respect
to both operations.

lemma func_ZF_7_L2:
assumes IsDistributive(X,A,M)
and YCX
and Y {is closed under} A
Y {is closed under} M
and A, = restrict(A,YXY) M, = restrict(M,YxY)
shows IsDistributive(Y,A, ,M,)
proof -
from assms have Va€eY.VbeY.VceY.
M-{ a,A.(b,c) ) = A.( M.(a,b),M.(a,c) ) A
M-( A.(b,c),a ) = A.( M.(b,a),M.(c,a))
using func_ZF_7_L1 by simp
then show thesis using IsDistributive_def by simp
qed

end

11 More on functions

theory func_ZF_1 imports ZF.Order Order_ZF_la func_ZF
begin

In this theory we consider some properties of functions related to order
relations

11.1 Functions and order
This section deals with functions between ordered sets.

If every value of a function on a set is bounded below by a constant, then
the image of the set is bounded below.

lemma func_ZF_8_L1:
assumes f:X—Y and ACX and VxeA. (L,f(x)) € r
shows IsBoundedBelow(f(A),r)
proof -
from assms have Vy € £(A). (L,y) € r
using func_imagedef by simp
then show IsBoundedBelow(f(A),r)
by (rule Order_ZF_3_L9)
qed

If every value of a function on a set is bounded above by a constant, then
the image of the set is bounded above.
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lemma func_ZF_8_L2:
assumes f:X—Y and ACX and Vx€A. (f(x),U) € r
shows IsBoundedAbove(f(A),r)
proof -
from assms have Vy € £(A). (y,U) € r
using func_imagedef by simp
then show IsBoundedAbove(f(A),r)
by (rule Order_ZF_3_L10)
qed

Identity is an order isomorphism.

lemma id_ord_iso: shows id(X) € ord_iso(X,r,X,r)
using id_bij id_def ord_iso_def by simp

Identity is the only order automorphism of a singleton.

lemma id_ord_auto_singleton:
shows ord_iso({x},r,{x},r) = {id({zx}}
using id_ord_iso ord_iso_def single_bij_id
by auto

The image of a maximum by an order isomorphism is a maximum. Note
that from the fact the r is antisymmetric and f is an order isomorphism
between (A, r) and (B, R) we can not conclude that R is antisymmetric (we
can only show that RN (B x B) is).

lemma max_image_ord_iso:
assumes Al: antisym(r) and A2: antisym(R) and
A3: f € ord_iso(A,r,B,R) and
A4: HasAmaximum(r,A)
shows HasAmaximum(R,B) and Maximum(R,B) = f(Maximum(r,A))
proof -
let M = Maximum(r,A)
from A1 A4 have M € A using Order_ZF_4_L3 by simp
from A3 have f:A—B using ord_iso_def bij_is_fun
by simp
with M € A have I: £(M) € B
using apply_funtype by simp
{ fix y assume y € B
let x = converse(f) (y)
from A3 have converse(f) € ord_iso(B,R,A,r)
using ord_iso_sym by simp
then have converse(f): B — A
using ord_iso_def bij_is_fun by simp
with (v € B have x € A
by simp
with A1 A3 A4 x € A M € A have (f(x), £(M)) € R
using Order_ZF_4_L3 ord_iso_apply by simp
with A3 (v € B) have (y, £(M)) € R
using right_inverse_bij ord_iso_def by auto
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} then have II: Vy € B. (y, £(M)) € R by simp
with A2 I show Maximum(R,B) = f(M)
by (rule Order_ZF_4_L14)
from I II show HasAmaximum(R,B)
using HasAmaximum_def by auto
qed

Maximum is a fixpoint of order automorphism.

lemma max_auto_fixpoint:
assumes antisym(r) and f € ord_iso(A,r,A,r)
and HasAmaximum(r,A)
shows Maximum(r,A) = f(Maximum(r,A))
using assms max_image_ord_iso by blast

If two sets are order isomorphic and we remove = and f(z), respectively,
from the sets, then they are still order isomorphic.

lemma ord_iso_rem_point:
assumes Al: f € ord_iso(A,r,B,R) and A2: a € A
shows restrict(f,A-{a}) € ord_iso(A-{a},r,B-{f(a)},R)
proof -
let £y = restrict(f,A-{a})
have A-{a} C A by auto
with A1 have f; € ord_iso(A-{a},r,f(A-{a}),R)
using ord_iso_restrict_image by simp
moreover
from A1 have f € inj(A,B)
using ord_iso_def bij_def by simp
with A2 have f(A-{a}) = £(A) - f{a}
using inj_image_dif by simp
moreover from Al have f(A) = B
using ord_iso_def bij_def surj_range_image_domain
by auto
moreover
from A1 have f: A—B
using ord_iso_def bij_is_fun by simp
with A2 have f{a} = {f(a)}
using singleton_image by simp
ultimately show thesis by simp
qed

If two sets are order isomorphic and we remove maxima from the sets, then
they are still order isomorphic.

corollary ord_iso_rem_max:
assumes Al: antisym(r) and f € ord_iso(A,r,B,R) and
A4: HasAmaximum(r,A) and A5: M = Maximum(r,A)
shows restrict(f,A-{M}) € ord_iso(A-{M}, r, B-{f(M)},R)
using assms Order_ZF_4_L3 ord_iso_rem_point by simp

Lemma about extending order isomorphisms by adding one point to the
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domain.

lemma ord_iso_extend: assumes Al: f € ord_iso(A,r,B,R) and
A2: My ¢ A Mg ¢ B and
A3: VaeA. (a, My) € r VDbeB. (b, Mp) € R and
A4: antisym(r) antisym(R) and
A5: (My,M4) € T +— (Mp,Mg) € R
shows f U {( M4,Mp)} € ord_iso(AU{M4} ,r,BU{Mgp} ,R)
proof -
let g = £ U {( Ma,Mp)}
from A1 A2 have
g : AU{M4} — BU{Mp} and
I: VxeA. g(x) = £(x) and II: g(M4) = Mp
using ord_iso_def bij_def inj_def funci_1_L11D
by auto
from A1 A2 have g € bij(AU{M4},BU{M})
using ord_iso_def bij_extend_point by simp
moreover have Vx € AU{Ma}. V y € AU{M4}.
(x,y) € r «— (gx), gy)) € R
proof -
{fix xy
assume x € AU{My} and y € AU{M4}
then have x€A Ay € AV x€A Ny = My V
x=MaANy€AVX=Mga ANy=My
by auto
moreover
{ assume x€A Ay € A
with A1 I have (x,y) € r +— (g(x), g(y)) € R
using ord_iso_def by simp }
moreover
{ assume x€A Ay = My
with A1 A3 I II have (x,y) € r +— (g(x), g(y)) € R
using ord_iso_def bij_def inj_def apply_funtype
by auto }
moreover
{ assume x = My Ay € A
with A2 A3 A4 have (x,y) ¢ r
using antisym_def by auto
moreover
{ assume 46: (g(x), g(y)) € R
from A1 I IT x = My A y € A have
III: g(y) € B g(x) = Mp
using ord_iso_def bij_def inj_def apply_funtype
by auto
with A3 have (g(y), g(x)) € R by simp
with A4 A6 have g(y) = g(x) using antisym_def
by auto
with A2 III have False by simp
} hence (g(x), g(y)) ¢ R by auto
ultimately have (x,y) € r +— (g(x), g(y)) € R
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by simp }
moreover
{ assume x = My Ay = My
with A5 II have (x,y) € r +— (g(x), g(y)) € R
by simp }
ultimately have (x,y) € r +— (g(x), g(y)) € R
by auto
} thus thesis by auto
qed
ultimately show thesis using ord_iso_def
by simp
qed

A kind of converse to ord_iso_rem_max: if two linearly ordered sets sets are
order isomorphic after removing the maxima, then they are order isomor-
phic.

lemma rem_max_ord_iso:
assumes Al: IsLinOrder(X,r) IsLinOrder(Y,R) and
A2: HasAmaximum(r,X) HasAmaximum(R,Y)
ord_iso(X - {Maximum(r,X)},r,Y - {Maximum(R,Y)},R) # O
shows ord_iso(X,r,Y,R) # O
proof -
let My = Maximum(r,X)
let A =X - {My2}
let Mg = Maximum(R,Y)
let B=Y - {Mp}
from A2 obtain f where f € ord_iso(A,r,B,R)
by auto
moreover have My ¢ A and Mp ¢ B
by auto
moreover from A1 A2 have
Vach. (a,My) € r and VbeB. (b,Mg) € R
using IsLinOrder_def Order_ZF_4_L3 by auto
moreover from A1l have antisym(r) and antisym(R)
using IsLinOrder_def by auto
moreover from A1 A2 have (M4,M4) € T +— (Mp,Mg) € R
using IsLinOrder_def Order_ZF_4_L3 IsLinOrder_def
total_is_refl refl_def by auto
ultimately have
f U {( Ma,Mp)} € ord_iso(AU{Mas} ,r,BU{Mp} ,R)
by (rule ord_iso_extend)
moreover from A1 A2 have
AU{M4} = X and BU{Mg} = Y
using IsLinOrder_def Order_ZF_4_L3 by auto
ultimately show ord_iso(X,r,Y,R) # 0
using ord_iso_extend by auto
qed
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11.2 Projections in cartesian products
In this section we consider maps arising naturally in cartesian products.

There is a natural bijection etween X =Y x {y} (a "slice”) and Y. We will
call this the SliceProjection(Yx{y}). This is really the ZF equivalent of
the meta-function fst(x).

definition
SliceProjection(X) = {(p,fst(p)). p € X }

A slice projection is a bijection between X x {y} and X.

lemma slice_proj_bij: shows
SliceProjection(Xx{y}): Xx{y} — X
domain(SliceProjection(Xx{y})) = Xx{y}
VpeXx{y}. SliceProjection(Xx{y}) (p) = fst(p)
SliceProjection(Xx{y}) € bijXx{y},X)
proof -
let P = SliceProjection(Xx{y})
have Vp € Xx{y}. fst(p) € X by simp
moreover from this have
{(p,fst(p)). p € Xx{y} } : Xx{y} — X
by (rule ZF_fun_from_total)
ultimately show
I: P: Xx{y} — X and II: VpeXx{y}. P(p) = fst(p)
using ZF_fun_from_tot_val SliceProjection_def by auto
hence
Va € Xx{y}. V b € Xx{y}. P(a) = P(b) — a=b
by auto
with I have P € inj(Xx{y},X) using inj_def
by simp
moreover from II have VxeX. JpeXx{y}. P(p) = x
by simp
with I have P € surj(Xx{y},X) using surj_def
by simp
ultimately show P € bij(Xx{y},X)
using bij_def by simp
from I show domain(SliceProjection(Xx{y})) = Xx{y}
using funci_1_L1 by simp
qed

11.3 Induced relations and order isomorphisms

When we have two sets X,Y, function f : X — Y and a relation R on
Y we can define a relation r on X by saying that x r y if and only if
f(x) R f(y). This is especially interesting when f is a bijection as all
reasonable properties of R are inherited by r. This section treats mostly
the case when R is an order relation and f is a bijection. The standard
Isabelle’s Order theory defines the notion of a space of order isomorphisms
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between two sets relative to a relation. We expand that material proving
that order isomrphisms preserve interesting properties of the relation.

We call the relation created by a relation on Y and a mapping f: X = Y
the InducedRelation(f,R).

definition
InducedRelation(f,R) =
{p € domain(f)xdomain(f). (f(fst(p)),f(snd(p))) € R}

A reformulation of the definition of the relation induced by a function.

lemma def_of_ind_relA:
assumes (x,y) € InducedRelation(f,R)
shows (f(x),f(y)) € R
using assms InducedRelation_def by simp

A reformulation of the definition of the relation induced by a function, kind
of converse of def_of_ind_relA.

lemma def_of_ind_relB: assumes f:A—B and
x€A yeA and (f(x),f(y)) € R
shows (x,y) € InducedRelation(f,R)
using assms funcl_1_L1 InducedRelation_def by simp

A property of order isomorphisms that is missing from standard Isabelle’s
Order.thy.

lemma ord_iso_apply_conv:
assumes f € ord_iso(A,r,B,R) and
(f(x),£(y)) € R and x€A yeA
shows (x,y) € r
using assms ord_iso_def by simp

The next lemma tells us where the induced relation is defined

lemma ind_rel_domain:
assumes R C BxB and f:A—B
shows InducedRelation(f,R) C AXxA
using assms funcil_1_L1 InducedRelation_def
by auto

A bijection is an order homomorphisms between a relation and the induced
one.

lemma bij_is_ord_iso: assumes Al: f € bij(A,B)
shows f € ord_iso(A,InducedRelation(f,R),B,R)
proof -
let r = InducedRelation(f,R)
{ fix x y assume A2: x€A y€A
have (x,y) € r «— (f(x),f(y)) € R
proof
assume (x,y) € r then show (f(x),f(y)) € R
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using def_of_ind_relA by simp

next assume (f(x),f(y)) € R
with A1 A2 show (x,y) € r

using bij_is_fun def_of_ind_relB by blast

ged }
with A1 show f € ord_iso(A,InducedRelation(f,R),B,R)

using ord_isoI by simp

qed

An order isomoprhism preserves antisymmetry.

lemma ord_iso_pres_antsym: assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxA and A3: antisym(R)
shows antisym(r)
proof -
{ fix xy
assume A4: (x,y) € r (y,x) €r
from A1 have f € inj(A,B)
using ord_iso_is_bij bij_is_inj by simp
moreover
from A1 A2 A4 have
(f(x), £(y)) € R and (£f(y), £(x)) € R
using ord_iso_apply by auto
with A3 have f(x) = f(y) by (rule Foll_L4)
moreover from A2 A4 have x€A ye€A by auto
ultimately have x=y by (rule inj_apply_equality)
} then have Vx y. (x,y) € r A (y,x) € r — x=y by auto
then show antisym(r) using imp_conj antisym_def
by simp
qed

Order isomoprhisms preserve transitivity.

lemma ord_iso_pres_trans: assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxA and A3: trans(R)
shows trans(r)
proof -
{fixxyz
assume Ad: (x, y) €r (y, z) €r
note A1l
moreover
from A1 A2 A4 have
(f(x), £(y)) € R A (£f(y), £(2)) € R
using ord_iso_apply by auto
with A3 have (f(x),f(z)) € R by (rule Foll_L3)
moreover from A2 A4 have x€A z€A by auto
ultimately have (x, z) € r using ord_iso_apply_conv
by simp
} then have V xyz. (x, y) €er A(y, z) €r — (x, 2) €
by blast
then show trans(r) by (rule Foll_L2)
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qed

Order isomorphisms preserve totality.

lemma ord_iso_pres_tot: assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxXA and A3: R {is total on} B
shows r {is total on} A
proof -
{fixxy
assume x€A y€eA (x,y) ¢ r
with Al have (f(x),f(y)) ¢ R using ord_iso_apply_conv
by auto
moreover
from A1 have f:A—B using ord_iso_is_bij bij_is_fun
by simp
with A3 xe€bd (y€A have
(f(x),f(y)) € RV (f(y),f(x)) € R
using apply_funtype IsTotal_def by simp
ultimately have (f(y),f(x)) € R by simp
with A1 x€d «(yed have (y,x) € r
using ord_iso_apply_conv by simp
} then have VxeA. VyeA. (x,y) € r V (y,x) € r
by blast
then show r {is total on} A using IsTotal_def
by simp
qed

Order isomorphisms preserve linearity.

lemma ord_iso_pres_lin: assumes f € ord_iso(A,r,B,R) and
r C AxA and IsLinOrder(B,R)
shows IsLinOrder(A,r)
using assms ord_iso_pres_antsym ord_iso_pres_trans ord_iso_pres_tot
IsLinOrder_def by simp

If a relation is a linear order, then the relation induced on another set by a
bijection is also a linear order.

lemma ind_rel_pres_lin:
assumes Al: f € bij(A,B) and A2: IsLinOrder(B,R)
shows IsLinOrder (A,InducedRelation(f,R))
proof -
let r = InducedRelation(f,R)
from A1 have f € ord_iso(A,r,B,R) and r C AxA
using bij_is_ord_iso domain_of_bij InducedRelation_def
by auto
with A2 show IsLinOrder(A,r) using ord_iso_pres_lin
by simp
qed

The image by an order isomorphism of a bounded above and nonempty set
is bounded above.
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lemma ord_iso_pres_bound_above:
assumes Al: f € ord_iso(A,r,B,R) and A2: r C AxA and
A3: IsBoundedAbove(C,r) C#0
shows IsBoundedAbove(f(C),R) £f(C) # 0
proof -
from A3 obtain u where I: VxeC. (x,u) € r
using IsBoundedAbove_def by auto
from Al have f:A—B using ord_iso_is_bij bij_is_fun
by simp
from A2 A3 have CCA using Order_ZF_3_L1A by blast
from A3 obtain x where x€C by auto
with A2 I have u€A by auto
{ fix y assume y € £(C)
with (f:A—B (CCA obtain x where x€C and y = f(x)
using func_imagedef by auto
with A1 I «CCA) @€l have (y,f(u)) € R
using ord_iso_apply by auto
} then have Vy € £(C). (y,f(w)) € R by simp
then show IsBoundedAbove(f(C),R) by (rule Order_ZF_3_L10)
from A3 (f:A—B) (CCA show f(C) # O using funcl_1_L15A
by simp
qed

Order isomorphisms preserve the property of having a minimum.

lemma ord_iso_pres_has_min:
assumes Al: f € ord_iso(A,r,B,R) and A2: r C AxA and
A3: CCA and A4: HasAminimum(R,f(C))
shows HasAminimum(r,C)
proof -
from A4 obtain m where
I:me€ £(C) and II: Vy € £(C). (m,y) € R
using HasAminimum_def by auto
let k¥ = converse(f) (m)
from A1 have f:A—B using ord_iso_is_bij bij_is_fun
by simp
from A1 have f € inj(A,B) using ord_iso_is_bij bij_is_inj
by simp
with A3 I have k € C and III: f(k) = m
using inj_inv_back_in_set by auto
moreover
{ fix x assume A5: x€C
with A3 II «(f:A—B) &« € C III have
ke A xeA (f),f(x)) € R
using func_imagedef by auto
with A1 have (k,x) € r using ord_iso_apply_conv
by simp
} then have VxeC. (k,x) € r by simp
ultimately show HasAminimum(r,C) using HasAminimum_def by auto
qed
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Order isomorhisms preserve the images of relations. In other words taking
the image of a point by a relation commutes with the function.
lemma ord_iso_pres_rel_image:

assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxA R C BxB and

A3: acA
shows f(r{a}) = R{f(a)}
proof
from A1 have f:A—B using ord_iso_is_bij bij_is_fun
by simp

moreover from A2 A3 have I: r{a} C A by auto
ultimately have I: f(r{a}) = {f(x). x € r{a} }
using func_imagedef by simp
{ fix y assume A4: y € f(r{a})
with I obtain x where
x € r{a} and II: y = £(x)
by auto
with A1 A2 have (f(a),f(x)) € R using ord_iso_apply
by auto
with II have y € R{f(a)} by auto
} then show f(r{a}) C R{f(a)} by auto
{ fix y assume A5: y € R{f(a)}
let x = converse(f) (y)
from A2 A5 have
(f(a),y) € R f(a) € B and IV: yeB
by auto
with A1 have III: (converse(f)(f(a)),x) € r
using ord_iso_converse by simp
moreover from A1l A3 have converse(f)(f(a)) = a
using ord_iso_is_bij left_inverse_bij by blast
ultimately have f(x) € {f(x). x € r{a} }
by auto
moreover from Al IV have f(x) =y
using ord_iso_is_bij right_inverse_bij by blast
moreover from A1 I have f(r{a}) = {f(x). x € r{a} }
using ord_iso_is_bij bij_is_fun func_imagedef by blast
ultimately have y € f(r{a}) by simp
} then show R{f(a)} C f(r{a}) by auto
qed

Order isomorphisms preserve collections of upper bounds.

lemma ord_iso_pres_up_bounds:

assumes Al: f € ord_iso(A,r,B,R) and

A2: r C AXA R C BxB and

A3: CCA

shows {f(r{a}). aeC} = {R{b}. b € £(C)}
proof

from Al have f:A—B

using ord_iso_is_bij bij_is_fun by simp
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{ fix Y assume Y € {f(r{a}). acC}
then obtain a where acC and I: Y = f(r{a})
by auto
from A3 @a€C have a€A by auto
with A1 A2 have f(r{a}) = R{f(a)}
using ord_iso_pres_rel_image by simp
moreover from A3 (f:A—B) @aeC have f(a) € £(C)
using func_imagedef by auto
ultimately have f(r{a}) € { R{b}. b € £(C) }
by auto
with I have Y € { R{b}. b € £(C) } by simp
} then show {f(r{a}). acC} C {R{b}. b € £(C)}
by blast
{ fix Y assume Y € {R{b}. b € £(C)}
then obtain b where b € £(C) and II: Y = R{b}
by auto
with A3 (f:A—B) obtain a where acC and b = f(a)
using func_imagedef by auto
with A3 II have acA and Y = R{f(a)} by auto
with A1 A2 have Y = f(r{a})
using ord_iso_pres_rel_image by simp
with @€l have Y € {f(r{a}). acC} by auto
} then show {R{b}. b € £(C)} C {f(r{a}). acC}
by auto
qed

The image of the set of upper bounds is the set of upper bounds of the
image.

lemma ord_iso_pres_min_up_bounds:
assumes Al: f € ord_iso(A,r,B,R) and A2: r C AxA R C BxB and
A3: CCA and A4: C#O
shows f(((acC. r{a}) = ([\bef(C). R{b})
proof -
from A1 have f € inj(A,B)
using ord_iso_is_bij bij_is_inj by simp
moreover note A4
moreover from A2 A3 have VaeC. r{a} C A by auto
ultimately have
f(NaeC. r{a}) = ( NaecC. f(r{a}) )
using inj_image_of_Inter by simp
also from A1 A2 A3 have
( NaeC. f(r{a}) ) = ( Nbef(C). R{b} )
using ord_iso_pres_up_bounds by simp
finally show f(acC. r{a}) = (\bef(C). R{b})
by simp
qed

Order isomorphisms preserve completeness.

lemma ord_iso_pres_compl:
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assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AXA R C BxB and A3: R {is complete}
shows r {is complete}
proof -
{ fix C
assume A4: IsBoundedAbove(C,r) C#0
with A1 A2 A3 have
HasAminimum(R,(b € £(C). R{b})
using ord_iso_pres_bound_above IsComplete_def
by simp
moreover
from A2 (IsBoundedAbove(C,r)) have I: C C A using Order_ZF_3_L1A
by blast
with A1 A2 (C#£0) have f(()aeC. r{a}) = ((bef(C). R{b})
using ord_iso_pres_min_up_bounds by simp
ultimately have HasAminimum(R,f(()acC. r{a}))
by simp
moreover
from A2 have VaeC. r{a} C A
by auto
with «€#0) have ( [\aeC. r{a} ) C A using ZF1_1_L7
by simp
moreover note Al A2
ultimately have HasAminimum(r, ()acC. r{a} )
using ord_iso_pres_has_min by simp
} then show r {is complete} using IsComplete_def
by simp
qed

If the original relation is complete, then the induced one is complete.

lemma ind_rel_pres_compl: assumes Al: f € bij(A,B)
and A2: R C BxB and A3: R {is complete}
shows InducedRelation(f,R) {is complete}
proof -
let r = InducedRelation(f,R)
from A1 have f € ord_iso(A,r,B,R)
using bij_is_ord_iso by simp
moreover from Al A2 have r C AxA
using bij_is_fun ind_rel_domain by simp
moreover note A2 A3
ultimately show r {is complete}
using ord_iso_pres_compl by simp
qed

end
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12 Finite sets - introduction

theory Finite_ZF imports ZF1 Nat_ZF_IML ZF.Cardinal
begin

Standard Isabelle Finite.thy contains a very useful notion of finite powerset:
the set of finite subsets of a given set. The definition, however, is specific
to Isabelle and based on the notion of ”datatype”, obviously not some-
thing that belongs to ZF set theory. This theory file devolops the notion
of finite powerset similarly as in Finite.thy, but based on standard library’s
Cardinal.thy. This theory file is intended to replace IsarMathLib’s Finitel
and Finite_ZF_1 theories that are currently derived from the ”datatype”
approach.

12.1 Definition and basic properties of finite powerset

The goal of this section is to prove an induction theorem about finite pow-
ersets: if the empty set has some property and this property is preserved
by adding a single element of a set, then this property is true for all finite
subsets of this set.

We defined the finite powerset FinPow(X) as those elements of the powerset
that are finite.

definition
FinPow(X) = {A € Pow(X). Finite(A)}

The cardinality of an element of finite powerset is a natural number.

lemma card_fin_is_nat: assumes A € FinPow(X)
shows |A| € nat and A =~ |A]
using assms FinPow_def Finite_def cardinal_cong nat_into_Card
Card_cardinal_eq by auto

A reformulation of card_fin_is_nat: for a finit set A there is a bijection

between |A| and A.

lemma fin_bij_card: assumes Al: A € FinPow(X)
shows 3b. b € bij(lAl, A)

proof -
from A1 have |A| ~ A using card_fin_is_nat eqpoll_sym
by blast
then show thesis using eqpoll_def by auto
qed

If a set has the same number of elements as n € N; then its cardinality is n.
Recall that in set theory a natural number n is a set that has n elements.

lemma card_card: assumes A ~ n and n € nat
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shows |A| = n
using assms cardinal_cong nat_into_Card Card_cardinal_eq
by auto

If we add a point to a finite set, the cardinality increases by one. To under-
stand the second assertion |[AU{a}| = |A|U{]A|} recall that the cardinality
|A| of A is anatural number and for natural numbers we have n+1 = nU{n}.

lemma card_fin_add_one: assumes Al: A € FinPow(X) and A2: a € X-A
shows

[A U {a}| = succ( Al )
[A U {a}| = [Al U {IAl}
proof -
from A1 A2 have cons(a,A) =~ cons( |Al, |Al )
using card_fin_is_nat mem_not_refl cons_eqpoll_cong
by auto

moreover have cons(a,A) = A U {a} by (rule consdef)
moreover have cons( [Al, [A]l ) = |Al U {|Al}

by (rule consdef)
ultimately have AU{a} =~ succ( |A|] ) using succ_explained

by simp
with Al show
[A U {a}] = succ( |A] ) and |A U {a}| = |Al U {|Al}
using card_fin_is_nat card_card by auto
qed

We can decompose the finite powerset into collection of sets of the same
natural cardinalities.

lemma finpow_decomp:
shows FinPow(X) = (Un € nat. {A € Pow(X). A ~ n})
using Finite_def FinPow_def by auto

Finite powerset is the union of sets of cardinality bounded by natural num-
bers.

lemma finpow_union_card_nat:
shows FinPow(X) = (|Jn € nat. {A € Pow(X). A < n})
proof -
have FinPow(X) C (|n € nat. {A € Pow(X). A < n})
using finpow_decomp FinPow_def eqpoll_imp_lepoll
by auto

moreover have
(Un € nat. {A € Pow(X). A < n}) C FinPow(X)
using lepoll_nat_imp_Finite FinPow_def by auto
ultimately show thesis by auto

qed

A different form of finpow_union_card_nat (see above) - a subset that has
not more elements than a given natural number is in the finite powerset.

lemma lepoll_nat_in_finpow:
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assumes n € nat A CX A <n
shows A € FinPow(X)
using assms finpow_union_card_nat by auto

Natural numbers are finite subsets of the set of natural numbers.

lemma nat_finpow_nat: assumes n € nat shows n € FinPow(nat)
using assms nat_into_Finite nat_subset_nat FinPow_def
by simp

A finite subset is a finite subset of itself.

lemma fin_finpow_self: assumes A € FinPow(X) shows A € FinPow(A)
using assms FinPow_def by auto

If we remove an element and put it back we get the set back.

lemma rem_add_eq: assumes a€A shows (A-{a}) U {a} = A
using assms by auto

Induction for finite powerset. This is smilar to the standard Isabelle’s

Fin_induct.

theorem FinPow_induct: assumes Al: P(0) and
A2: VA € FinPow(X). P(A) — (VaeX. P(A U {a})) and
A3: B € FinPow(X)
shows P(B)
proof -
{ fix n assume n € nat
moreover from Al have I: VB€Pow(X). B < 0 — P(B)
using lepoll_0_is_O by auto
moreover have V k € nat.
(VB € Pow(X). B <k — P(B))) —
(VB € Pow(X). (B < succ(k) — P(B)))
proof -
{ fix k assume A4: k € nat
assume A5: V B € Pow(X). (B < k — P(B))
fix B assume A6: B € Pow(X) B S succ(k)
have P(B)
proof -
have B = 0 — P(B)
proof -
{ assume B = 0
then have B < 0 using lepoll_O_iff
by simp
with I A6 have P(B) by simp
} thus B = 0 — P(B) by simp
qged
moreover have B#0 — P(B)
proof -
{ assume B # 0
then obtain a where II: acB by auto

S
S
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let A =B - {a}

from A6 II have A C X and A < k
using Diff_sing_lepoll by auto

with A4 A5 have A € FinPow(X) and P(A)
using lepoll_nat_in_finpow finpow_decomp

by auto

with A2 A6 II have P(A U {a})
by auto

moreover from II have A U {a} = B
by auto

ultimately have P(B) by simp
} thus B#0 — P(B) by simp
qed
ultimately show P(B) by auto
qed
} thus thesis by blast
qed
ultimately have VB € Pow(X). (B < n — P(B))
by (rule ind_on_nat)
} then have Vn € nat. VB € Pow(X). (B < n — P(B))
by auto
with A3 show P(B) using finpow_union_card_nat
by auto
qed

A subset of a finite subset is a finite subset.

lemma subset_finpow: assumes A € FinPow(X) and B C A
shows B € FinPow(X)
using assms FinPow_def subset_Finite by auto

If we subtract anything from a finite set, the resulting set is finite.

lemma diff_finpow:
assumes A € FinPow(X) shows A-B € FinPow(X)
using assms subset_finpow by blast

If we remove a point from a finites subset, we get a finite subset.

corollary fin_rem_point_fin: assumes A € FinPow(X)
shows A - {a} € FinPow(X)
using assms diff_finpow by simp

Cardinality of a nonempty finite set is a successsor of some natural number.

lemma card_non_empty_succ:
assumes Al: A € FinPow(X) and A2: A # 0
shows dn € nat. |A| = succ(n)

proof -
from A2 obtain a where a € A by auto
let B =A - {a}
from Al @ € A have
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B € FinPow(X) and a € X - B

using FinPow_def fin_rem_point_fin by auto
then have |B U {a}| = succ( |BI| )

using card_fin_add_one by auto
moreover from @ € A B € FinPow(X)) have

A = B U {a} and |B| € nat

using card_fin_is_nat by auto
ultimately show dn € nat. |A| = succ(n) by auto

qed

Nonempty set has non-zero cardinality. This is probably true without the
assumption that the set is finite, but I couldn’t derive it from standard
Isabelle theorems.

lemma card_non_empty_non_zero:
assumes A € FinPow(X) and A # O
shows |A] # 0O
proof -
from assms obtain n where |A| = succ(n)
using card_non_empty_succ by auto
then show |A| # 0 using succ_not_0
by simp
qged

Another variation on the induction theme: If we can show something holds
for the empty set and if it holds for all finite sets with at most k elements
then it holds for all finite sets with at most k 4+ 1 elements, the it holds for
all finite sets.

theorem FinPow_card_ind: assumes Al: P(0) and
A2: Vkéenat.
(VA € FinPow(X). A < k — P(A)) —
(VA € FinPow(X). A < succ(k) — P(A))
and A3: A € FinPow(X) shows P(A)
proof -
from A3 have |A| € nat and A € FinPow(X) and A < [A]
using card_fin_is_nat eqpoll_imp_lepoll by auto
moreover have Vn € nat. (VA € FinPow(X).
A <n— P))
proof
fix n assume n € nat
moreover from Al have VA € FinPow(X). A < 0 — P(4)
using lepoll_0_is_O by auto
moreover note A2
ultimately show
VA € FinPow(X). A < n — P(Q)
by (rule ind_on_nat)
qed
ultimately show P(A) by simp
qed
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Another type of induction (or, maybe recursion). In the induction step we
try to find a point in the set that if we remove it, the fact that the property
holds for the smaller set implies that the property holds for the whole set.

lemma FinPow_ind_rem_one: assumes Al: P(0) and
A2: V A € FinPow(X). A # 0 — (JacA. P(A-{a}) — P(A))
and A3: B € FinPow(X)
shows P(B)
proof -
note Al
moreover have Vkéenat.
(VB € FinPow(X). B < k — P(B)) —
(VC € FinPow(X). C < succ(k) — P(C))
proof -
{ fix k assume k € nat
assume A4: VB € FinPow(X). B < k — P(B)
have VC € FinPow(X). C < succ(k) — P(C)
proof -
{ fix C assume C € FinPow(X)
assume C < succ(k)
note Al
moreover
{ assume C # 0
with A2 (C € FinPow (X)) obtain a where
acC and P(C-{a}) — P(C)
by auto
with A4 («C € FinPow(X)) € < succ(k)
have P(C) using Diff_sing lepoll fin_rem_point_fin
by simp }
ultimately have P(C) by auto
} thus thesis by simp
qed
} thus thesis by blast
qed
moreover note A3
ultimately show P(B) by (rule FinPow_card_ind)
qed

Yet another induction theorem. This is similar, but slightly more compli-
cated than FinPow_ind_rem_one. The difference is in the treatment of the
empty set to allow to show properties that are not true for empty set.

lemma FinPow_rem_ind: assumes Al: VA € FinPow(X).
A =0V (JdaeA. A = {a} vV P(A-{a}) — P(A))
and A2: A € FinPow(X) and A3: A#0
shows P(A)
proof -
have 0 = 0 vV P(0) by simp
moreover have
VkEnat.
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(VB € FinPow(X). B < k — (B=0 V P(B))) —
(VA € FinPow(X). A < succ(k) — (A=0 V P(A)))
proof -
{ fix k assume k € nat
assume A4: VB € FinPow(X). B < k — (B=0 V P(B))
have VA € FinPow(X). A < succ(k) — (A=0 V P(A))
proof -
{ fix A assume A € FinPow(X)
assume A < succ(k) A#0
from A1 (A € FinPow(X)) (A#0) obtain a
where a€A and A = {a} Vv P(A-{a}) — P(R)
by auto
let B = A-{a}
from A4 (A € FinPow(X)) (A < succ(k)) (a€l)
have B = 0 vV P(B)
using Diff_sing_lepoll fin_rem_point_fin
by simp
with @eh) A = {a} Vv P(A-{a}) — P(A)
have P(A) by auto
} thus thesis by auto
ged
} thus thesis by blast
qed
moreover note A2
ultimately have A=0 V P(A) by (rule FinPow_card_ind)
with A3 show P(A) by simp
qed

If a family of sets is closed with respect to taking intersections of two sets
then it is closed with respect to taking intersections of any nonempty finite
collection.

lemma inter_two_inter_fin:
assumes Al: VVET. VWeT. VN W € T and
A2: N # 0 and A3: N € FinPow(T)
shows (N € T)
proof -
have 0 = 0 V ()10 € T) by simp
moreover have VM € FinPow(T). (M =0V (M € T) —
WWeT MUWIF=0V MU €T
proof -
{ fix M assume M € FinPow(T)
assume A4: M =0V (M e T
{ assume M = 0
hence VW € T. MU{W} =0V NM U {W}H) €T
by auto }
moreover
{ assume M # 0
with A4 have (M € T by simp
{ fix W assume W € T
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from M # 00 have M U {W}) = (NM) N W

by auto
with A1 (\M € T W € D have (MU {W}) €T
by simp
} hence VW € T. MU{W} =0V NM U {W}H) €T
by simp }

ultimately have YW € T. MU{W} =0V (MM U {W}) €T
by blast
} thus thesis by simp
qged
moreover note (N € FinPow(T))
ultimately have N = 0 V (N € T)
by (rule FinPow_induct)
with A2 show (N € T) by simp
qed

If a family of sets contains the empty set and is closed with respect to taking
unions of two sets then it is closed with respect to taking unions of any finite
collection.

lemma union_two_union_fin:
assumes Al: 0 € C and A2: VAeC. VBeC. AUB € C and
A3: N € FinPow(C)
shows [JN € C
proof -
from 0 € ¢ have |JO € C by simp
moreover have VM € FinPow(C). [JM € C — (VAeC. J M U {A}) € ©)
proof -
{ fix M assume M € FinPow(C)
assume (JM € C
fix A assume AeC
have JM U {A}) = (UM U A by auto
with A2 (JM € O AeC have UM U {A}) € C
by simp
} thus thesis by simp
qed
moreover note (N € FinPow(C))
ultimately show |JN € C by (rule FinPow_induct)
qed

Empty set is in finite power set.

lemma empty_in_finpow: shows 0 € FinPow(X)
using FinPow_def by simp

Singleton is in the finite powerset.

lemma singleton_in_finpow: assumes x € X
shows {x} € FinPow(X) using assms FinPow_def by simp

Union of two finite subsets is a finite subset.
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lemma union_finpow: assumes A € FinPow(X) and B € FinPow(X)
shows A U B € FinPow(X)
using assms FinPow_def by auto

Union of finite number of finite sets is finite.

lemma fin_union_finpow: assumes M € FinPow(FinPow (X))
shows [JM € FinPow(X)
using assms empty_in_finpow union_finpow union_two_union_fin
by simp

If a set is finite after removing one element, then it is finite.

lemma rem_point_fin_fin:
assumes Al: x € X and A2: A - {x} € FinPow(X)
shows A € FinPow(X)
proof -
from assms have (A - {x}) U {x} € FinPow(X)
using singleton_in_finpow union_finpow by simp
moreover have A C (A - {x}) U {x} by auto
ultimately show A € FinPow(X)
using FinPow_def subset_Finite by auto
qed

An image of a finite set is finite.

lemma fin_image_fin: assumes VVEB. K(V)eC and N € FinPow(B)
shows {K(V). VeN} € FinPow(C)
proof -
have {K(V). Ve0} € FinPow(C) using FinPow_def
by auto
moreover have VA € FinPow(B).
{K(V). VeA} € FinPow(C) — (VaeB. {K(V). V € (A U {a})} € FinPow(C))
proof -
{ fix A assume A € FinPow(B)
assume {K(V). VeA} € FinPow(C)
fix a assume a€B
have {K(V). V € (A U {a})} € FinPow(C)
proof -
have {K(V). V € (A U {ab)} = {K(V). VeA} U {K(a)}
by auto
moreover note ({K(V). VeA} € FinPow(C)
moreover from (VVeB. K(V) € C <a€By have {K(a)} € FinPow(C)
using singleton_in_finpow by simp
ultimately show thesis using union_finpow by simp
qed
} thus thesis by simp
qged
moreover note (N € FinPow(B))
ultimately show {K(V). VEN} € FinPow(C)
by (rule FinPow_induct)
qed
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Union of a finite indexed family of finite sets is finite.

lemma union_fin_list_fin:
assumes Al: n € nat and A2: Vk € n. N(k) € FinPow(X)
shows
{N(k). k € n} € FinPow(FinPow(X)) and (Jk € n. N(k)) € FinPow(X)
proof -
from A1 have n € FinPow(n)
using nat_finpow_nat fin_finpow_self by auto
with A2 show {N(k). k € n} € FinPow(FinPow (X))
by (rule fin_image_fin)
then show (|Jk € n. N(k)) € FinPow(X)
using fin_union_finpow by simp
qed

end

13 Finite sets

theory Finitel imports ZF.EquivClass ZF.Finite funcl ZF1
begin

This theory extends Isabelle standard Finite theory. It is obsolete and
should not be used for new development. Use the Finite_ZF instead.

13.1 Finite powerset

In this section we consider various properties of Fin datatype (even though
there are no datatypes in ZF set theory).

In Topology_zF theory we consider induced topology that is obtained by
taking a subset of a topological space. To show that a topology restricted
to a subset is also a topology on that subset we may need a fact that if T is
a collection of sets and A is a set then every finite collection {V;} is of the
form V; = U; N A, where {U;} is a finite subcollection of 7". This is one of
those trivial facts that require suprisingly long formal proof. Actually, the
need for this fact is avoided by requiring intersection two open sets to be
open (rather than intersection of a finite number of open sets). Still, the fact
is left here as an example of a proof by induction. We will use Fin_induct
lemma from Finite.thy. First we define a property of finite sets that we want
to show.

definition
Prfin(T,A,M) = ( (M = 0) | (INe Fin(T). VVe M. 3 Ue N. (V = UNA)))

Now we show the main induction step in a separate lemma. This will make
the proof of the theorem FinRestr below look short and nice. The premises
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of the ind_step lemma are those needed by the main induction step in lemma
Fin_induct (see standard Isabelle’s Finite.thy).

lemma ind_step: assumes A: V Ve TA. 3 UeT. V=UNA
and Al: WETA and A2: Me Fin(TA)
and A3: W¢M and A4: Prfin(T,A,M)
shows Prfin(T,A,cons(W,M))

proof -
{ assume A7: M=0 have Prfin(T, A, cons(W, M))
proof-
from A1 A obtain U where A5: U€T and A6: W=UNA by fast
let N = {U}

from A5 have T1: N € Fin(T) by simp
from A7 A6 have T2: VVeE cons(W,M). 3 UeN. V=UNA by simp
from A7 T1 T2 show Prfin(T, A, cons(W, M))
using Prfin_def by auto
qed }
moreover
{ assume A8:M#0 have Prfin(T, A, cons(W, M))
proof-
from A1 A obtain U where A5: U€T and A6:W=UNA by fast
from A8 A4 obtain NO
where A9: NO€ Fin(T) and A10: VVe M. 3 UO€ NO. (V = UONA)
using Prfin_def by auto
let N = cons(U,NO)
from A5 A9 have N € Fin(T) by simp
moreover from A10 A6 have VVE cons(W,M). 3 UEN. V=UNA by simp
ultimately have 3 Ne& Fin(T).VVe cons(W,M). 3 UeN. V=UNA by auto
with A8 show Prfin(T, A, cons(W, M))
using Prfin_def by simp
ged }
ultimately show thesis by auto
qed

Now we are ready to prove the statement we need.

theorem FinRestrO: assumes A: V V € TA. 3 Ue T. V=UNA
shows V Me Fin(TA). Prfin(T,A,M)
proof -
{ fix M
assume M € Fin(TA)
moreover have Prfin(T,A,0) using Prfin_def by simp
moreover
{ fix W M assume WETA M€ Fin(TA) W¢M Prfin(T,A,M)
with A have Prfin(T,A,cons(W,M)) by (rule ind_step) }
ultimately have Prfin(T,A,M) by (rule Fin_induct)
} thus thesis by simp
qed

This is a different form of the above theorem:

theorem ZF1FinRestr:
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assumes Al:Me Fin(TA) and A2: M#0
and A3: V Ve TA. 3 Ue T. V=UNA
shows INe Fin(T). (VVve M. 3 Ue N. (V = UNA)) A N#O
proof -
from A3 A1 have Prfin(T,A,M) using FinRestrO by blast
then have JINe Fin(T). VVe M. 3 Ue N. (V = UNA)
using A2 Prfin_def by simp
then obtain N where
D1:Ne Fin(T) A (VVe M. 4 Ue N. (V = UNA)) by auto
with A2 have N#0 by auto
with D1 show thesis by auto
qed

Purely technical lemma used in Topology_ZF_1 to show that if a topology is
T5, then it is T7.

lemma Finitel_L2:
assumes A:3U V. (UET A VET A x€U A yeV A UNV=0)
shows JUET. (x€U A y¢U)
proof -
from A obtain U V where D1:U€T A VET A x€U A yeV A UNV=0 by auto
with D1 show thesis by auto
qed

A collection closed with respect to taking a union of two sets is closed under
taking finite unions. Proof by induction with the induction step formulated
in a separate lemma.

lemma Finitel L3_IndStep:
assumes A1:VA B. ((AeC A BeC) — AUBEC)
and A2: AcC and A3: N€Fin(C) and A4:A¢N and A5:(JN € C
shows |Jcons(A,N) € C
proof -
have |J cons(A,N) = AU [JN by blast
with A1 A2 A5 show thesis by simp
qed

The lemma: a collection closed with respect to taking a union of two sets is
closed under taking finite unions.

lemma Finitel_L3:
assumes Al: 0 € C and A2: VA B. ((AeC A B€C) — AUBEC) and
A3: Ne Fin(C)
shows | JNeC
proof -
note A3
moreover from Al have |JO € C by simp
moreover
{ fix AN
assume A€C NeFin(C) A¢N N € C
with A2 have |Jcons(A,N) € C by (rule Finitel_L3_IndStep) }
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ultimately show |JN€ C by (rule Fin_induct)
qed

A collection closed with respect to taking a intersection of two sets is closed
under taking finite intersections. Proof by induction with the induction
step formulated in a separate lemma. This is sligltly more involved than
the union case in Finitel_L3, because the intersection of empty collection
is undefined (or should be treated as such). To simplify notation we define
the property to be proven for finite sets as a separate notion.

definition
IntPr(T,N) = (W=0 | N € T)

The induction step.

lemma Finitel L4_IndStep:
assumes Al: VA B. ((A€T A BET) — ANBET)
and A2: A€T and A3:N€Fin(T) and A4:A¢N and A5:IntPr(T,N)
shows IntPr(T,cons(A,N))
proof -
{ assume A6: N=0
with A2 have IntPr(T,cons(A,N))
using IntPr_def by simp }
moreover
{ assume A7: N#0 have IntPr(T, cons(A, N))
proof -
from A7 A5 A2 A1 have [\N N A € T using IntPr_def by simp
moreover from A7 have [Jcons(A, N) = (1N N A by auto
ultimately show IntPr(T, cons(A, N)) using IntPr_def by simp
qed }
ultimately show thesis by auto
qed

The lemma.

lemma Finitel_L4:
assumes Al: VA B. A€T A BET — AMB € T
and A2: NeFin(T)
shows IntPr(T,N)
proof -
note A2
moreover have IntPr(T,0) using IntPr_def by simp
moreover
{ fix AN
assume A€T NeFin(T) A¢N IntPr(T,N)
with A1 have IntPr(T,cons(A,N)) by (rule Finitel L4_IndStep) }
ultimately show IntPr(T,N) by (rule Fin_induct)
qed

Next is a restatement of the above lemma that does not depend on the IntPr
meta-function.
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lemma Finitel L5:
assumes Al: VA B. ((A€T A BET) — ANBET)
and A2: N#0 and A3: NeFin(T)
shows (N € T
proof -
from A1 A3 have IntPr(T,N) using Finitel L4 by simp
with A2 show thesis using IntPr_def by simp
qed

The images of finite subsets by a meta-function are finite. For example in
topology if we have a finite collection of sets, then closing each of them
results in a finite collection of closed sets. This is a very useful lemma with
many unexpected applications. The proof is by induction. The next lemma
is the induction step.

lemma fin_image_fin_IndStep:
assumes VVeEB. K(V)eC
and UeB and NeFin(B) and U¢N and {K(V). VEN}E€Fin(C)
shows {K(V). V€cons(U,N)} € Fin(C)
using assms by simp

The lemma:

lemma fin_image_fin:
assumes Al: VVeB. K(V)eC and A2: NeFin(B)
shows {K(V). VeN} € Fin(C)
proof -
note A2
moreover have {K(V). Ve0} € Fin(C) by simp
moreover
{fixUN
assume UEB NeFin(B) U¢N {K(V). VEN}E€Fin(C)
with A1 have {K(V). Vecons(U,N)} € Fin(C)
by (rule fin_image_fin_IndStep) }
ultimately show thesis by (rule Fin_induct)
qed

The image of a finite set is finite.

lemma Finitel_L6A: assumes Al: f:X—Y and A2: N € Fin(X)
shows £(N) € Fin(Y)
proof -
from A1 have VxeX. f(x) € Y
using apply_type by simp
moreover note A2
ultimately have {f(x). x€N} € Fin(Y)
by (rule fin_image_fin)
with Al A2 show thesis
using FinD func_imagedef by simp
qed
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If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finitel L6B:
assumes Al: Vxe€X. a(x) € Y and A2: {b(y).y€Y} € Fin(Z)
shows {b(a(x)).x€X} € Fin(Z)
proof -
from A1 have {b(a(x)).xeX} C {b(y).y€Y} by auto
with A2 show thesis using Fin_subset_lemma by blast
qed

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finitel L6C:
assumes Al: VyeY. b(y) € Z and A2: {a(x). x€X} € Fin(Y)
shows {b(a(x)).x€X} € Fin(Z)
proof -
let N = {a(x). x€X}
from A1 A2 have {b(y). y € N} € Fin(Z)
by (rule fin_image_fin)
moreover have {b(a(x)). x€X} = {b(y). ye N}
by auto
ultimately show thesis by simp
qed

Cartesian product of finite sets is finite.

lemma Finitel_L12: assumes Al: A € Fin(A) and A2: B € Fin(B)
shows AxXB € Fin(AxB)
proof -
have T1:Va€cA. VbeB. {( a,b)} € Fin(AXB) by simp
have VacA. {{( a,b)}. b € B} € Fin(Fin(AxB))
proof
fix a assume A3: a € A
with T1 have VbeB. {( a,b)} € Fin(AxB)
by simp
moreover note A2
ultimately show {{( a,b)}. b € B} € Fin(Fin(AxB))
by (rule fin_image_fin)
qed
then have VacA. |J {{( a,b)}. b € B} € Fin(AxB)
using Fin_UnionI by simp
moreover have
VaeA. |J {{( a,b)}. b € B} = {a}x B by blast
ultimately have VacA. {a}x B € Fin(AxB) by simp
moreover note Al
ultimately have {{a}x B. a€A} € Fin(Fin(AXxB))
by (rule fin_image_fin)
then have |J{{a}x B. a€A} € Fin(AxB)
using Fin_UnionI by simp
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moreover have | J{{a}x B. a€A} = AxB by blast
ultimately show thesis by simp
qed

We define the characterisic meta-function that is the identity on a set and
assigns a default value everywhere else.

definition
Characteristic(A,default,x) = (if x€A then x else default)

A finite subset is a finite subset of itself.

lemma Finitel_L13:
assumes Al:A € Fin(X) shows A € Fin(A)

proof -
{ assume A=0 hence A € Fin(A) by simp }
moreover
{ assume A2: A#0 then obtain ¢ where D1:c€A
by auto

then have VxeX. Characteristic(A,c,x) € A
using Characteristic_def by simp
moreover note Al
ultimately have
{Characteristic(A,c,x). x€A} € Fin(A) by (rule fin_image_fin)
moreover from D1 have
{Characteristic(A,c,x). x€A} = A using Characteristic_def by simp
ultimately have A € Fin(A) by simp }
ultimately show thesis by blast
qed

Cartesian product of finite subsets is a finite subset of cartesian product.

lemma Finitel_L14: assumes Al: A € Fin(X) B € Fin(Y)
shows AxXB € Fin(XxY)
proof -
from A1 have AxB C XXY using FinD by auto
then have Fin(AxB) C Fin(XxY) using Fin_mono by simp
moreover from Al have AxXB € Fin(AxB)
using Finitel L13 Finitel_L12 by simp
ultimately show thesis by auto
qed

The next lemma is needed in the Group_ZF_3 theory in a couple of places.

lemma Finitel_L15:
assumes Al: {b(x). x€A} € Fin(B) {c(x). x€A} € Fin(C)
and A2: f : BXC—E
shows {f( b(x),c(x)). x€A} € Fin(E)
proof -
from A1 have {b(x). x€A}x{c(x). x€A} € Fin(BxC)
using Finitel_L14 by simp
moreover have
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{{ b(x),c(x)). xeA} C {b(x). xeArx{c(x). x€A}
by blast

ultimately have TO: {( b(x),c(x)). x€A} € Fin(BxC)
by (rule Fin_subset_lemma)

with A2 have T1: f{( b(x),c(x)). x€A} € Fin(E)
using Finitel L6A by auto

from TO have VxeA. ( b(x),c(x)) € BXC
using FinD by auto

with A2 have
f{{ b(x),c(x)). x€A} = {f( b(x),c(x)). x€A}
using funcl_1_L17 by simp

with T1 show thesis by simp

qed

Singletons are in the finite powerset.

lemma Finitel_L16: assumes x€X shows {x} € Fin(X)
using assms emptyI consI by simp

A special case of Finite1l_L15 where the second set is a singleton. In
Group_ZF_3 theory this corresponds to the situation where we multiply by a
constant.

lemma Finitel L16AA: assumes {b(x). x€A} € Fin(B)
and ceC and f : BXC—E
shows {f( b(x),c). x€A} € Fin(E)
proof -
from assms have
VyeB. £(y,c) € E
{b(x). x€A} € Fin(B)
using apply_funtype by auto
then show thesis by (rule Finitel_L6C)
qed

First order version of the induction for the finite powerset.

lemma Finitel_L16B: assumes Al: P(0) and A2: BEFin(X)
and A3: VAEFin(X).VxeX. x¢A A P(A)—PAU{x})
shows P(B)
proof -
note BeFin(X)) and P(0)
moreover
{ fix A x
assume x € X A € Fin(X) x ¢ A P(A)
moreover have cons(x,A) = AU{x} by auto
moreover note A3
ultimately have P(cons(x,A)) by simp }
ultimately show P(B) by (rule Fin_induct)
qed
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13.2 Finite range functions

In this section we define functions f : X — Y, with the property that
f(X) is a finite subset of Y. Such functions play a important role in the
construction of real numbers in the Real_ZF series.

Definition of finite range functions.

definition
FinRangeFunctions(X,Y) = {f:X—=Y. £(X) € Fin(Y)}

Constant functions have finite range.

lemma Finitel_L17: assumes c€Y and X#0
shows ConstantFunction(X,c) € FinRangeFunctions(X,Y)
using assms funcl_3_L1 func_imagedef funcl_3_L2 Finitel L16
FinRangeFunctions_def by simp

Finite range functions have finite range.

lemma Finitel_L18: assumes f € FinRangeFunctions(X,Y)
shows {f(x). x€X} € Fin(Y)
using assms FinRangeFunctions_def func_imagedef by simp

An alternative form of the definition of finite range functions.

lemma Finitel_L19: assumes f:X—Y
and {f(x). x€X} € Fin(Y)
shows f € FinRangeFunctions(X,Y)
using assms func_imagedef FinRangeFunctions_def by simp

A composition of a finite range function with another function is a finite
range function.

lemma Finitel_L20: assumes Al:f € FinRangeFunctions(X,Y)
and A2: g : YZ
shows g 0 f € FinRangeFunctions(X,Z)
proof -
from A1 A2 have g{f(x). x€X} € Fin(Z)
using Finitel L18 Finitel L6A
by simp
with A1 A2 have {(g 0 £)(x). x€X} € Fin(2)
using FinRangeFunctions_def apply_funtype
func1_1_L17 comp_fun_apply by auto
with A1 A2 show thesis using
FinRangeFunctions_def comp_fun Finitel _L19
by auto
qed

Image of any subset of the domain of a finite range function is finite.

lemma Finitel_L21:
assumes f € FinRangeFunctions(X,Y) and ACX
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shows f(A) € Fin(Y)
proof -
from assms have f(X) € Fin(Y) £(A) C £(X)
using FinRangeFunctions_def funcl_1_L8
by auto
then show f(A) € Fin(Y) using Fin_subset_lemma
by blast
qed

end

14 Finite sets 1

theory Finite_ZF_1 imports Finitel Order_ZF_1la
begin

This theory is based on Finitel theory and is obsolete. It contains properties
of finite sets related to order relations. See the FinOrd theory for a better
approach.

14.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

Finite set has a maximum - induction step.

lemma Finite_ZF_1_1_L1:
assumes Al: r {is total on} X and A2: trans(r)
and A3: AcFin(X) and A4: xeX and A5: A=0 V HasAmaximum(r,A)
shows AU{x} = 0 V HasAmaximum(r,AU{x})
proof -
{ assume A=0 then have T1: AU{x} = {x} by simp
from A1 have refl(X,r) using total_is_refl by simp
with T1 A4 have AU{x} = 0 V HasAmaximum(r,AU{x})
using Order_ZF_4_L8 by simp }
moreover
{ assume A#0
with A1 A2 A3 A4 A5 have AU{x} = 0 V HasAmaximum(r,AU{x})
using FinD Order_ZF_4_L9 by simp }
ultimately show thesis by blast
qed

For total and transitive relations finite set has a maximum.

theorem Finite_ZF_1_1_T1A:

assumes Al: r {is total on} X and A2: trans(r)
and A3: BeFin(X)
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shows B=0 V HasAmaximum(r,B)
proof -
have 0=0 V HasAmaximum(r,0) by simp
moreover note A3
moreover from A1 A2 have VAcFin(X). V=xeX.
x¢A A (A=0 V HasAmaximum(r,A)) — (AU{x}=0 V HasAmaximum(r,AU{x}))
using Finite ZF_1_1_L1 by simp

ultimately show B=0 V HasAmaximum(r,B) by (rule Finitel_L16B)
qed

Finite set has a minimum - induction step.

lemma Finite_ZF_1_1_L2:
assumes Al: r {is total on} X and A2: trans(r)
and A3: AcFin(X) and A4: xeX and A5: A=0 V HasAminimum(r,A)
shows AU{x} = 0 V HasAminimum(r,AU{x})
proof -
{ assume A=0 then have T1i: AU{x} = {x} by simp
from A1 have refl(X,r) using total_is_refl by simp
with T1 A4 have AU{x} = 0 V HasAminimum(r,AU{x})
using Order_ZF_4_L8 by simp }
moreover
{ assume A#0
with A1 A2 A3 A4 A5 have AU{x} = 0 V HasAminimum(r,AU{x})
using FinD Order_ZF_4_L10 by simp }
ultimately show thesis by blast
qed

For total and transitive relations finite set has a minimum.

theorem Finite_ZF_1_1_T1B:
assumes Al: r {is total on} X and A2: trans(r)
and A3: B € Fin(X)
shows B=0 V HasAminimum(r,B)
proof -
have 0=0 V HasAminimum(r,0) by simp
moreover note A3
moreover from Al A2 have VAc€Fin(X). VxeX.
x¢A A (A=0 V HasAminimum(r,A)) — (AU{x}=0 V HasAminimum(r,AU{x}))
using Finite_ZF_1_1_L2 by simp
ultimately show B=0 V HasAminimum(r,B) by (rule Finitel L16B)
qed

For transitive and total relations finite sets are bounded.

theorem Finite_ZF_1_T1:
assumes Al: r {is total on} X and A2: trans(r)
and A3: BeFin(X)
shows IsBounded(B,r)
proof -
from A1 A2 A3 have B=0 V HasAminimum(r,B) B=0 V HasAmaximum(r,B)
using Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B by auto
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then have
B = 0 V IsBoundedBelow(B,r) B = 0 V IsBoundedAbove(B,r)
using Order_ZF_4_L7 Order_ZF_4_L8A by auto
then show IsBounded(B,r) using
IsBounded_def IsBoundedBelow_def IsBoundedAbove_def
by simp
qed

For linearly ordered finite sets maximum and minimum have desired prop-
erties. The reason we need linear order is that we need the order to be total
and transitive for the finite sets to have a maximum and minimum and then
we also need antisymmetry for the maximum and minimum to be unique.

theorem Finite_ZF_1_T2:
assumes Al: IsLinOrder(X,r) and A2: A € Fin(X) and A3: A#O0
shows
Maximum(r,A) € A
Minimum(r,A) € A
VxeA. (x,Maximum(r,A)) €
VxeA. (Minimum(r,A),x) €
proof -
from A1 have T1: r {is total on} X trans(r) antisym(r)
using IsLinOrder_def by auto
moreover from T1 A2 A3 have HasAmaximum(r,A)
using Finite_ZF_1_1_T1A by auto
moreover from T1 A2 A3 have HasAminimum(r,A)
using Finite_ZF_1_1_T1B by auto
ultimately show
Maximum(r,A) € A
Minimum(r,A) € A
VxeA. (x,Maximum(r,A)) € r Vx€A. (Minimum(r,A),x) € r
using Order_ZF_4_L3 Order_ZF_4_L4 by auto
qed

r
r

A special case of Finite_ZF_1_T2 when the set has three elements.

corollary Finite_ZF_1_L2A:
assumes Al: IsLinOrder(X,r) and A2: acX beX ceX
shows
Maximum(r,{a,b,c}) € {a,b,c}
Minimum(r,{a,b,c}) € {a,b,c}
Maximum(r,{a,b,c}) € X
Minimum(r,{a,b,c}) € X
(a,Maximum(r,{a,b,c})) € r
(b,Maximum(r,{a,b,c})) € r
(c,Maximum(r,{a,b,c})) € r
proof -
from A2 have I: {a,b,c} € Fin(X) {a,b,c} # 0
by auto
with A1 show II: Maximum(r,{a,b,c}) € {a,b,c}
by (rule Finite_ZF_1_T2)
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moreover from A1 I show III: Minimum(r,{a,b,c}) € {a,b,c}
by (rule Finite_ZF_1_T2)

moreover from A2 have {a,b,c} C X
by auto

ultimately show
Maximum(r,{a,b,c}) € X
Minimum(r,{a,b,c}) € X
by auto

from A1 I have Vx€{a,b,c}. (x,Maximum(r,{a,b,c})) € r
by (rule Finite_ZF_1_T2)

then show
(a,Maximum(r,{a,b,c})) € r
(b,Maximum(r,{a,b,c})) € r
(c,Maximum(r,{a,b,c})) € r
by auto

qed

If for every element of X we can find one in A that is greater, then the A
can not be finite. Works for relations that are total, transitive and antisym-
metric.

lemma Finite_ZF_1_1_L3:
assumes Al: r {is total on} X
and A2: trans(r) and A3: antisym(r)
and A4: r C XxX and A5: X#0
and A6: VxeX. JachA. x#a A (x,a) € r
shows A ¢ Fin(X)
proof -
from assms have —IsBounded(A,r)
using Order_ZF_3_L14 IsBounded_def
by simp
with A1 A2 show A ¢ Fin(X)
using Finite_ZF_1_T1 by auto
qed

end

15 Finite sets and order relations
theory FinOrd_ZF imports Finite_ZF func_ZF_1
begin

This theory file contains properties of finite sets related to order relations.
Part of this is similar to what is done in Finite_ZF_1 except that the devel-
opment is based on the notion of finite powerset defined in Finite_ZF rather
the one defined in standard Isabelle Finite theory.
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15.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

For total and transitive relations nonempty finite set has a maximum.

theorem fin_has_max:
assumes Al: r {is total on} X and A2: trans(r)
and A3: B € FinPow(X) and A4: B # 0
shows HasAmaximum(r,B)
proof -
have 0=0 V HasAmaximum(r,0) by simp
moreover have
VA € FinPow(X). A=0 V HasAmaximum(r,A) —
(VxeX. (A U {x}) = 0 V HasAmaximum(r,A U {x}))
proof -
{ fix A
assume A € FinPow(X) A = 0 V HasAmaximum(r,A)
have VxeX. (A U {x}) = 0 V HasAmaximum(r,A U {x})
proof -
{ fix x assume x€X
note (A = 0 vV HasAmaximum(r,A)>
moreover
{ assume A = 0
then have AU{x} = {x} by simp
from A1 have refl(X,r) using total_is_refl
by simp
with xeX) (AU{x} = {x} have HasAmaximum(r,AU{x})
using Order_ZF_4_L8 by simp }
moreover
{ assume HasAmaximum(r,A)
with A1 A2 (A € FinPow(X)) (x€X)
have HasAmaximum(r,AU{x})
using FinPow_def Order_ZF_4_19 by simp }
ultimately have A U {x} = 0 V HasAmaximum(r,A U {x})

by auto
} thus VxeX. (A U {x}) = 0 V HasAmaximum(r,A U {x})
by simp
qed
} thus thesis by simp
qed

moreover note A3
ultimately have B = 0 V HasAmaximum(r,B)
by (rule FinPow_induct)
with A4 show HasAmaximum(r,B) by simp
qed

For linearly ordered nonempty finite sets the maximum is in the set and
indeed it is the greatest element of the set.
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lemma linord_max_props: assumes Al: IsLinOrder(X,r) and
A2: A € FinPow(X) A # 0
shows
Maximum(r,A) € A
Maximum(r,A) € X
VachA. (a,Maximum(r,A)) € r
proof -
from A1 A2 show
Maximum(r,A) € A and VacA. (a,Maximum(r,A)) € r
using IsLinOrder_def fin_has_max Order_ZF_4_L3
by auto
with A2 show Maximum(r,A) € X using FinPow_def
by auto
qed

15.2 Order isomorphisms of finite sets

In this section we eastablish that if two linearly ordered finite sets have the
same number of elements, then they are order-isomorphic and the isomor-
phism is unique. This allows us to talk about ”enumeration” of a linearly
ordered finite set. We define the enumeration as the order isomorphism
between the number of elements of the set (which is a natural number
n=4{0,1,..,n —1}) and the set.

A really weird corner case - empty set is order isomorphic with itself.

lemma empty_ord_iso: shows ord_iso(0,r,0,R) # 0
proof -
have 0 ~ 0 using eqpoll_refl by simp
then obtain f where f € bij(0,0)
using eqpoll_def by blast
then show thesis using ord_iso_def by auto
qed

Even weirder than empty_ord_iso The order automorphism of the empty set
is unique.

lemma empty_ord_iso_uniq:
assumes f € ord_iso(0,r,0,R) g € ord_iso(0,r,0,R)
shows f = g
proof -
from assms have f : 0 - 0 and g: 0 — 0
using ord_iso_def bij_def surj_def by auto
moreover have Vxe0. £(x) = g(x) by simp
ultimately show f = g by (rule func_eq)
qed

The empty set is the only order automorphism of itself.

lemma empty_ord_iso_empty: shows ord_iso(0,r,0,R) = {0}
proof -
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have 0 € ord_iso(0,r,0,R)
proof -
have ord_iso(0,r,0,R) # 0 by (rule empty_ord_iso)
then obtain f where f € ord_iso(0,r,0,R) by auto
then show 0 € ord_iso(0,r,0,R)
using ord_iso_def bij_def surj_def fun_subset_prod
by auto
qed
then show ord_iso(0,r,0,R) = {0} using empty_ord_iso_uniq
by blast
qed

An induction (or maybe recursion?) scheme for linearly ordered sets. The
induction step is that we show that if the property holds when the set is
a singleton or for a set with the maximum removed, then it holds for the
set. The idea is that since we can build any finite set by adding elements on
the right, then if the property holds for the empty set and is invariant with
respect to this operation, then it must hold for all finite sets.

lemma fin_ord_induction:
assumes Al: IsLinOrder(X,r) and A2: P(0) and
A3: VA € FinPow(X). A # 0 — (P(A - {Maximum(r,A)}) — P(A))
and A4: B € FinPow(X) shows P(B)
proof -
note A2
moreover have V A € FinPow(X). A # 0 — (JdacA. P(A-{a}) — P(A))
proof -
{ fix A assume A € FinPow(X) and A # 0
with A1 A3 have JacA. P(A-{a}) — P(A)
using IsLinOrder_def fin_has_max
IsLinOrder_def Order_ZF_4_L3
by blast
} thus thesis by simp
qed
moreover note A4
ultimately show P(B) by (rule FinPow_ind_rem_one)
qed

A sligltly more complicated version of fin_ord_induction that allows to
prove properties that are not true for the empty set.

lemma fin_ord_ind:
assumes Al: IsLinOrder(X,r) and A2: VA &€ FinPow(X).
A =0V (A= {Maximum(r,A)} V P(A - {Maximum(r,A)}) — P(A))
and A3: B € FinPow(X) and A4: B#0
shows P(B)
proof -
{ fix A assume A € FinPow(X) and A # 0
with A1 A2 have
JacA. A = {a} Vv P(A-{a}) — P(A)
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using IsLinOrder_def fin_has_max
IsLinOrder_def Order_ZF_4_L3
by blast
} then have VA € FinPow(X).
A =0V (JacA. A = {a} vV P(A-{a}) — P(A))
by auto
with A3 A4 show P(B) using FinPow_rem_ind
by simp
qed

Yet another induction scheme. We build a linearly ordered set by adding
elements that are greater than all elements in the set.

lemma fin_ind_add_max:
assumes Al: IsLinOrder(X,r) and A2: P(0) and A3: V A € FinPow(X).

(V x € X-A. P(A) A (Va€A. (a,x) € T ) — P(A U {x})
and A4: B € FinPow(X)
shows P(B)
proof -
note Al A2
moreover have
VC € FinPow(X). C # 0 — (P(C - {Maximum(r,C)}) — P(C))
proof -
{ fix C assume C € FinPow(X) and C # 0
let x = Maximum(r,C)
let A =C - {x}
assume P(4A)
moreover from (¢ € FinPow(X)) have A € FinPow(X)
using fin_rem_point_fin by simp
moreover from Al (C € FinPow(X)) «C # 0> have
x € Cand x € X - A and VacA. (a,x) € r
using linord_max_props by auto
moreover note A3
ultimately have P(A U {x}) by auto
moreover from x € C have A U {x} = C
by auto
ultimately have P(C) by simp
} thus thesis by simp
qed
moreover note A4
ultimately show P(B) by (rule fin_ord_induction)
qed

The only order automorphism of a linearly ordered finite set is the identity.

theorem fin_ord_auto_id: assumes Al: IsLinOrder(X,r)
and A2: B € FinPow(X) and A3: B#0
shows ord_iso(B,r,B,r) = {id(B)}

proof -
note Al
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moreover
{ fix A assume A € FinPow(X) A#O0
let M = Maximum(r,A)
let Ag = A - {M}
assume A = {M} V ord_iso(Ag,r,Ap,r) = {id(Ap)}
moreover
{ assume A = {M}
have ord_iso({M},r,{M},r) = {id({MP}
using id_ord_auto_singleton by simp
with (A = {M} have ord_iso(A,r,A,r) = {id(A)}
by simp }
moreover
{ assume ord_iso(Ag,r,Ap,r) = {id(4p)}
have ord_iso(A,r,A,r) = {id(A)}
proof
show {id(A)} C ord_iso(A,r,A,r)
using id_ord_iso by simp
{ fix f assume f € ord_iso(A,r,A,r)
with A1 (A € FinPow(X)) (A#0) have
restrict(f,Ap) € ord_iso(hy, r, A-{f(M)},r)
using IsLinOrder_def fin_has_max ord_iso_rem_max
by auto
with A1 (A € FinPow(X)) (A#0) «(f € ord_iso(A,r,A,T)
(ord_iso(Ag,r,Ap,r) = {id(Ag)D
have restrict(f,Ay) = id(Ag)
using IsLinOrder_def fin_has_max max_auto_fixpoint
by auto
moreover from Al (f € ord_iso(A,r,A,r))
(A € FinPow (X)) (A#0) have
f:A—Aand M € A and £(M) = M
using ord_iso_def bij_is_fun IsLinOrder_def
fin_has_max Order_ZF_4_L3 max_auto_fixpoint
by auto
ultimately have f = id(A) using id_fixpoint_rem
by simp
} then show ord_iso(A,r,A,r) C {id(A)}
by auto
qged
}
ultimately have ord_iso(A,r,A,r) = {id(A)}
by auto
} then have VA € FinPow(X). A =0 V
(A = {Maximum(r,A)} V
ord_iso(A-{Maximum(r,A)},r,A-{Maximum(r,A)},r) =
{id(A-{Maximum(r,A)})} — ord_iso(A,r,A,r) = {id(A)})
by auto
moreover note A2 A3
ultimately show ord_iso(B,r,B,r) = {id(B)}
by (rule fin_ord_ind)
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qed

Every two finite linearly ordered sets are order isomorphic. The statement
is formulated to make the proof by induction on the size of the set easier,
see fin_ord_iso_ex for an alternative formulation.

lemma fin_order_iso:
assumes Al: IsLinOrder(X,r) IsLinOrder(Y,R) and
A2: n € nat
shows VA € FinPow(X). VB € FinPow(Y).
A~nAB~n— ord_iso(A,r,B,R) # 0
proof -
note A2
moreover have VA € FinPow(X). VB € FinPow(Y).
A~0AB=O0— ord_iso(A,r,B,R) # 0
using eqpoll_O_is_0 empty_ord_iso by blast
moreover have Vk € nat.
(VA € FinPow(X). VB € FinPow(Y).
A~k ANB =k — ord_iso(A,r,B,R) #* 0) —
(VC € FinPow(X). VD € FinPow(Y).
C ~ succ(k) A D = succ(k) — ord_iso(C,r,D,R) # 0)
proof -
{ fix k assume k € nat
assume A3: VA € FinPow(X). VB € FinPow(Y).
A~k ANB =~k — ord_iso(A,r,B,R) # 0
have VC € FinPow(X). VD € FinPow(Y).
C =~ succ(k) A D = succ(k) — ord_iso(C,r,D,R) # O
proof -
{ fix C assume C € FinPow(X)
fix D assume D € FinPow(Y)
assume C =~ succ(k) D = succ(k)
then have C # 0 and D# 0
using eqpoll_succ_imp_not_empty by auto
let Mo = Maximum(r,C)
let Mp = Maximum(R,D)
let Co =C - {MC}
let Dg = D - {Mp}
from (C € FinPow(X)) have C C X
using FinPow_def by simp
with A1 have IsLinOrder(C,r)
using ord_linear_subset by blast
from (D € FinPow(Y)) have D C Y
using FinPow_def by simp
with A1 have IsLinOrder(D,R)
using ord_linear_subset by blast
from A1 (C € FinPow(X)) (D € FinPow(Y))
(C # 00 D# O have
HasAmaximum(r,C) and HasAmaximum(R,D)
using IsLinOrder_def fin_has_max
by auto
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with A1 have Mg € C and Mp € D
using IsLinOrder_def Order_ZF_4_L3 by auto
with (€ ~ succ(k)) @D =~ succ(k)) have
Co ~ k and Dy ~ k using Diff_sing_eqpoll by auto
from (¢ € FinPow(X)) D € FinPow(Y))
have Cy € FinPow(X) and Dy € FinPow(Y)
using fin_rem_point_fin by auto
with A3 (C; =~ k Dy =~ k» have
ord_iso(Cy,r,Dg,R) # O by simp
with (IsLinOrder(C,r)) (IsLinOrder(D,R))
(HasAmaximum(r,C)’» (HasAmaximum(R,D))
have ord_iso(C,r,D,R) # 0
by (rule rem_max_ord_iso)
} thus thesis by simp
qed
} thus thesis by blast
qed
ultimately show thesis by (rule ind_on_nat)
qed

Every two finite linearly ordered sets are order isomorphic.

lemma fin_ord_iso_ex:
assumes Al: IsLinOrder(X,r) IsLinOrder(Y,R) and
A2: A € FinPow(X) B € FinPow(Y) and A3: B =~ A
shows ord_iso(A,r,B,R) # 0
proof -
from A2 obtain n where n € nat and A ~ n
using finpow_decomp by auto
from A3 (A = n) have B = n by (rule eqpoll_trans)
with A1 A2 (A ~ n) @ € nat) show ord_iso(A,r,B,R) # 0
using fin_order_iso by simp
qed

Existence and uniqueness of order isomorphism for two linearly ordered sets
with the same number of elements.

theorem fin_ord_iso_ex_uniq:
assumes Al: IsLinOrder(X,r) IsLinOrder(Y,R) and
A2: A € FinPow(X) B € FinPow(Y) and A3: B =~ A
shows J!f. f € ord_iso(A,r,B,R)
proof
from assms show Jf. f € ord_iso(A,r,B,R)
using fin_ord_iso_ex by blast
fix f g
assume A4: f € ord_iso(A,r,B,R) g € ord_iso(A,r,B,R)
then have converse(g) € ord_iso(B,R,A,r)
using ord_iso_sym by simp
with «f € ord_iso(A,r,B,R)) have
I: converse(g) 0 £ € ord_iso(A,r,A,r)
by (rule ord_iso_trans)
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{ assume A # 0
with A1 A2 I have converse(g) 0 £ = id(A)
using fin_ord_auto_id by auto
with A4 have f = g
using ord_iso_def comp_inv_id_eq_bij by auto }
moreover
{ assume A = 0
then have A ~ 0 using eqpoll_O_iff
by simp
with A3 have B ~ 0 by (rule eqpoll_trans)
with A4 (A = 00 have
f € ord_iso(0,r,0,R) and g € ord_iso(0,r,0,R)
using eqpoll_O_iff by auto
then have f = g by (rule empty_ord_iso_uniq) }
ultimately show f = g
using ord_iso_def comp_inv_id_eq_bij
by auto
qed

end

16 Equivalence relations

theory EquivClassl imports ZF.EquivClass func_ZF ZF1
begin

In this theory file we extend the work on equivalence relations done in the
standard Isabelle’s EquivClass theory. That development is very good and
all, but we really would prefer an approach contained within the a standard
ZF set theory, without extensions specific to Isabelle. That is why this
theory is written.

16.1 Congruent functions and projections on the quotient

Suppose we have a set X with a relation r C X x X and a function f : X —
X. The function f can be compatible (congruent) with r in the sense that if
two elements z, y are related then the values f(x), f(z) are also related. This
is especially useful if r is an equivalence relation as it allows to ”project”
the function to the quotient space X/r (the set of equivalence classes of
r) and create a new function F' that satifies the formula F([z],) = [f(z)],.
When f is congruent with respect to r such definition of the value of F on the
equivalence class [z], does not depend on which 2 we choose to represent the
class. In this section we also consider binary operations that are congruent
with respect to a relation. These are important in algebra - the congruency
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condition allows to project the operation to obtain the operation on the
quotient space.

First we define the notion of function that maps equivalent elements to equiv-
alent values. We use similar names as in the Isabelle’s standard EquivClass
theory to indicate the conceptual correspondence of the notions.

definition
Congruent(r,f) =
Vxy. (x,y) €r — (f&,E(y)) € r)

Now we will define the projection of a function onto the quotient space. In
standard math the equivalence class of = with respect to relation r is usually
denoted [z],. Here we reuse notation r{z} instead. This means the image
of the set {z} with respect to the relation, which, for equivalence relations
is exactly its equivalence class if you think about it.

definition
ProjFun(A,r,f) =
{{c,Uxec. r{f(x)}). c € (A//r)}

Elements of equivalence classes belong to the set.

lemma EquivClass_1_L1:
assumes Al: equiv(A,r) and A2: C € A//r and A3: xeC
shows x€A
proof -
from A2 have C C |J (A//r) by auto
with A1 A3 show xcA
using Union_quotient by auto
qed

The image of a subset of X under projection is a subset of A/r.

lemma EquivClass_1_L1A:
assumes ACX shows {r{x}. xc€A} C X//r
using assms quotientI by auto

If an element belongs to an equivalence class, then its image under relation
is this equivalence class.

lemma EquivClass_1_L2:
assumes Al: equiv(A,r) C € A//r and A2: xeC
shows r{x} = C
proof -
from A1 A2 have x € r{x}
using EquivClass_1_L1 equiv_class_self by simp
with A2 have I: r{x}NC # 0 by auto
from A1 A2 have r{x} € A//r
using EquivClass_1_L1 quotientI by simp
with Al I show thesis
using quotient_disj by blast
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qed

Elements that belong to the same equivalence class are equivalent.

lemma EquivClass_1_L2A:
assumes equiv(A,r) C € A//r xeC yeC
shows (x,y) € r
using assms EquivClass_1_L2 EquivClass_1_L1 equiv_class_eq_iff
by simp

Every z is in the class of y, then they are equivalent.

lemma EquivClass_1_L2B:
assumes Al: equiv(A,r) and A2: yc€A and A3: x € r{y}
shows (x,y) € r
proof -
from A2 have r{y} € A//r
using quotientI by simp
with A1 A3 show thesis using
EquivClass_1_L1 equiv_class_self equiv_class_nondisjoint by blast
qed

If a function is congruent then the equivalence classes of the values that
come from the arguments from the same class are the same.

lemma EquivClass_1_L3:
assumes Al: equiv(A,r) and A2: Congruent(r,f)
and A3: C € A//r xeC yeC
shows r{f(x)} = r{f(y)}
proof -
from A1 A3 have (x,y) € r
using EquivClass_1_L2A by simp
with A2 have (f(x),f(y)) € r
using Congruent_def by simp
with Al show thesis using equiv_class_eq by simp
qed

The values of congruent functions are in the space.

lemma EquivClass_1_L4:
assumes Al: equiv(A,r) and A2: C € A//r xeC
and A3: Congruent(r,f)
shows f(x) € A
proof -
from A1 A2 have x€A
using EquivClass_1_L1 by simp
with A1 have (x,x) € r
using equiv_def refl_def by simp
with A3 have (f(x),f(x)) € r
using Congruent_def by simp
with Al show thesis using equiv_type by auto
qed
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Equivalence classes are not empty.

lemma EquivClass_1_L5:
assumes Al: refl(A,r) and A2: C € A//r
shows C#0
proof -
from A2 obtain x where I: C = r{x} and x€A
using quotient_def by auto
from A1 x€hd have x € r{x} using refl_def by auto
with I show thesis by auto
qed

To avoid using an axiom of choice, we define the projection using the ex-
pression | J,c7({f(z)}). The next lemma shows that for congruent function
this is in the quotient space A/r.

lemma EquivClass_1_L6:
assumes Al: equiv(A,r) and A2: Congruent(r,f)
and A3: C € A//r
shows (|JxeC. r{f(x)}) € A//r
proof -
from A1 have refl(A,r) unfolding equiv_def by simp
with A3 have C#0 using EquivClass_1_L5 by simp
moreover from A2 A3 Al have VxeC. r{f(x)} € A//r
using EquivClass_1_L4 quotientI by auto
moreover from A1 A2 A3 have
Vx y. x€C A yeC — r{fx)} = r{£ (P}
using EquivClass_1_L3 by blast
ultimately show thesis by (rule ZF1_1_L2)
qed

Congruent functions can be projected.

lemma EquivClass_1_TO:
assumes equiv(A,r) Congruent(r,f)
shows ProjFun(A,r,f) : A//r — A//r
using assms EquivClass_1_L6 ProjFun_def ZF_fun_from_total
by simp

We now define congruent functions of two variables (binary funtions). The
predicate Congruent?2 corresponds to congruent?2 in Isabelle’s standard EquivClass
theory, but uses ZF-functions rather than meta-functions.

definition
Congruent2(r,f) =
(Vx1 %o y1 y2. (x1,%X2) € T A (y1,y2) €T —
(£(x1,y1), £(x2,y2) ) € 1)

Next we define the notion of projecting a binary operation to the quotient
space. This is a very important concept that allows to define quotient
groups, among other things.
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definition
ProjFun2(A,r,f) =
{{p,UJ z € fst(p)xsnd(p). r{f(2)}). p € (A//r)x(A//r) }

The following lemma is a two-variables equivalent of EquivClass_1_L3.

lemma EquivClass_1_L7:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: C; € A//r Cy € A//T
and A4: z1 € Ci1xCy z9 € Cy1XCo
shows r{f(z;)} = r{f(z2)}
proof -
from A4 obtain x; y; x3 y2 where
x1€C; and y1€C2 and z; = (x1,y1) and
x9€C; and y2€Co and zo, = <X2,y2>
by auto
with A1 A3 have (x;,x2) € r and (y;1,y2) € r
using EquivClass_1_L2A by auto
with A2 have (f(x1,y1),f(x2,y2)) € T
using Congruent2_def by simp
with Al <z = (x1,y1) (Z2 = (X2,y2)) show thesis
using equiv_class_eq by simp
qed

The values of congruent functions of two variables are in the space.

lemma EquivClass_1_L8:
assumes Al: equiv(A,r) and A2: C; € A//r and A3: Cy € A//r
and A4: z € C;xCy; and A5: Congruent2(r,f)
shows f(z) € A
proof -
from A4 obtain x y where x€C; and ye€Cy; and z = (x,y)
by auto
with A1 A2 A3 have x€A and ye€A
using EquivClass_1_L1 by auto
with A1 A4 have (x,x) € r and (y,y) € r
using equiv_def refl_def by auto
with A5 have (f(x,y), f(x,y) ) € r
using Congruent2_def by simp
with A1 <z = (x,y) show thesis using equiv_type by auto
qed

The values of congruent functions are in the space. Note that although this
lemma is intended to be used with functions, we don’t need to assume that
f is a function.

lemma EquivClass_1_L8A:
assumes Al: equiv(A,r) and A2: x€A yeA
and A3: Congruent2(r,f)
shows f(x,y) € A

proof -
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from A1 A2 have r{x} € A//r r{y} € A//r
(x,y) € rixrxr{y}
using equiv_class_self quotientI by auto
with Al A3 show thesis using EquivClass_1_L8 by simp
qed

The following lemma is a two-variables equivalent of EquivClass_1_L6.

lemma EquivClass_1_L9:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: p € (A//r)x(A//T)
shows (|J z € fst(p)xsnd(p). r{f(z2)}) € A//r
proof -
from A3 have fst(p) € A//r and snd(p) € A//r
by auto
with A1 A2 have
I: Vz € fst(p)xsnd(p). f(z) € A
using EquivClass_1_L8 by simp
from A3 A1 have fst(p)xsnd(p) # O
using equiv_def EquivClass_1_L5 Sigma_empty_iff
by auto
moreover from A1 I have
Vz € fst(p)xsnd(p). r{f(=2)} € A//r
using quotientI by simp
moreover from Al A2 «fst(p) € A//r (snd(p) € A//r) have
Vz1 29. 21 € fst(p)xsnd(p) A 2z € fst(p)xsnd(p) —
r{f(z1)} = r{f(z2)}
using EquivClass_1_L7 by blast
ultimately show thesis by (rule ZF1_1_L2)
qed

Congruent functions of two variables can be projected.

theorem EquivClass_1_T1:
assumes equiv(A,r) Congruent2(r,f)
shows ProjFun2(A,r,f) : (A//r)x(A//r) — A//r
using assms EquivClass_1_L9 ProjFun2_def ZF_fun_from_total
by simp

The projection diagram commutes. I wish I knew how to draw this diagram
in LaTeX.

lemma EquivClass_1_L10:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: x€A yeA
shows ProjFun2(A,r,f)({r{x},r{y}) = r{f(x,y)}
proof -
from A3 A1 have r{x} x r{y} # 0
using quotientI equiv_def EquivClass_1_L5 Sigma_empty_iff
by auto
moreover have
Vz € r{x}xr{y}. r{f(2)} = r{f(x,y)}

154



proof
fix z assume A4: z € r{x}xr{y}
from A1 A3 have
r{x} € A//r r{y} € A//r
(x,y) € rixrxr{y}
using quotientI equiv_class_self by auto
with A1 A2 A4 show
r{f(2)} = r{f(x,y)}
using EquivClass_1_L7 by blast
qged
ultimately have
Uz € rizxkxriyr. r{f(=2}) = r{f{x,y)}
by (rule ZF1_1_L1)
moreover have
ProjFun2(A,r,f) (r{x},r{y}) = (Uz € r{xIxr{y}. r{f=)PH
proof -
from assms have
ProjFun2(A,r,f) : (A//r)x(A//x) — A//T
(r{x},r{y}) € (4//r)x(A//r)
using EquivClass_1_T1 quotientI by auto
then show thesis using ProjFun2_def ZF_fun_from_tot_val
by auto
qed
ultimately show thesis by simp
qed

16.2 Projecting commutative, associative and distributive
operations.

In this section we show that if the operations are congruent with respect to
an equivalence relation then the projection to the quotient space preserves
commutativity, associativity and distributivity.

The projection of commutative operation is commutative.

lemma EquivClass_2_L1: assumes
Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: f {is commutative on} A
and A4: c1 € A//r c2 € A//r
shows ProjFun2(A,r,f)(cl,c2) = ProjFun2(A,r,f)(c2,cl)
proof -
from A4 obtain x y where D1:
cl = r{x} c2 = r{y}
x€A yeA
using quotient_def by auto
with A1 A2 have ProjFun2(A,r,f){(c1,c2) = r{f(x,y)}
using EquivClass_1_L10 by simp
also from A3 D1 have
rE(x,y)} = rly, %))

using IsCommutative_def by simp
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also from A1 A2 D1 have
r{f{y,x)} = ProjFun2(A,r,f) (c2,cl)
using EquivClass_1_L10 by simp
finally show thesis by simp
qed

The projection of commutative operation is commutative.

theorem EquivClass_2_T1:
assumes equiv(A,r) and Congruent2(r,f)
and f {is commutative on} A
shows ProjFun2(A,r,f) {is commutative on} A//r
using assms IsCommutative_def EquivClass_2_L1 by simp

The projection of an associative operation is associative.

lemma EquivClass_2_L2:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: f {is associative on} A
and A4: c1 € A//r c2 € A//r <3 € A//r
and A5: g = ProjFun2(A,r,f)
shows g(g(cl,c2),c3) = g(cl,g(c2,c3))
proof -
from A4 obtain x y z where D1:
cl = r{x} c2 = r{y} c3 = r{z}
x€A yeA zcA
using quotient_def by auto
with A3 have T1:f(x,y) € A £(y,z) € A
using IsAssociative_def apply_type by auto
with A1 A2 D1 A5 have
glglct,c2),c3) = r{f(£(x,y),2)}
using EquivClass_1_L10 by simp
also from D1 A3 have
.= r{f(x,£(y,z) )}
using IsAssociative_def by simp
also from T1 A1 A2 D1 A5 have
. = g(cl,g(c2,c3))
using EquivClass_1_L10 by simp
finally show thesis by simp
qed

The projection of an associative operation is associative on the quotient.

theorem EquivClass_2_T2:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: f {is associative on} A
shows ProjFun2(A,r,f) {is associative on} A//r
proof -
let g = ProjFun2(A,r,f)
from A1 A2 have
g € (A//r)x(A//xr) — A//r
using EquivClass_1_T1 by simp
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moreover from Al A2 A3 have
Vel € A//r.Vc2 € A//r.Nc3 € A//r.
g(g(cl,c2),c3) = g(cl,g(c2,c3))
using EquivClass_2_L2 by simp
ultimately show thesis
using IsAssociative_def by simp
qed

The essential condition to show that distributivity is preserved by projec-
tions to quotient spaces, provided both operations are congruent with respect
to the equivalence relation.

lemma EquivClass_2_L3:
assumes Al: IsDistributive(X,A,M)
and A2: equiv(X,r)
and A3: Congruent2(r,A) Congruent2(r,M)
and Ad: a € X//r b € X//r c € X//r
and A5: A, = ProjFun2(X,r,A) M, = ProjFun2(X,r,M)
shows M,(a,A,(b,c)) = Ay{ My(a,b),M,(a,c)) A
Mp( Ap(b,c),a ) = Ap( Mp(b,a), My(c,a))
proof
from A4 obtain x y z where x€X yeX ze€X
a=r{x} b=r{y} c=r{z}
using quotient_def by auto
with A1 A2 A3 A5 show
My(a,Ap(b,c)) = Ap( Mp(a,b),My(a,c)) and
My( Ap(b,c),a ) = Ay( My(b,a), My(c,a))
using EquivClass_1_L8A EquivClass_1_L10 IsDistributive_def
by auto
qed

Distributivity is preserved by projections to quotient spaces, provided both
operations are congruent with respect to the equivalence relation.

lemma EquivClass_2_L4: assumes Al: IsDistributive(X,A,M)
and A2: equiv(X,r)
and A3: Congruent2(r,A) Congruent2(r,M)
shows IsDistributive(X//r,ProjFun2(X,r,A),ProjFun2(X,r,M))
proof-
let A, = ProjFun2(X,r,A)
let M, ProjFun2(X,r,M)
from A1 A2 A3 have
VaeX//r.VbeX//r.VceX//r.
Mp(a,Ap(b,c)) = Ap(My(a,b),My(a,c)) A
My (Ap(b,c),a) = Ap(My(b,a),My(c,a))
using EquivClass_2_L3 by simp
then show thesis using IsDistributive_def by simp
qed
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16.3 Saturated sets

In this section we consider sets that are saturated with respect to an equiv-
alence relation. A set A is saturated with respect to a relation r if A =
r~1(r(A)). For equivalence relations saturated sets are unions of equiva-
lence classes. This makes them useful as a tool to define subsets of the
quoutient space using properties of representants. Namely, we often define
a set B C X/r by saying that [z], € B iff x € A. If A is a saturated set, this
definition is consistent in the sense that it does not depend on the choice of
x to represent [z],.

The following defines the notion of a saturated set. Recall that in Isabelle
r-(4) is the inverse image of A with respect to relation r. This definition is
not specific to equivalence relations.

definition
IsSaturated(r,A) = A = r-(r(4))

For equivalence relations a set is saturated iff it is an image of itself.

lemma EquivClass_3_L1: assumes Al: equiv(X,r)
shows IsSaturated(r,A) <— A = r(A)
proof
assume IsSaturated(r,A)
then have A = (converse(r) 0 r)(A)
using IsSaturated_def vimage_def image_comp
by simp
also from A1 have ... = r(d)
using equiv_comp_eq by simp
finally show A = r(A) by simp
next assume A = r(A)
with Al have A = (converse(r) 0 r) (A)
using equiv_comp_eq by simp
also have ... = r-(r(4))
using vimage_def image_comp by simp
finally have A = r-(r(A)) by simp
then show IsSaturated(r,A) using IsSaturated_def
by simp
qed

For equivalence relations sets are contained in their images.

lemma EquivClass_3_L2: assumes Al: equiv(X,r) and A2: ACX
shows A C r(A)
proof
fix a assume ach
with A1 A2 have a € r{a}
using equiv_class_self by auto
with (a€ld) show a € r(A) by auto
qed
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The next lemma shows that if ”~” is an equivalence relation and a set A is

such that a € A and a ~ b implies b € A, then A is saturated with respect
to the relation.

lemma EquivClass_3_L3: assumes Al: equiv(X,r)
and A2: r C XxX and A3: ACX
and A4: VxeA. VyeX. (x,y) € r — y€EA
shows IsSaturated(r,A)
proof -
from A2 A4 have r(A) C A
using image_iff by blast
moreover from A1 A3 have A C r(A)
using EquivClass_3_L2 by simp
ultimately have A = r(A) by auto
with Al show IsSaturated(r,A) using EquivClass_3_L1
by simp
qed

If AC X and A is saturated and z ~ y, then z € A iff y € A. Here we show
only one direction.

lemma EquivClass_3_L4: assumes Al: equiv(X,r)
and A2: IsSaturated(r,A) and A3: ACX
and A4: (x,y) €T
and A5: x€X yeA
shows x€A
proof -
from A1 A5 have x € r{x}
using equiv_class_self by simp
with A1 A3 A4 A5 have x € r(A)
using equiv_class_eq equiv_class_self
by auto
with A1 A2 show x€A
using EquivClass_3_L1 by simp
qed

If AC X and A is saturated and x ~ y, then x € A iff y € A.

lemma EquivClass_3_L5: assumes Al: equiv(X,r)
and A2: IsSaturated(r,A) and A3: ACX
and A4: xeX yeX
and A5: (x,y) € r
shows x€A +— yeA
proof
assume ycA
with assms show x€A using EquivClass_3_L4
by simp
next assume xcA
from A1 A5 have (y,x) € r
using equiv_is_sym by blast
with A1 A2 A3 A4 x€A) show yeA
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using EquivClass_3_L4 by simp
qed

If A is saturated then x € A iff its class is in the projection of A.

lemma EquivClass_3_L6: assumes Al: equiv(X,r)
and A2: IsSaturated(r,A) and A3: ACX and A4: xeX
and A5: B = {r{x}. x€A}
shows x€A +— r{x} € B
proof
assume xcA
with A5 show r{x} € B by auto
next assume r{x} € B
with A5 obtain y where y € A and r{x} = r{y}
by auto
with A1 A3 have (x,y) € r
using eq_equiv_class by auto
with Al A2 A3 A4 <y € A show x€A
using EquivClass_3_L4 by simp
qed

A technical lemma involving a projection of a saturated set and a logical
epression with exclusive or. Note that we don’t really care what Xor is here,
this is true for any predicate.

lemma EquivClass_3_L7: assumes equiv(X,r)
and IsSaturated(r,A) and ACX
and x€X yeX
and B = {r{x}. x€A}
and (x€A) Xor (ye€h)
shows (r{x} € B) Xor (r{y} € B)
using assms EquivClass_3_L6 by simp

end

17 Finite sequences
theory FiniteSeq_ZF imports Nat_ZF_IML funcl
begin

This theory treats finite sequences (i.e. maps n — X, where n = {0,1,..,n—
1} is a natural number) as lists. It defines and proves the properties of basic
operations on lists: concatenation, appending and element etc.

17.1 Lists as finite sequences

A natural way of representing (finite) lists in set theory is through (finite)
sequences. In such view a list of elements of a set X is a function that maps

160



the set {0,1,..n—1} into X. Since natural numbers in set theory are defined
so that n = {0, 1,..n— 1}, a list of length n can be understood as an element
of the function space n — X.

We define the set of lists with values in set X as Lists(X).

definition
Lists(X) = [Uné€nat. (n—X)

The set of nonempty X-value listst will be called NELists (X).

definition
NELists(X) = [Uné€nat. (succ(n)—X)

We first define the shift that moves the second sequence to the domain
{n,.,n + k — 1}, where n,k are the lengths of the first and the second
sequence, resp. To understand the notation in the definitions below recall
that in Isabelle/ZF pred(n) is the previous natural number and denotes the
difference between natural numbers n and k.

definition
ShiftedSeq(b,n) = {(j, b(j #- n)). j € NatInterval(n,domain(b))}

We define concatenation of two sequences as the union of the first sequence
with the shifted second sequence. The result of concatenating lists a and b
is called Concat(a,b).

definition
Concat(a,b) = a U ShiftedSeq(b,domain(a))

For a finite sequence we define the sequence of all elements except the first
one. This corresponds to the ”tail” function in Haskell. We call it Tail here
as well.

definition
Tail(a) = {(k, a(succ(k))). k € pred(domain(a))}

A dual notion to Tail is the list of all elements of a list except the last one.
Borrowing the terminology from Haskell again, we will call this Init.

definition
Init(a) = restrict(a,pred(domain(a)))

Another obvious operation we can talk about is appending an element at
the end of a sequence. This is called Append.

definition
Append(a,x) = a U {(domain(a),x)}

If lists are modeled as finite sequences (i.e. functions on natural intervals
{0,1,..,n — 1} = n) it is easy to get the first element of a list as the value
of the sequence at 0. The last element is the value at n — 1. To hide this
behind a familiar name we define the Last element of a list.

161



definition
Last(a) = a(pred(domain(a)))

Shifted sequence is a function on a the interval of natural numbers.

lemma shifted_seq_props:
assumes Al: n € nat k € nat and A2: b:k—X
shows
ShiftedSeq(b,n): NatInterval(n,k) — X
Vi € NatInterval(n,k). ShiftedSeq(b,n) (i) = b(i #- n)
V j€k. ShiftedSeq(b,n)(n #+ j) = b(j)
proof -
let I = NatInterval(n,domain(b))
from A2 have Fact: I = NatInterval(n,k) using funci_1_L1 by simp
with A1 A2 have Vj€ I. b(j #- n) € X
using inter_diff_in_len apply_funtype by simp
then have
{(j, b(j #- n)). j € I} : I — X by (rule ZF_fun_from_total)
with Fact show thesis_1: ShiftedSeq(b,n): NatInterval(n,k) — X
using ShiftedSeq_def by simp
{ fix i
from Fact thesis_1 have ShiftedSeq(b,n): I — X by simp
moreover
assume i € NatInterval(n,k)
with Fact have i € I by simp
moreover from Fact have
ShiftedSeq(b,n) = {(i, b(i #- n)). i € I}
using ShiftedSeq_def by simp
ultimately have ShiftedSeq(b,n)(i) = b(i #- n)
by (rule ZF_fun_from_tot_val)
} then show thesisl:
Vi € NatInterval(n,k). ShiftedSeq(b,n) (i) = b(i #- n)
by simp
{ fix j
let i = n #+ j
assume A3: je€k
with A1 have j € nat using elem_nat_is_nat by blast
then have i #- n = j using diff_add_inverse by simp
with A3 thesisl have ShiftedSeq(b,n) (i) = b(j)
using NatInterval_def by auto
} then show Vje€k. ShiftedSeq(b,n)(n #+ j) = b(j)
by simp
qed

Basis properties of the contatenation of two finite sequences.

theorem concat_props:
assumes Al: n € nat k € nat and A2: a:n—X b:k—X
shows
Concat(a,b): n #+ k — X
Viéen. Concat(a,b) (i) = a(i)
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Vi € NatInterval(n,k). Concat(a,b)(i) = b(i #- n)
Vj € k. Concat(a,b)(n #+ j) = b(j)
proof -
from A1 A2 have
a:n—X and I: ShiftedSeq(b,n): NatInterval(n,k) — X
and n N NatInterval(n,k) = 0
using shifted_seq_props length_start_decomp by auto
then have
a U ShiftedSeq(b,n): n U NatInterval(n,k) — X U X
by (rule fun_disjoint_Un)
with A1 A2 show Concat(a,b): n #+ k — X
using funcl_1_L1 Concat_def length_start_decomp by auto
{ fix i assume i € n
with A1 I have i ¢ domain(ShiftedSeq(b,n))
using length_start_decomp funcl_1_L1 by auto
with A2 have Concat(a,b) (i) = a(i)
using funcl_1_L1 fun_disjoint_applyl Concat_def by simp
thus Vien. Concat(a,b) (i) = a(i) by simp
fix i assume A3: i € NatInterval(m,k)
with A1 A2 have i ¢ domain(a)
using length_start_decomp funcl_1_L1 by auto
with A1 A2 A3 have Concat(a,b) (i) = b(i #- n)
using funcl_1_L1 fun_disjoint_apply2 Concat_def shifted_seq_props
by simp
} thus II: Vi € NatInterval(nm,k). Concat(a,b)(i) = b(i #- n)
by simp
{ fix ;
let i = n #+ j
assume A3: jek
with A1 have j € nat using elem_nat_is_nat by blast
then have i #- n = j using diff_add_inverse by simp
with A3 II have Concat(a,b) (i) = b(j)
using NatInterval_def by auto
} thus Vj € k. Concat(a,b)(n #+ j) = b(j)
by simp
qed

-

Properties of concatenating three lists.

lemma concat_concat_list:
assumes Al: n € nat k € nat m € nat and
A2: a:n—X b:k—X c:m—X and
A3: d = Concat(Concat(a,b),c)
shows
d :n #+k #+ m — X
Vj € n. d(j) = a(j)
Vi € k. d@ #+ j) = b(j)
Vi € m. d(n #+ k #+ j) = c(§)
proof -
from A1 A2 have I:
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n #+ k € nat m € nat
Concat(a,b): n #+ k — X c:m—X
using concat_props by auto
with A3 show d: n #+k #+ m — X
using concat_props by simp
from I have II: Vi € n #+ k.
Concat (Concat(a,b),c) (i) = Concat(a,b) (i)
by (rule concat_props)
{ fix j assume A4: j € n
moreover from A1l have n C n #+ k using add_nat_le by simp
ultimately have j € n #+ k by auto
with A3 IT have d(j) = Concat(a,b)(j) by simp
with A1 A2 A4 have d(j) = a(j)
using concat_props by simp
thus Vj € n. d(j) = a(j) by simp
fix j assume A5: j € k
with A1 A3 II have d(n #+ j) = Concat(a,b)(n #+ j)
using add_lt_mono by simp
also from A1 A2 A5 have ... = b(j)
using concat_props by simp
finally have d(n #+ j) = b(j) by simp
} thus Vj € k. d(n #+ j) = b(j) by simp
from I have Vj € m. Concat(Concat(a,b),c)(n #+ k #+ j) = c(j)
by (rule concat_props)
with A3 show Vj € m. d(n #+ k #+ j) = c(j)
by simp
qed

-

Properties of concatenating a list with a concatenation of two other lists.

lemma concat_list_concat:
assumes Al: n € nat k € nat m € nat and
A2: a:n—=X b:k—X c:m—X and
A3: e = Concat(a, Concat(b,c))
shows
e : n #+k #+ m — X
Vj € n. e(§) = a(j)
Vi € k. e(n #+ j) = b(j)
Vi €m el #+ k #+ j) = c(j)
proof -
from A1 A2 have I:
n € nat k #+ m € nat
a:n—X Concat(b,c): k #+ m — X
using concat_props by auto
with A3 show e : n #+k #+ m — X
using concat_props add_assoc by simp
from I have Vj € n. Concat(a, Concat(b,c))(j) = a(j)
by (rule concat_props)
with A3 show Vj € n. e(j) = a(j) by simp
from I have II:
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Vj € k #+ m. Concat(a, Concat(b,c))(n #+ j) = Concat(b,c) (j)
by (rule concat_props)
{ fix j assume A4: j € k
moreover from A1l have k C k #+ m using add_nat_le by simp
ultimately have j € k #+ m by auto
with A3 II have e(n #+ j) = Concat(b,c)(j) by simp
also from A1 A2 A4 have ... = b(j)
using concat_props by simp
finally have e(n #+ j) = b(j) by simp
thus Vj € k. e(n #+ j) = b(j) by simp
fix j assume A5: j € m
with A1 IT A3 have e(n #+ k #+ j) = Concat(b,c) (k #+ j)
using add_lt_mono add_assoc by simp
also from A1 A2 A5 have ... = c(j)
using concat_props by simp
finally have e(n #+ k #+ j) = c(j) by simp
} then show Vj € m. e(n #+ k #+ j) = c(j)
by simp
qed

-

Concatenation is associative.

theorem concat_assoc:
assumes Al: n € nat k € nat m € nat and
A2: a:n—X b:k—X c:m—X
shows Concat(Concat(a,b),c) = Concat(a, Concat(b,c))
proof -
let 4 = Concat(Concat(a,b),c)
let e = Concat(a, Concat(b,c))
from A1 A2 have
d:n#+k #+m - X and e : n #+k #+ m — X
using concat_concat_list concat_list_concat by auto
moreover have Vi € n #+k #+ m. d(i) = e(di)
proof -
{ fix i assume i € n #+k #+ m
moreover from A1 have
n #+k #+ m = n U NatInterval(n,k) U NatInterval(n #+ k,m)
using adjacent_intervals3 by simp
ultimately have
i € nV i€ NatInterval(n,k) V i € NatInterval(n #+ k,m)
by simp
moreover
{ assume i € n
with A1 A2 have d(i) = e(i)
using concat_concat_list concat_list_concat by simp }
moreover
{ assume i € NatInterval(n,k)
then obtain j where jck and i = n #+ j
using NatInterval_def by auto
with A1 A2 have d(i) = e(i)
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using concat_concat_list concat_list_concat by simp }
moreover
{ assume i € NatInterval(n #+ k,m)
then obtain j where j € m and i = n #+ k #+ j
using NatInterval_def by auto
with A1 A2 have d(i) = e(di)
using concat_concat_list concat_list_concat by simp }
ultimately have d(i) = e(i) by auto
} thus thesis by simp
qged
ultimately show d = e by (rule func_eq)
qed

Properties of Tail.

theorem tail_props:
assumes Al: n € nat and A2: a: succ(n) — X
shows
Tail(a) : n — X
Vk € n. Tail(a) (k) = a(succ(k))
proof -
from A1 A2 have Vk € n. a(succ(k)) € X
using succ_ineq apply_funtype by simp
then have {(k, a(succ(k))). k € n} : n — X
by (rule ZF_fun_from_total)
with A2 show I: Tail(a) : n — X
using funcl_1_L1 pred_succ_eq Tail_def by simp
moreover from A2 have Tail(a) = {(k, a(succ(k))). k € n}
using funcl_1_L1 pred_succ_eq Tail_def by simp
ultimately show Vk € n. Tail(a) (k) = a(succ(k))
by (rule ZF_fun_from_tot_valO)
qed

Properties of Append. It is a bit surprising that the we don’t need to assume
that n is a natural number.

theorem append_props:
assumes Al: a: n — X and A2: x€X and A3: b = Append(a,x)
shows
b : succ(n) — X
Vken. b(k) = a(k)
b(n) = x
proof -
note Al
moreover have I: n ¢ n using mem_not_refl by simp
moreover from Al A3 have II: b = a U {(n,x)}
using funcl_1_L1 Append_def by simp
ultimately have b : n U {n} — X U {x}
by (rule funcli_1_L11D)
with A2 show b : succ(n) — X
using succ_explained set_elem_add by simp
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from A1 I IT show Vken. b(k) = a(k) and b(n) = x
using funcl_1_L11D by auto
qed

A special case of append_props: appending to a nonempty list does not
change the head (first element) of the list.

corollary head_of_append:
assumes n€ nat and a: succ(n) — X and x€X
shows Append(a,x) (0) = a(0)
using assms append_props empty_in_every_succ by auto

Tail commutes with Append.

theorem tail_append_commute:
assumes Al: n € nat and A2: a: succ(n) — X and A3: x€X
shows Append(Tail(a),x) = Tail(Append(a,x))
proof -
let b = Append(Tail(a),x)
let ¢ = Tail(Append(a,x))
from A1 A2 have I: Tail(a) : n — X using tail_props
by simp
from A1 A2 A3 have
succ(n) € nat and Append(a,x) : succ(succ(n)) — X
using append_props by auto
then have II: Vk € succ(n). c(k) = Append(a,x) (succ(k))
by (rule tail_props)
from assms have
b : succ(n) — X and c : succ(n) — X
using tail_props append_props by auto
moreover have Yk € succ(n). b(k) = c(k)
proof -
{ fix k assume k € succ(n)
hence k € n V k = n by auto
moreover
{ assume A4: k € n
with assms II have c(k) = a(succ(k))
using succ_ineq append_props by simp
moreover
from A3 I have Vken. b(k) = Tail(a) (k)
using append_props by simp
with A1 A2 A4 have b(k) = a(succ(k))
using tail_props by simp
ultimately have b(k) = c(k) by simp }
moreover
{ assume A5: k = n
with A2 A3 I II have b(k) = c(k)
using append_props by auto }
ultimately have b(k) = c(k) by auto
} thus thesis by simp
qed
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ultimately show b = ¢ by (rule func_eq)
qed

Properties of Init.

theorem init_props:
assumes Al: n € nat and A2: a: succ(n) — X
shows
Init(a) : n — X
Vken. Init(a) (k) = a(k)
a = Append(Init(a), a(n))
proof -
have n C succ(n) by auto
with A2 have restrict(a,n): n — X
using restrict_type2 by simp
moreover from Al A2 have I: restrict(a,n) = Init(a)
using funcl_1_L1 pred_succ_eq Init_def by simp
ultimately show thesisl: Init(a) : n — X by simp
{ fix k assume kéen
then have restrict(a,n) (k) = a(k)
using restrict by simp
with I have Init(a) (k) = a(k) by simp
} then show thesis2: Vken. Init(a)(k) = a(k) by simp
let b = Append(Init(a), a(n))
from A2 thesisl have II:
Init(a) : n - X a() € X
b = Append(Init(a), a(n))
using apply_funtype by auto
note A2
moreover from II have b : succ(n) — X
by (rule append_props)
moreover have Vk € succ(n). a(k) = b(k)
proof -
{ fix k assume A3: k € n
from II have Vjen. b(j) = Init(a) (j)
by (rule append_props)
with thesis2 A3 have a(k) = b(k) by simp }
moreover
from II have b(n) = a(n)
by (rule append_props)
hence a(n) = b(n) by simp
ultimately show Vk € succ(n). a(k) = b(k)
by simp
qed
ultimately show a = b by (rule func_eq)
qed

If we take init of the result of append, we get back the same list.

lemma init_append: assumes Al: n € nat and A2: a:n—X and A3: x € X
shows Init(Append(a,x)) = a
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proof -

from A2 A3 have Append(a,x): succ(n)—X using append_props by simp

with A1 have Init(Append(a,x)):n—X and Vkén. Init(Append(a,x)) (k)
= Append(a,x) (k)

using init_props by auto

with A2 A3 have Vken. Init(Append(a,x)) (k) = a(k) using append_props
by simp

with (Init(Append(a,x)):n—X A2 show thesis by (rule func_eq)
qed

A reformulation of definition of Init.

lemma init_def: assumes n € nat and x:succ(n)—X
shows Init(x) = restrict(x,n)
using assms funcli_1_L1 Init_def by simp

A lemma about extending a finite sequence by one more value. This is just
a more explicit version of append_props.

lemma finseq_extend:
assumes a:n—X yeX b =a U {(n,y)}
shows
b: succ(n) — X
Vken. b(k) = a(k)
b(n) =y
using assms Append_def funcl_1_L1 append_props by auto

The next lemma is a bit displaced as it is mainly about finite sets. It is
proven here because it uses the notion of Append. Suppose we have a list of
element of A is a bijection. Then for every element that does not belong to
A we can we can construct a bijection for the set AU {z} by appending z.
This is just a specialised version of lemma bij_extend_point from funci.thy.

lemma bij_append_point:
assumes Al: n € nat and A2: b € bij(n,X) and A3: x ¢ X
shows Append(b,x) € bij(succ(n), X U {x})
proof -
from A2 A3 have b U {(n,x)} € bij(n U {n},X U {x})
using mem_not_refl bij_extend_point by simp
moreover have Append(b,x) = b U {(n,x)}
proof -
from A2 have b:n—X
using bij_def surj_def by simp
then have b : n — X U {x} using funci_1_L1B
by blast
then show Append(b,x) = b U {(n,x)}
using Append_def funci_1_L1 by simp
qed
ultimately show thesis using succ_explained by auto
qed
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The next lemma rephrases the definition of Last. Recall that in ZF we have
{0,1,2,..,n} =n+ 1 =succ(n).

lemma last_seq_elem: assumes a: succ(n) — X shows Last(a) = a(n)
using assms funcl_1_L1 pred_succ_eq Last_def by simp

If two finite sequences are the same when restricted to domain one shorter
than the original and have the same value on the last element, then they are
equal.

lemma finseq_restr_eq: assumes Al: n € nat and
A2: a: succ(n) — X b: succ(n) — X and
A3: restrict(a,n) = restrict(b,n) and
Ad: a(n) = b(n)
shows a = b
proof -
{ fix k assume k € succ(n)
then have k € n V k¥ = n by auto
moreover
{ assume k € n
then have
restrict(a,n) (k) = a(k) and restrict(b,n) (k) = b(k)
using restrict by auto
with A3 have a(k) = b(k) by simp }
moreover
{ assume k = n
with A4 have a(k) = b(k) by simp }
ultimately have a(k) = b(k) by auto
} then have V k € succ(n). a(k) = b(k) by simp
with A2 show a = b by (rule func_eq)
qed

Concatenating a list of length 1 is the same as appending its first (and only)
element. Recall that in ZF set theory 1 = {0}.

lemma append_lelem: assumes Al: n € nat and
A2: a:n - X and A3: b : 1 — X
shows Concat(a,b) = Append(a,b(0))
proof -
let C = Concat(a,b)
let A = Append(a,b(0))
from A1 A2 A3 have I:
n € nat 1 € nat
a:n—X Db:1—X by auto
have C : succ(n) — X
proof -
from I have C : n #+ 1 — X
by (rule concat_props)
with A1 show C : succ(n) — X by simp
qed
moreover from A2 A3 have A : succ(n) — X
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using apply_funtype append_props by simp
moreover have Vk € succ(n). C(k) = A(k)
proof
fix k assume k € succ(n)
moreover
{ assume k € n
moreover from I have Vi € n. C(i) = a(i)
by (rule concat_props)
moreover from A2 A3 have Vien. A(i) = a(i)
using apply_funtype append_props by simp
ultimately have C(k) = A(k) by simp }
moreover have C(n) = A(n)
proof -
from I have Vj € 1. C(n #+ j) = b(j)
by (rule concat_props)
with A1 A2 A3 show C(n) = A(n)
using apply_funtype append_props by simp

qed

ultimately show C(k) = A(k) by auto
qed
ultimately show C = A by (rule func_eq)

qed

A simple lemma about lists of length 1.

lemma list_lenl_singleton: assumes Al: x€X
shows {(0,x)} : 1 — X
proof -
from A1 have {(0,x)} : {0} — X using pair_func_singleton
by simp
moreover have {0} = 1 by auto
ultimately show thesis by simp
qed

A singleton list is in fact a singleton set with a pair as the only element.

lemma list_singleton_pair: assumes Al: x:1—X shows x = {(0,x(0))}
proof -
from A1 have x = {(t,x(t)). t€l} by (rule fun_is_set_of_pairs)
hence x = {(t,x(t)). t€{0} } by simp
thus thesis by simp
qed

When we append an element to the empty list we get a list with length 1.

lemma empty_appendl: assumes Al: xeX
shows Append(0,x): 1 — X and Append(0,x) (0) = x
proof -
let a = Append(0,x)
have a = {(0,x)} using Append_def by auto
with A1 show a : 1 — X and a(0) = x
using list_lenl_singleton pair_func_singleton
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by auto
qed

Appending an element is the same as concatenating with certain pair.

lemma append_concat_pair:
assumes n € nat and a: n — X and xeX
shows Append(a,x) = Concat(a,{(0,x)})
using assms list_lenl_singleton append_lelem pair_val
by simp

An associativity property involving concatenation and appending. For proof
we just convert appending to concatenation and use concat_assoc.

lemma concat_append_assoc: assumes Al: n € nat k € nat and
A2: a:n—X b:k—X and A3: x € X
shows Append(Concat(a,b),x) = Concat(a, Append(b,x))
proof -
from A1 A2 A3 have
n #+ k € nat Concat(a,b) : n #+ k — X x € X
using concat_props by auto
then have
Append(Concat(a,b) ,x) = Concat(Concat(a,b),{(0,x)})
by (rule append_concat_pair)
moreover
from A1 A2 A3 have
n € nat k € nat 1 € nat
a:n—X  b:k—=X {{(0,x)} : 1 = X
using list_lenl_singleton by auto
then have
Concat (Concat (a,b),{(0,x)}) = Concat(a, Concat(b,{(0,x)}))
by (rule concat_assoc)
moreover from A1 A2 A3 have Concat(b,{(0,x)}) = Append(b,x)
using list_lenl_singleton append_lelem pair_val by simp
ultimately show Append(Concat(a,b),x) = Concat(a, Append(b,x))
by simp
qed

An identity involving concatenating with init and appending the last ele-
ment.

lemma concat_init_last_elem:
assumes n € nat k € nat and
a:n — X and b : succ(k) — X
shows Append(Concat(a,Init(b)),b(k)) = Concat(a,b)
using assms init_props apply_funtype concat_append_assoc
by simp

A lemma about creating lists by composition and how Append behaves in
such case.

lemma list_compose_append:
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assumes Al: n € nat and A2: a : n — X and
A3: x e Xand A4: ¢ : X = Y
shows
c 0 Append(a,x) : succ(n) — Y
c 0 Append(a,x) = Append(c 0 a, c(x))
proof -
let b = Append(a,x)
let d = Append(c 0 a, c(x))
from A2 A4 have c 0 a : n — Y
using comp_fun by simp
from A2 A3 have b : succ(n) — X
using append_props by simp
with A4 show ¢ 0 b : succ(n) — Y
using comp_fun by simp
moreover from A3 A4 «c 0 a : n — V) have
d: succ(n) — Y
using apply_funtype append_props by simp
moreover have Vk € succ(n). (c 0 b) (k) = d(k)
proof -
{ fix k assume k € succ(n)
with ® : succ(n) — X have
(c 0b) (k) = c(b(k))
using comp_fun_apply by simp
with A2 A3 A4 «c0a:n—-Y<«0a:n—Y &k € succ(n)
have (c 0 b) (k) = d(k)
using append_props comp_fun_apply apply_funtype

by auto
} thus thesis by simp
qed
ultimately show ¢ 0 b = d by (rule func_eq)
qed

A lemma about appending an element to a list defined by set comprehension.

lemma set_list_append: assumes
Al: Vi € succ(k). b(i) € X and
A2: a = {(i,b(1)). i € succ(k)}
shows
a: succ(k) — X
{(i,b(i)). i € k}: k — X
a = Append({(i,b(i)). i € k},b(k))
proof -
from A1 have {(i,b(i)). i € succ(k)} : succ(k) — X
by (rule ZF_fun_from_total)
with A2 show a: succ(k) — X by simp
from A1 have Vi € k. b(i) € X
by simp
then show {(i,b(i)). i € k}: k — X
by (rule ZF_fun_from_total)
with A2 show a = Append({(i,b(i)). i € k},b(k))
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using funcl_1_L1 Append_def by auto
qed

An induction theorem for lists.

lemma list_induct: assumes Al: Vbel—X. P(b) and
A2: VDbeNELists(X). P(b) — (VxeX. P(Append(b,x))) and
A3: d € NELists(X)
shows P(d)
proof -
{ fix n
assume nénat
moreover from Al have Vbé&succ(0)—X. P(b) by simp
moreover have Vkenat. ((Vbesucc(k)—X. P(b)) — (Vcesucc(succ(k))—X.
P(c)))
proof -
{ fix k assume k € nat assume Vbesucc(k)—X. P(b)
have Vcesucc(succ(k))—X. P(c)
proof
fix ¢ assume c: succ(succ(k))—X
let b = Init(c)
let x = c(succ(k))
from (k € nat) (c: succ(succ(k))—X) have b:succ(k)—=X
using init_props by simp
with A2 (k € nat) (Vbesucc(k)—X. P(b)) have VxeX. P(Append(b,x))
using NELists_def by auto
with (c: succ(succ(k))—X have P(Append(b,x)) using apply_funtype

by simp
with (k € nat) (c: succ(succ(k))—=X> show P(c)
using init_props by simp
qed
} thus thesis by simp
qed
ultimately have Vb&succ(n)—X. P(b) by (rule ind_on_nat)
} with A3 show thesis using NELists_def by auto

qed

17.2 Lists and cartesian products

Lists of length n of elements of some set X can be thought of as a model of
the cartesian product X™ which is more convenient in many applications.

There is a natural bijection between the space (n+1) — X of lists of length
n + 1 of elements of X and the cartesian product (n — X) x X.

lemma lists_cart_prod: assumes n € nat
shows {(x,(Init(x),x(@))). x € succ(n)—X} € bij(succ(n)—X, (n—X)xX)
proof -
let £ = {(x,(Init(x),x(@))). x € succ(n)—X}
from assms have Vx € succ(n)—X. (Init(x),x(m)) € (n—X)xX
using init_props succ_iff apply_funtype by simp
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then have I: f: (succ(n)—X)—((n—X)xX) by (rule ZF_fun_from_total)
moreover from assms I have Vxé&succ(n)—=X.Vy€succ(n)—=X. £(x)=£f(y)
— x=y
using ZF_fun_from_tot_val init_def finseq_restr_eq by auto
moreover have Vpe(n—X)xX.3Ixesucc(n)—=X. £(x) =p
proof
fix p assume p € (n—X)xX
let x = Append(fst(p),snd(p))
from assms p € (n—X)xX have x:succ(n)—X using append_props by
simp
with I have f(x) = (Init(x),x(n)) using succ_iff ZF_fun_from_tot_val
by simp
moreover from assms (p € (n—X)xX have Init(x) = fst(p) and x(n)
= snd(p)
using init_append append_props by auto
ultimately have f(x) = (fst(p),snd(p)) by auto
with @ € (0—X)xX x:succ(n)—X) show Jxesucc(n)—X. £(x) = p by
auto
qed
ultimately show thesis using inj_def surj_def bij_def by auto
qed

We can identify a set X with lists of length one of elements of X.

lemma singleton_list_bij: shows {(x,x(0)). x€1—-X} € bij(1—=X,X)
proof -
let £ = {(x,x(0)). x€1—=X}
have Vxe1—X. x(0) € X using apply_funtype by simp
then have I: f:(1—X)—=X by (rule ZF_fun_from_total)
moreover have Vxel-X.Vyel—=X. £(x) = £(y) — x=y
proof -
{ fix xy
assume x:1—=X y:1—=X and f(x) = £(y)
with I have x(0) = y(0) using ZF_fun_from_tot_val by auto
moreover from x:1-X (y:12X have x = {(0,x(0))} and y = {(0,y(0))}

using list_singleton_pair by auto
ultimately have x=y by simp
} thus thesis by auto
qged
moreover have VyeX. Ixe1—=X. f(x)=y
proof
fix y assume yeX
let x = {(0,y)}
from I (yeX) have x:1—X and f(x) =y
using list_lenl_singleton ZF_fun_from_tot_val pair_val by auto
thus dxe1—-X. £(x)=y by auto
qed
ultimately show thesis using inj_def surj_def bij_def by simp
qed
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We can identify a set of X-valued lists of length with X.

lemma list_singleton_bij: shows
{(x,{(0,x)}).x€X} € bij(X,1—X) and
{{y,y(0)). ye1—-X} = converse({(x,{(0,x)}).x€X}) and
{(x,{(0,x)}).x€X} = converse({(y,y(0)). ye1—=X})
proof -
let £ = {(y,y(0)). ye1—-X}
let g = {(x,{(0,%)}).xeX}
have 1 = {0} by auto
then have f € bij(1—X,X) and g:X—(1—X)
using singleton_list_bij pair_func_singleton ZF_fun_from_total
by auto
moreover have Vycl—X.g(f(y)) =y
proof
fix y assume y:1—X
have f:(1—X)—X using singleton_list_bij bij_def inj_def by simp
with <1 = {0} :1-X (g:X—=(1—X)) show g(f(y)) =y
using ZF_fun_from_tot_val apply_funtype func_singleton_pair
by simp
qed
ultimately show g € bij(X,1—X) and f = converse(g) and g = converse(f)
using comp_conv_id by auto
qged

What is the inverse image of a set by the natural bijection between X-valued
singleton lists and X7

lemma singleton_vimage: assumes UCX shows {x€1—X. x(0) € U} = { {(0,y)}.
yeU}
proof
have 1 = {0} by auto
{ fix x assume x € {x€1—-X. x(0) € U}
with 1 = {0} have x = {(0, x(0))} using func_singleton_pair by auto

} thus {xc1-=X. x(0) € U} C { {(0,y)}. y€U} by auto
{ fix x assume x € { {(0,y)}. yeU}
then obtain y where x = {(0,y)} and y€U by auto
with (1 = {0} assms have x:1—X using pair_func_singleton by auto
} thus { {{(0,y)}. yeU} C {x€1—X. x(0) € U} by auto
qed

A technical lemma about extending a list by values from a set.

lemma list_append_from: assumes Al: n € nat and A2: U C n—X and A3:
vV CX
shows
{x € succ(n)—X. Init(x) € U A x(n) € V} = (|JyeV.{Append(x,y).x€U})
proof -
{ fix x assume x € {x € succ(n)—X. Init(x) € U A x(n) € V}
then have x € succ(n)—X and Init(x) € U and I: x(n) € V
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by auto
let y = x(n)
from A1 and x € succ(n)—X have x = Append(Init(x),y)
using init_props by simp
with I and (Init(x) € U) have x € (|Jy€V.{Append(a,y).acU}) by auto
}
moreover
{ fix x assume x € (|JyeV.{Append(a,y).acU})
then obtain a y where yeV and acU and x = Append(a,y) by auto
with A2 A3 have x: succ(n)—X using append_props by blast
from A2 A3 (yeV) (a€l have a:n—X and y€X by auto
with A1 @€l (yeW < = Append(a,y)’ have Init(x) € U and =x(n) €

using append_props init_append by auto
with <x: succ(n)—X have x € {x € succ(n)—X. Init(x) € U A x(n)
e v}

by auto
}
ultimately show thesis by blast
qed
end

18 Inductive sequences

theory InductiveSeq_ZF imports Nat_ZF_IML FiniteSeq_ZF
begin

In this theory we discuss sequences defined by conditions of the form ag =
x, ap+1 = f(ap) and similar.

18.1 Sequences defined by induction

One way of defining a sequence (that is a function a : N — X)) is to provide
the first element of the sequence and a function to find the next value when
we have the current one. This is usually called ”defining a sequence by
induction”. In this section we set up the notion of a sequence defined by
induction and prove the theorems needed to use it.

First we define a helper notion of the sequence defined inductively up to a
given natural number n.

definition
InductiveSequenceN(x,f,n) =
THE a. a: succ(n) — domain(f) A a(0) = x A (Vkén. a(succ(k)) = f(a(k)))

From that we define the inductive sequence on the whole set of natural
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numbers. Recall that in Isabelle/ZF the set of natural numbers is denoted
nat.

definition
InductiveSequence(x,f) = |Jn€nat. InductiveSequenceN(x,f,n)

First we will consider the question of existence and uniqueness of finite
inductive sequences. The proof is by induction and the next lemma is the
P(0) step. To understand the notation recall that for natural numbers in
set theory we have n = {0,1,..,n — 1} and succ(n)={0,1,..,n}.

lemma indseq_exunO: assumes Al: f: X—X and A2: xeX

shows
d! a. a: succ(0) — X A a(0) = x A ( Vke0. a(succ(k)) = f(a(k)) )
proof
fix a b
assume A3:
a: succ(0) — X A a(0) = ( Vke0. a(succ(k)) = f(a(k)) )
( Vke0. b(succ(k)) = £(b(k)) )

x A
b: succ(0) — X A b(0) = x A
moreover have succ(0) = {0} by auto
ultimately have a: {0} — X b: {0} — X by auto
then have a = {(0, a(0))} b = {(0, b(0))} using func_singleton_pair
by auto
with A3 show a=b by simp
next
let a = {(0,x)}
have a : {0} — {x} using singleton_fun by simp
moreover from A1 A2 have {x} C X by simp
ultimately have a : {0} — X
using funci_1_L1B by blast
moreover have {0} = succ(0) by auto
ultimately have a : succ(0) — X by simp
with Al show
3 a. a: succ(0) — X A a(0) = x A (Vke0. a(succ(k)) = f(a(k)))
using singleton_apply by auto
qed

A lemma about restricting finite sequences needed for the proof of the in-
ductive step of the existence and uniqueness of finite inductive seqences.

lemma indseq_restrict:
assumes Al: f: X—X and A2: x€X and A3: n € nat and
Ad: a: succ(succ(n))— X A a(0) = x A (Vkesucc(n). a(succ(k)) = f(ak)))
and A5: a, = restrict(a,succ(n))
shows
a,: succ(n) - X A a,.(0) = x A ( Vkén. a,.(succ(k)) = f(a,(k)) )
proof -
from A3 have succ(n) C succ(succ(n)) by auto
with A4 A5 have a,: succ(n) — X using restrict_type2 by auto
moreover
from A3 have 0 € succ(n) using empty_in_every_succ by simp
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with A4 A5 have a,.(0) = x using restrict_if by simp
moreover from A3 A4 A5 have Vken. a,.(succ(k)) = f(a,.(k))
using succ_ineq restrict_if by auto
ultimately show thesis by simp
qed

Existence and uniqueness of finite inductive sequences. The proof is by
induction and the next lemma is the inductive step.

lemma indseq_exun_ind:
assumes Al: f: X—X and A2: x€X and A3: n € nat and
Ad4: J! a. a: succ(n) — X A a(0) = x A (Vken. a(succ(k)) = f(a(k)))
shows
d! a. a: succ(succ(m)) — X A a(0)
( Vkesucc(n). a(succ(k)) = f(a(k))
proof
fix a b assume
A5: a: succ(succ(n)) — X A a(0) = x A
( Vkesucc(n). a(succ(k)) = f(a(k)) ) and
A6: b: succ(succ(n)) — X A b(0) = x A
( Vk€succ(n). b(succ(k)) = £(b(k)) )
show a = b
proof -
let a, = restrict(a,succ(n))
let b, = restrict(b,succ(n))
note A1 A2 A3 A5
moreover have a, = restrict(a,succ(n)) by simp
ultimately have I:
a,: succ(n) — X A a,.(0) = x A ( Vkén. a,(succ(k)) = f(a,(k)) )
by (rule indseq_restrict)
note A1 A2 A3 A6
moreover have b, = restrict(b,succ(n)) by simp
ultimately have
b,: succ(n) — X A b,(0) = x A ( Vkén. b,.(succ(k)) = f(b,.(k)) )
by (rule indseq_restrict)
with A4 I have II: a, = b, by blast
from A3 have succ(n) € nat by simp
moreover from A5 A6 have
a: succ(succ(n)) — X and b: succ(succ(n)) — X
by auto
moreover note II
moreover
have T: n € succ(n) by simp
then have a,.(n) = a(n) and b,.(n) = b(n) using restrict
by auto
with A5 A6 II T have a(succ(n)) = b(succ(n)) by simp
ultimately show a = b by (rule finseq_restr_eq)
qed
next show
d a. a: succ(succ(n)) — X A a(0) = x A

x A

~
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( Vkesucc(n). a(succ(k)) = f(a(k)) )
proof -
from A4 obtain a where III: a: succ(n) — X and IV: a(0) = x
and V: Vken. a(succ(k)) = f(a(k)) by auto
let b = a U {(succ(n), f(a(@m)))}
from A1 IIT have
VI: b : succ(succ(n)) — X and
VII: Vk € succ(n). b(k) = a(k) and
VIII: b(succ(n)) = f(a(n))
using apply_funtype finseq_extend by auto
from A3 have 0 € succ(n) using empty_in_every_succ by simp
with IV VII have IX: b(0) = x by auto
{ fix k assume k € succ(n)
then have kén V k = n by auto
moreover
{ assume A7: k € n
with A3 VII have b(succ(k)) = a(succ(k))
using succ_ineq by auto
also from A7 V VII have a(succ(k)) = £(b(k)) by simp
finally have b(succ(k)) = £(b(k)) by simp }
moreover
{ assume A8: k = n
with VIII have b(succ(k)) = £f(a(k)) by simp
with A8 VII VIII have b(succ(k)) = £(b(k)) by simp }
ultimately have b(succ(k)) = £(b(k)) by auto
} then have Vk € succ(n). b(succ(k)) = £(b(k)) by simp
with VI IX show thesis by auto
qed
qed

The next lemma combines indseq_exun0 and indseq_exun_ind to show the
existence and uniqueness of finite sequences defined by induction.

lemma indseq_exun:
assumes Al: f: X—X and A2: x€X and A3: n € nat
shows
d! a. a: succ(n) — X A a(0) = x A (Vkén. a(succ(k)) = f(a(k)))
proof -
note A3
moreover from A1 A2 have
d1 a. a: succ(0) — X A a(0) = x A ( VkeO. a(succ(k)) = f(a(k)) )
using indseq_exun0 by simp
moreover from A1 A2 have Vk € nat.
(d' a. a: succ(k) — X A a(0) = x A
( Viek. a(succ(i)) = f(a(i)) )) —
( d' a. a: succ(succ(k)) — X A a(0)
( Viesucc(k). a(succ(i)) = f(a(i)) )
using indseq_exun_ind by simp
ultimately show
d1 a. a: succ(n) - X A a(0) = x A ( Vkén. a(succ(k)) = f(a(k)) )

~ |
"
>
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by (rule ind_on_nat)
qed

We are now ready to prove the main theorem about finite inductive se-
quences.

theorem fin_indseq_props:
assumes Al: f: X—X and A2: x€X and A3: n € nat and
A4: a = InductiveSequenceN(x,f,n)
shows
a: succ(n) — X
a(0) = x
Vken. a(succ(k)) = flak))
proof -
let i = THE a. a: succ(n) — X A a(0) = x A
( Vken. a(succ(k)) = f(a(k)) )
from A1 A2 A3 have
! a. a: succ(n) — X A a(0) = x A ( Vkén. a(succ(k)) = f(a(k)) )
using indseq_exun by simp
then have
i: succ(m) — X A 1(0) = x A ( Vkén. i(succ(k)) = £(i(k)) )
by (rule thel)
moreover from Al A4 have a = i
using InductiveSequenceN_def funcl_1_L1 by simp
ultimately show
a: succ(n) —» X a(0) = x Vkén. a(succ(k)) = f(a(k))
by auto
qed

A corollary about the domain of a finite inductive sequence.

corollary fin_indseq_domain:
assumes Al: f: X—X and A2: x€X and A3: n € nat
shows domain(InductiveSequenceN(x,f,n)) = succ(n)
proof -
from assms have InductiveSequenceN(x,f,n) : succ(n) — X
using fin_indseq_props by simp
then show thesis using funcl_1_L1 by simp
qed

The collection of finite sequences defined by induction is consistent in the
sense that the restriction of the sequence defined on a larger set to the
smaller set is the same as the sequence defined on the smaller set.

lemma indseq_consistent: assumes Al: f: X—X and A2: x€X and

A3: i € nat j € nat and A4: i C j

shows

restrict(InductiveSequenceN(x,f,j),succ(i)) = InductiveSequenceN(x,f,i)
proof -

let a = InductiveSequenceN(x,f,j)

let b restrict (InductiveSequenceN(x,f,j),succ(i))
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let ¢ = InductiveSequenceN(x,f,i)

from A1 A2 A3 have
a: succ(j) — X a(0) = x Vkej. a(succ(k)) = f(ak))
using fin_indseq_props by auto

with A3 A4 have
b: succ(i) — X A b(0) = x A ( Vk€i. b(succ(k)) = £(b(k)))
using succ_subset restrict_type2 empty_in_every_succ restrict succ_ineq
by auto

moreover from A1 A2 A3 have
c: succ(i) - X A c(0) = x A ( Vkei. c(succ(k)) = f£(c(k)))
using fin_indseq_props by simp

moreover from Al A2 A3 have
3! a. a: succ(i) - X A a(0) = x A ( Vkei. a(succ(k)) = f(a(k)) )
using indseq_exun by simp

ultimately show b = ¢ by blast

qed

For any two natural numbers one of the corresponding inductive sequences
is contained in the other.

lemma indseq_subsets: assumes Al: f: X—X and A2: x€X and
A3: i € nat j € nat and
A4: a = InductiveSequenceN(x,f,i) b = InductiveSequenceN(x,f,j)
shows a C b Vb Ca
proof -
from A3 have iCj V jCi using nat_incl_total by simp
moreover
{ assume iCj

with A1 A2 A3 A4 have restrict(b,succ(i)) = a
using indseq_consistent by simp
moreover have restrict(b,succ(i)) C b
using restrict_subset by simp
ultimately have a C b V b C a by simp }
moreover
{ assume jCi
with A1 A2 A3 A4 have restrict(a,succ(j)) =D

using indseq_consistent by simp
moreover have restrict(a,succ(j)) C a
using restrict_subset by simp
ultimately have a C b V b C a by simp }
ultimately show a C b V b C a by auto
qed

The first theorem about properties of infinite inductive sequences: inductive
sequence is a indeed a sequence (i.e. a function on the set of natural numbers.

theorem indseq_seq: assumes Al: f: X—X and A2: xe€X
shows InductiveSequence(x,f) : nat — X

proof -
let S = {InductiveSequenceN(x,f,n). n € nat}
{ fix a assume a€s
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then obtain n where n € nat and a = InductiveSequenceN(x,f,n)
by auto
with A1 A2 have a : succ(n)—X using fin_indseq_props
by simp
then have A B. a:A—B by auto
} then have Va € S. 3A B. a:A—B by auto
moreover
{ fix a b assume a€S bes
then obtain i j where i€nat jenat and
a = InductiveSequencelN(x,f,i) b = InductiveSequenceN(x,f,j)
by auto
with A1 A2 have aCb V bCa using indseq_subsets by simp
} then have VaceS. VbeS. aCb V bCa by auto
ultimately have |JS : domain(|JS) — range(|JS)
using fun_Union by simp
with A1 A2 have I: |JS : nat — range(|JS)
using domain UN fin_indseq_domain nat_union_succ by simp
moreover
{ fix k assume A3: k € nat
let vy = (US)(x)
note I A3
moreover have y = (|JS) (k) by simp
ultimately have (k,y) € (|JS) by (rule funci_1_L5A)
then obtain n where n € nat and II: (k,y) € InductiveSequenceN(x,f,n)
by auto
with A1 A2 have InductiveSequenceN(x,f,n): succ(n) — X
using fin_indseq_props by simp
with IT have y € X using funci_1_L5 by blast
} then have Vk € nat. (|JS)(k) € X by simp
ultimately have |JS : nat — X using funcl_1_L1A
by blast
then show InductiveSequence(x,f) : nat — X
using InductiveSequence_def by simp
qed

Restriction of an inductive sequence to a finite domain is the corresponding
finite inductive sequence.

lemma indseq_restr_eq:
assumes Al: f: X—X and A2: x€X and A3: n € nat
shows
restrict(InductiveSequence(x,f),succ(n)) = InductiveSequenceN(x,f,n)
proof -
let a = InductiveSequence(x,f)
let b InductiveSequenceN(x,f,n)
let S = {InductiveSequenceN(x,f,n). n € nat}
from A1 A2 A3 have
I: a : nat —» X and succ(n) C nat
using indseq_seq succnat_subset_nat by auto
then have restrict(a,succ(n)) : succ(n) — X
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using restrict_type2 by simp
moreover from Al A2 A3 have b : succ(n) — X
using fin_indseq_props by simp
moreover
{ fix k assume A4: k € succ(n)
from A1 A2 A3 T have
US : nat = X besS b: succln) — X
using InductiveSequence_def fin_indseq_props by auto
with A4 have restrict(a,succ(n)) (k) = b(k)
using fun_Union_apply InductiveSequence_def restrict_if

by simp
} then have Vk € succ(n). restrict(a,succ(n)) (k) = b(k)
by simp
ultimately show thesis by (rule func_eq)

qed

The first element of the inductive sequence starting at x and generated by
f is indeed z.

theorem indseq_valatO: assumes Al: f: X—X and A2: x€X
shows InductiveSequence(x,f)(0) = x
proof -
let a = InductiveSequence(x,f)
let b = InductiveSequenceN(x,f,0)
have T: Ocnat 0 € succ(0) by auto
with A1 A2 have b(0) = x
using fin_indseq_props by simp
moreover from T have restrict(a,succ(0))(0) = a(0)
using restrict_if by simp
moreover from A1 A2 T have
restrict(a,succ(0)) =b
using indseq_restr_eq by simp
ultimately show a(0) = x by simp
qed

An infinite inductive sequence satisfies the inductive relation that defines it.

theorem indseq_vals:
assumes Al: f: X—X and A2: x€X and A3: n € nat
shows
InductiveSequence(x,f) (succ(n)) = f(InductiveSequence(x,f) (n))
proof -
let a = InductiveSequence(x,f)
let b = InductiveSequenceN(x,f,succ(n))
from A3 have T:
succ(n) € succ(succ(n))
succ(succ(n)) € nat
n € succ(succ(n))
by auto
then have a(succ(n)) = restrict(a,succ(succ(n))) (succ(n))
using restrict_if by simp
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also from A1 A2 T have ... = f(restrict(a,succ(succ(n))) (n))
using indseq_restr_eq fin_indseq_props by simp

also from T have ... = f(a(n)) using restrict_if by simp
finally show a(succ(n)) = f(a(n)) by simp
qed

18.2 Images of inductive sequences

In this section we consider the properties of sets that are images of inductive
sequences, that is are of the form { (™) (z) : n € N} for some x in the domain
of f, where f(") denotes the n’th iteration of the function f. For a function
f: X — X and a point x € X such set is set is sometimes called the orbit
of z generated by f.

The basic properties of orbits.

theorem ind_seq_image: assumes Al: f: X—X and A2: x€X and
A3: A = InductiveSequence(x,f) (nat)
shows x€A and VyeA. £(y) € A
proof -
let a = InductiveSequence(x,f)
from A1 A2 have a : nat — X using indseq_seq
by simp
with A3 have I: A = {a(n). n € nat} using func_imagedef
by auto hence a(0) € A by auto
with A1 A2 show x€A using indseq_valatO by simp
{ fix y assume y€A
with I obtain n where II: n € nat and III: y = a(n)
by auto
with A1 A2 have a(succ(n)) = £(y)
using indseq_vals by simp
moreover from I II have a(succ(n)) € A by auto
ultimately have f(y) € A by simp
} then show VyeA. £(y) € A by simp
qed

18.3 Subsets generated by a binary operation

In algebra we often talk about sets ”generated” by an element, that is sets
of the form (in multiplicative notation) {a™|n € Z}. This is a related to a
general notion of "power” (as in a” = a-a-..-a ) or multiplicity n-a =
a~+a+ ..+ a. The intuitive meaning of such notions is obvious, but we need
to do some work to be able to use it in the formalized setting. This sections
is devoted to sequences that are created by repeatedly applying a binary
operation with the second argument fixed to some constant.

Basic propertes of sets generated by binary operations.

theorem binop_gen_set:
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assumes Al: f: XxXY — X and A2: x€X y€Y and

A3: a = InductiveSequence(x,Fix2ndVar(f,y))

shows

a : nat —- X

a(nat) € Pow(X)

x € a(nat)

Vz € a(nat). Fix2ndVar(f,y)(z) € a(nat)

proof -

let g = Fix2ndVar(f,y)

from A1 A2 have I: g : X—=X
using fix_2nd_var_fun by simp

with A2 A3 show a : nat — X
using indseq_seq by simp

then show a(nat) € Pow(X) using funcl_1_L6 by simp

from A2 A3 I show x € a(nat) using ind_seq_image by blast

from A2 A3 I have
g : X=X x€X a(nat) = InductiveSequence(x,g) (nat)
by auto

then show Vz € a(nat). Fix2ndVar(f,y)(z) € a(nat)
by (rule ind_seq_image)

qed

A simple corollary to the theorem binop_gen_set: a set that contains all
iterations of the application of a binary operation exists.

lemma binop_gen_set_ex: assumes Al: f: XxXY — X and A2: x€X yevY
shows {A € Pow(X). x€éA A (Vz € A. f(z,y) € A) } #0
proof -
let a = InductiveSequence(x,Fix2ndVar(f,y))
let A = a(nat)
from A1 A2 have I: A € Pow(X) and x € A using binop_gen_set
by auto
moreover
{ fix z assume T: z€A
with A1 A2 have Fix2ndVar(f,y)(z) € A
using binop_gen_set by simp
moreover
from I T have z € X by auto
with A1 A2 have Fix2ndVar(f,y)(z) = f(z,y)
using fix_var_val by simp
ultimately have f(z,y) € A by simp
} then have Vz € A. £(z,y) € A by simp
ultimately show thesis by auto
qed

A more general version of binop_gen_set where the generating binary oper-
ation acts on a larger set.

theorem binop_gen_setl: assumes Al: f: XxXY — X and
A2: X; C X and A3: x€X; ye€Y and
Ad: Vtexy. £(t,y) € X3 and
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A5: a = InductiveSequence(x,Fix2ndVar(restrict(f,X;xY),y))
shows
a : nat — Xy
a(nat) € Pow(X;)
x € a(nat)
Vz € a(nat). Fix2ndVar(f,y)(z) € a(nat)
Vz € a(nat). f(z,y) € a(nat)
proof -
let h = restrict(f,X;xY)
let g = Fix2ndVar(h,y)
from A2 have X;xY C XxY by auto
with A1 have I: h : X;xY — X
using restrict_type2 by simp
with A3 have II: g: X; — X using fix_2nd_var_fun by simp
from A3 A4 I have VteX;. g(t) € X
using restrict fix_var_val by simp
with II have III: g : X; — X; using funcl_1_L1A by blast
with A3 A5 show a : nat — X; using indseq_seq by simp
then show IV: a(nat) € Pow(X;) using funcli_1_L6 by simp
from A3 A5 III show x € a(nat) using ind_seq_image by blast
from A3 A5 III have
g X1 = X x€X; a(nat) = InductiveSequence(x,g) (nat)
by auto
then have Vz € a(nat). Fix2ndVar(h,y)(z) € a(nat)
by (rule ind_seq_image)
moreover
{ fix z assume z € a(nat)
with IV have z € X; by auto
with A1 A2 A3 have g(z) = Fix2ndVar(f,y) (z)
using fix_2nd_var_restr_comm restrict by simp
} then have Vz € a(nat). g(z) = Fix2ndVar(f,y)(z) by simp
ultimately show Vz € a(nat). Fix2ndVar(f,y)(z) € a(nat) by simp
moreover
{ fix z assume z € a(nat)
with A2 IV have z€X by auto
with A1 A3 have Fix2ndVar(f,y)(z) = f(z,y)
using fix_var_val by simp
} then have Vz € a(nat). Fix2ndVar(f,y)(z) = £(z,y)
by simp
ultimately show Vz € a(nat). f(z,y) € a(nat)
by simp
qed

A generalization of binop_gen_set_ex that applies when the binary operation
acts on a larger set. This is used in our Metamath translation to prove
the existence of the set of real natural numbers. Metamath defines the real
natural numbers as the smallest set that cantains 1 and is closed with respect
to operation of adding 1.

lemma binop_gen_set_exl: assumes Al: f: ¥XxXY — X and
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A2: X; C X and A3: x€X; ye€Y and
Ad: VteXy. f(t,y) € X
shows {A € Pow(X;). x€A A (Vz € A. f(z,y) € A) } # 0
proof -
let a = InductiveSequence(x,Fix2ndVar(restrict(f,X;xY),y))
let A = a(nat)
from A1 A2 A3 A4 have
A €Pow(X;) x€A Vz e A f(z,y) € A
using binop_gen_setl by auto
thus thesis by auto
qed

18.4 Inductive sequences with changing generating function

A seemingly more general form of a sequence defined by induction is a
sequence generated by the difference equation zy,+1 = f,(x,) where n — f,
is a given sequence of functions such that each maps X into inself. For
example when f,(z) := x 4+ z, then the equation S, 11 = f,(S,) describes
the sequence n — S, = so + Y " Tn, i.e. the sequence of partial sums of
the sequence {so, zo, z1, 3, ..}.

The situation where the function that we iterate changes with n can be
derived from the simpler case if we define the generating function appro-
priately. Namely, we replace the generating function in the definitions
of InductiveSequenceN by the function f : X xn — X x n, f(z,k) =
(fe(z),k+ 1) if & < n, (fr(x),k) otherwise. The first notion defines the
expression we will use to define the generating function. To understand the
notation recall that in standard Isabelle/ZF for a pair s = (x,n) we have
fst(s) = = and snd(s) = n.

definition

StateTransfFunNMeta(F,n,s) =
if (snd(s) € n) then (F(snd(s))(fst(s)), succ(snd(s))) else s

Then we define the actual generating function on sets of pairs from X x
{0,1,..,n}.

definition
StateTransfFunN(X,F,n) = {(s, StateTransfFunNMeta(F,n,s)). s € Xxsucc(n)}

Having the generating function we can define the expression that we cen use
to define the inductive sequence generates.

definition
StatesSeq(x,X,F,n) =
InductiveSequenceN((x,0), StateTransfFunN(X,F,n),n)

Finally we can define the sequence given by a initial point x, and a sequence
F of n functions.
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definition
InductiveSeqVarFN(x,X,F,n) = {(k,fst(StatesSeq(x,X,F,n)(k))). k € succ(n)}

The state transformation function (StateTransfFunN is a function that trans-
forms X x n into itself.

lemma state_trans_fun: assumes Al: n € nat and A2: F: n — (X—X)
shows StateTransfFunN(X,F,n): XXxsucc(n) — Xxsucc(n)
proof -
{ fix s assume A3: s € Xxsucc(n)
let x = fst(s)
let k¥ = snd(s)
let S = StateTransfFunNMeta(F,n,s)
from A3 have T: x € X k € succ(n) and (x,k) = s by auto
{ assume A4: k € n
with A1 have succ(k) € succ(n) using succ_ineq by simp
with A2 T A4 have S € Xxsucc(n)
using apply_funtype StateTransfFunNMeta_def by simp }
with A2 A3 T have S € Xxsucc(n)
using apply_funtype StateTransfFunNMeta_def by auto
} then have Vs € Xxsucc(n). StateTransfFunNMeta(F,n,s) € Xxsucc(n)
by simp
then have
{(s, StateTransfFunNMeta(F,n,s)). s € Xxsucc(n)} : XXxsucc(n) — Xxsucc(n)
by (rule ZF_fun_from_total)
then show StateTransfFunN(X,F,n): Xxsucc(n) — Xxsucc(n)
using StateTransfFunN_def by simp
qed

We can apply fin_indseq_props to the sequence used in the definition of
InductiveSeqVarFN to get the properties of the sequence of states generated
by the StateTransfFunN.

lemma states_seq_props:
assumes Al: n € nat and A2: F: n — (X—X) and A3: x€X and
A4: b = StatesSeq(x,X,F,n)
shows
b : succ(n) — Xxsucc(n)
b(0) = (x,0)
Vk € succ(n). snd(b(k)) = k
Vken. b(succ(k)) = (F(k) (fst(b(k))), succ(k))
proof -
let £ = StateTransfFunN(X,F,n)
from A1 A2 have I: f : Xxsucc(n) — Xxsucc(n)
using state_trans_fun by simp
moreover from Al A3 have II: (x,0) € Xxsucc(n)
using empty_in_every_succ by simp
moreover note Al
moreover from A4 have III: b = InductiveSequenceN((x,0),f,n)
using StatesSeq_def by simp
ultimately show IV: b : succ(n) — Xxsucc(n)
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by (rule fin_indseq_props)
from I II A1 III show V: b(0) = (x,0)
by (rule fin_indseq_props)
from I IT A1 IITI have VI: Vken. b(succ(k)) = £(b(k))
by (rule fin_indseq_props)
{ fix
note I
moreover
assume A5: k € n hence k € succ(n) by auto
with IV have b(k) € Xxsucc(n) using apply_funtype by simp

moreover have f = {(s, StateTransfFunNMeta(F,n,s)). s € Xxsucc(n)}

using StateTransfFunN_def by simp
ultimately have f(b(k)) = StateTransfFunNMeta(F,n,b(k))
by (rule ZF_fun_from_tot_val)
} then have VII: Vk € n. f(b(k)) = StateTransfFunNMeta(F,n,b(k))
by simp
{ fix k assume A5: k € succ(n)
note Al A5
moreover from V have snd(b(0)) = 0 by simp
moreover from VI VII have
Vjen. snd(b(j)) = j — snd(b(succ(j))) = succ(j)
using StateTransfFunNMeta_def by auto
ultimately have snd(b(k)) = k by (rule fin_nat_ind)
} then show Vk € succ(n). snd(b(k)) = k by simp
with VI VII show Vken. b(succ(k)) = (F(k) (fst(b(k))), succ(k))
using StateTransfFunNMeta_def by auto
qed

Basic properties of sequences defined by equation z,4+1 = fn(xy).

theorem fin_indseq_var_f_props:
assumes Al: n € nat and A2: x€X and A3: F: n — (X—X) and
A4: a = InductiveSeqVarFN(x,X,F,n)

shows

a: succ(n) — X

a(0) = x

Vken. a(succ(k)) = F(k) (a(k))
proof -

let £ = StateTransfFunN(X,F,n)

let b = StatesSeq(x,X,F,n)
from A1 A2 A3 have b : succ(n) — Xxsucc(n)
using states_seq_props by simp
then have Vk € succ(n). b(k) € Xxsucc(n)
using apply_funtype by simp
hence Vk € succ(n). fst(b(k)) € X by auto
then have I: {(k,fst(b(k))). k € succ(n)} : succ(n) — X
by (rule ZF_fun_from_total)
with A4 show II: a: succ(n) — X using InductiveSeqVarFN_def
by simp
moreover from Al have 0 € succ(n) using empty_in_every_succ
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by simp
moreover from A4 have III:
a = {(k,fst(StatesSeq(x,X,F,n)(k))). k € succ(n)}
using InductiveSeqVarFN_def by simp
ultimately have a(0) = fst(b(0))
by (rule ZF_fun_from_tot_val)
with A1 A2 A3 show a(0) = x using states_seq_props by auto
{ fix k
assume A5: k € n
with A1 have T1: succ(k) € succ(n) and T2: k € succ(n)
using succ_ineq by auto
from II T1 III have a(succ(k)) = fst(b(succ(k)))
by (rule ZF_fun_from_tot_val)
with A1 A2 A3 A5 have a(succ(k)) = F(k) (fst(b(k)))
using states_seq_props by simp
moreover from II T2 III have a(k) = fst(b(k))
by (rule ZF_fun_from_tot_val)
ultimately have a(succ(k)) = F(k)(a(k))
by simp
} then show Vken. a(succ(k)) = F(k)(a(k))
by simp
qed

A consistency condition: if we make the sequence of generating functions
shorter, then we get a shorter inductive sequence with the same values as in
the original sequence.

lemma fin_indseq_var_f_restrict: assumes
Al: n € nat i € nat x€X F: n —- (X=X G: i — (X—=X)
and A2: i C n and A3: Vjei. G(j) = F(j) and A4: k € succ(i)
shows InductiveSeqVarFN(x,X,G,1i) (k) = InductiveSeqVarFN(x,X,F,n) (k)
proof -
let a = InductiveSeqVarFN(x,X,F,n)
let b = InductiveSeqVarFN(x,X,G,1)
from A1 A4 have i € nat k € succ(i) by auto
moreover from A1 have b(0) = a(0)
using fin_indseq_var_f_props by simp
moreover from Al A2 A3 have
Vi€i. b(j) = a(j) — b(succ(j)) = alsucc(j))
using fin_indseq_var_f_props by auto
ultimately show b(k) = a(k)
by (rule fin_nat_ind)
qed

end
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19 Folding in ZF

theory Fold_ZF imports InductiveSeq_ZF
begin

Suppose we have a binary operation P : X x X — X written multiplicatively
as P(x,y) = x-y. In informal mathematics we can take a sequence {x }xeo..n
of elements of X and consider the product xg-z1-..-x,. To do the same thing
in formalized mathematics we have to define precisely what is meant by that
7....7. The definitition we want to use is based on the notion of sequence
defined by induction discussed in InductiveSeq_zF. We don’t really want to
derive the terminology for this from the word ”product” as that would tie it
conceptually to the multiplicative notation. This would be awkward when
we want to reuse the same notions to talk about sums like zg + x1 + .. + 5.

In functional programming there is something called ”fold”. Namely for a
function f, initial point a and list [b, ¢, d] the expression fold(f, a, [b,c,d])
is defined to be f(£f(f(a,b),c),d) (in Haskell something like this is called
foldl). If we write f in multiplicative notation we get a - b- ¢ - d, so this
is exactly what we need. The notion of folds in functional programming
is actually much more general that what we need here (not that I know
anything about that). In this theory file we just make a slight generalization
and talk about folding a list with a binary operation f : X x Y — X with
X not necessarily the same as Y.

19.1 Folding in ZF

Suppose we have a binary operation f : X x Y — X. Then every y € Y
defines a transformation of X defined by Ty () = f(z,y). In IsarMathLib
such transformation is called as Fix2ndVar (f,y). Using this notion, given a
function f: X xY — X and a sequence y = {yx}ren of elements of X we
can get a sequence of transformations of X. This is defined in Seq2TransSeq
below. Then we use that sequence of tranformations to define the sequence
of partial folds (called FoldSeq) by means of InductiveSeqVarFN (defined in
InductiveSeq_ZF theory) which implements the inductive sequence deter-
mined by a starting point and a sequence of transformations. Finally, we

define the fold of a sequence as the last element of the sequence of the partial
folds.

Definition that specifies how to convert a sequence a of elements of Y into a
sequence of transformations of X, given a binary operation f: X xY — X.

definition
Seq2TrSeq(f,a) = {(k,Fix2ndVar(f,a(k))). k € domain(a)}

Definition of a sequence of partial folds.
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definition
FoldSeq(f,x,a) =
InductiveSeqVarFN(x,fstdom(f),Seq2TrSeq(f,a) ,domain(a))

Definition of a fold.

definition
Fold(f,x,a) = Last(FoldSeq(f,x,a))

If X is a set with a binary operation f : X xY — X then Seq2TransSeqN(f,a)
converts a sequence a of elements of Y into the sequence of corresponding
transformations of X.

lemma seq2trans_seq_props:
assumes Al: n € nat and A2: f : XXY — X and A3: a:n—Y and
A4: T = Seq2TrSeq(f,a)
shows
T : n— (X—=X) and
Vken. VxeX. (T(k))(x) = f(x,a(k))
proof -
from (a:n—Y) have D: domain(a) = n using funcl_1_L1 by simp
with A2 A3 A4 show T : n — (X—=X)
using apply_funtype fix_2nd_var_fun ZF_fun_from_total Seq2TrSeq_def
by simp
with A4 D have I: Vk € n. T(k) = Fix2ndVar(f,a(k))
using Seq2TrSeq_def ZF_fun_from_tot_val0 by simp
{ fix k fix x assume A5: kén x€X
with A1 A3 have a(k) € Y using apply_funtype
by auto

with A2 A5 I have (T(k))(x) = f(x,a(k))
using fix_var_val by simp
} thus Vken. VxeX. (T(k))(x) = £(x,a(k))

by simp
qed

Basic properties of the sequence of partial folds of a sequence a = {yi } re{o,..,n}-

theorem fold_seq_props:
assumes Al: n € nat and A2: f : XxY — X and
A3: y:n—Y and A4: x€X and A5: Y#0 and
A6: F = FoldSeq(f,x,y)
shows
F: succ(n) — X
F(0) = x and
Vken. F(succ(k)) = £(F(k), y&))
proof -
let T = Seq2TrSeq(f,y)
from A1 A3 have D: domain(y) = n
using funci_1_L1 by simp
from f : XxXY — X <Y#0 have I: fstdom(f) = X
using fstdomdef by simp
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with A1 A2 A3 A4 A6 D show
II: F: succ(n) — X and F(0) = x
using seq2trans_seq_props FoldSeq_def fin_indseq_var_f_props
by auto
from A1 A2 A3 A4 A6 I D have Vken. F(succ(k)) = T(k) (F(k))
using seq2trans_seq_props FoldSeq_def fin_indseq_var_f_props
by simp
moreover
{ fix k assume A5: ken hence k € succ(n) by auto
with A1 A2 A3 II A5 have (T(k))(F(k)) = £(F(k),y(k))
using apply_funtype seq2trans_seq_props by simp }
ultimately show Vken. F(succ(k)) = £(F), yk))
by simp
qed

A consistency condition: if we make the list shorter, then we get a shorter
sequence of partial folds with the same values as in the original sequence.
This can be proven as a special case of fin_indseq_var_f_restrict but a
proof using fold_seq_props and induction turns out to be shorter.

lemma foldseq_restrict: assumes
n € nat k € succ(n) and
i €Enat f :XXY X a:n—-Y b:i— Y and
nCi Vjemn b(G) =a@G xe€X Y#O
shows FoldSeq(f,x,b) (k) = FoldSeq(f,x,a) (k)
proof -
let P = FoldSeq(f,x,a)
let Q = FoldSeq(f,x,b)
from assms have
n € nat k € succ(n)
Q(0) = P(0) and
Vi € n. Q) = P(j) — Q(succ(j)) = P(succ(j))
using fold_seq_props by auto
then show Q(k) = P(k) by (rule fin_nat_ind)
qed

A special case of foldseq_restrict when the longer sequence is created from
the shorter one by appending one element.

corollary fold_seq_append:

assumes n € nat f : XxY — X a:n — Y and

x€X k € succ(n) yeyY

shows FoldSeq(f,x,Append(a,y)) (k) = FoldSeq(f,x,a) (k)
proof -

let b = Append(a,y)

from assms have b : succ(n) — Y Vj € n. b(j) = a(j)

using append_props by auto

with assms show thesis using foldseq_restrict by blast

qed

What we really will be using is the notion of the fold of a sequence, which we

194



define as the last element of (inductively defined) sequence of partial folds.
The next theorem lists some properties of the product of the fold operation.

theorem fold_props:
assumes Al: n € nat and
A2: £ : XXY - X a:n - Y x€X Y#0
shows
Fold(f,x,a) = FoldSeq(f,x,a)(n) and
Fold(f,x,a) € X
proof -
from assms have FoldSeq(f,x,a) : succ(n) — X
using fold_seq_props by simp
with Al show
Fold(f,x,a) = FoldSeq(f,x,a)(n) and Fold(f,x,a) € X
using last_seq_elem apply_funtype Fold_def by auto
qed

A corner case: what happens when we fold an empty list?

theorem fold_empty: assumes Al: f : XxY — X and
A2: a:0—Y x€X Y#0
shows Fold(f,x,a) = x
proof -
let F = FoldSeq(f,x,a)
from assms have I:
0 € nat f : XXY = X a:0—=Y x€X Y0
by auto
then have Fold(f,x,a) = F(0) by (rule fold_props)
moreover
from I have
0 € nat f : XxY - X a:0—>Y x€X Y#0 and
F = FoldSeq(f,x,a) by auto
then have F(0) = x by (rule fold_seq_props)
ultimately show Fold(f,x,a) = x by simp
qed

The next theorem tells us what happens to the fold of a sequence when we
add one more element to it.

theorem fold_append:
assumes Al: n € nat and A2: f : XxY — X and
A3: a:n—Y and A4: x€X and A5: yeY
shows
FoldSeq(f,x,Append(a,y))(n) = Fold(f,x,a) and
Fold(f,x,Append(a,y)) = f(Fold(f,x,a), y)
proof -
let b = Append(a,y)
let P = FoldSeq(f,x,b)
from A5 have I: Y # 0 by auto
with assms show thesisl: P(n) = Fold(f,x,a)
using fold_seq_append fold_props by simp
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from assms I have II:
succ(n) € nat f : XxXY — X
b : succ(n) - Y x€X Y # 0
P = FoldSeq(f,x,b)
using append_props by auto

then have
Vk € succ(n). P(succ(k)) = £(Pk), bk))
by (rule fold_seq_props)

with A3 A5 thesisl have P(succ(n)) = f£( Fold(f,x,a), y)
using append_props by auto

moreover

from II have P : succ(succ(n)) — X
by (rule fold_seq_props)

then have Fold(f,x,b) = P(succ(n))
using last_seq_elem Fold_def by simp

ultimately show Fold(f,x,Append(a,y)) = f(Fold(f,x,a), y)
by simp

qed

end

20 Partitions of sets

theory Partitions_ZF imports Finite_ZF FiniteSeq_ZF
begin

It is a common trick in proofs that we divide a set into non-overlapping
subsets. The first case is when we split the set into two nonempty disjoint
sets. Here this is modeled as an ordered pair of sets and the set of such
divisions of set X is called Bisections(X). The second variation on this
theme is a set-valued function (aren’t they all in ZF?) whose values are
nonempty and mutually disjoint.

20.1 Bisections

This section is about dividing sets into two non-overlapping subsets.

The set of bisections of a given set A is a set of pairs of nonempty subsets
of A that do not overlap and their union is equal to A.

definition
Bisections(X) = {p € Pow(X) xPow(X).
fst(p)#0 A snd(p)#0 A fst(p)Nsnd(p) = 0 A fst(p)Usnd(p) = X}

Properties of bisections.

lemma bisec_props: assumes (A,B) € Bisections(X) shows
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A#0 B#A0ACX BCX ANB=0 AUB=X X #0
using assms Bisections_def by auto

Kind of inverse of bisec_props: a pair of nonempty disjoint sets form a
bisection of their union.

lemma is_bisec:
assumes A#0 B#0 A NB=0
shows (A,B) € Bisections(AUB) using assms Bisections_def
by auto

Bisection of X is a pair of subsets of X.

lemma bisec_is_pair: assumes Q € Bisections(X)
shows Q = (fst(Q), snd(Q))
using assms Bisections_def by auto

The set of bisections of the empty set is empty.

lemma bisec_empty: shows Bisections(0) = 0
using Bisections_def by auto

The next lemma shows what can we say about bisections of a set with
another element added.

lemma bisec_add_point:
assumes Al: x ¢ X and A2: (A,B) € Bisections(X U {x})
shows (A = {x} V B = {x}) V (({A - {x}, B - {x}) € Bisections(X))
proof -
{ assume A # {x} and B # {x}
with A2 have A - {x} # 0 and B - {x} # 0
using singl_diff_empty Bisections_def

by auto
moreover have (A - {x}) U (B - {x}) =X
proof -
have (A - {x}) U (B - {x}) = (A U B) - {x}
by auto

also from assms have (A U B) - {x} =X
using Bisections_def by auto
finally show thesis by simp
qed
moreover from A2 have (A - {x}) N (B - {x}) =0
using Bisections_def by auto
ultimately have (A - {x}, B - {x}) € Bisections(X)
using Bisections_def by auto
} thus thesis by auto
qed

A continuation of the lemma bisec_add_point that refines the case when the
pair with removed point bisects the original set.

lemma bisec_add_point_case3:
assumes Al: (A,B) € Bisections(X U {x})
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and A2: (A - {x}, B - {x}) € Bisections(X)
shows
({(A, B - {x}) € Bisections(X) A x € B) V
({(A - {x}, B) € Bisections(X) A x € A)
proof -
from A1 have x € A UB
using Bisections_def by auto
hence x€A V x€B by simp
from Al have A - {x} = AV B - {x} =B
using Bisections_def by auto
moreover
{ assume A - {x} = A
with A2 x € A U B) have
(A, B - {x}) € Bisections(X) A x € B
using singl_diff_eq by simp }
moreover
{ assume B - {x} = B
with A2 x € A U B) have
(A - {x}, B) € Bisections(X) A x € A
using singl_diff_eq by simp }
ultimately show thesis by auto
qed

Another lemma about bisecting a set with an added point.

lemma point_set_bisec:
assumes Al: x ¢ X and A2: ({x}, A) € Bisections(X U {x})
shows A = X and X # 0
proof -
from A2 have A C X using Bisections_def by auto
moreover
{ fix a assume a€X
with A2 have a € {x} U A using Bisections_def by simp
with Al @€X have a € A by auto }
ultimately show A = X by auto
with A2 show X # 0 using Bisections_def by simp
qed

Yet another lemma about bisecting a set with an added point, very similar
to point_set_bisec with almost the same proof.

lemma set_point_bisec:
assumes Al: x ¢ X and A2: (A, {x}) € Bisections(X U {x})
shows A = X and X # 0
proof -
from A2 have A C X using Bisections_def by auto
moreover
{ fix a assume a€X
with A2 have a € A U {x} using Bisections_def by simp
with Al @€X have a € A by auto }
ultimately show A = X by auto
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with A2 show X # 0 using Bisections_def by simp
qed

If a pair of sets bisects a finite set, then both elements of the pair are finite.

lemma bisect_fin:
assumes Al: A € FinPow(X) and A2: Q € Bisections(A)
shows fst(Q) € FinPow(X) and snd(Q) € FinPow(X)
proof -
from A2 have (fst(Q), snd(Q)) € Bisections(A)
using bisec_is_pair by simp
then have fst(Q) C A and snd(Q) C A
using bisec_props by auto
with A1 show fst(Q) € FinPow(X) and snd(Q) € FinPow(X)
using FinPow_def subset_Finite by auto
qed

20.2 Partitions

This sections covers the situation when we have an arbitrary number of sets
we want to partition into.

We define a notion of a partition as a set valued function such that the values
for different arguments are disjoint. The name is derived from the fact that
such function ”partitions” the union of its arguments. Please let me know
if you have a better idea for a name for such notion. We would prefer to
say "is a partition”, but that reserves the letter "a” as a keyword(?) which
causes problems.

definition
Partition (_ {is partition} [90] 91) where
P {is partition} = Vx € domain(P).

P(x) # 0 A (Vy € domain(P). x#y — P(x) N P(y) = 0)

A fact about lists of mutually disjoint sets.

lemma list_partition: assumes Al: n € nat and
A2: a : succ(n) — X a {is partition}
shows (|Ji€n. a(i)) N a(n) =0
proof -
{ assume (|Jien. a(i)) N a(@) # 0
then have 3x. x € (|Jien. a(i)) N a)
by (rule nonempty_has_element)
then obtain x where x € (|Jie€n. a(i)) and I: x € a(n)
by auto
then obtain i where i € n and x € a(i) by auto
with A2 I have False
using mem_imp_not_eq funcl_1_L1 Partition_def
by auto
} thus thesis by auto
qed
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We can turn every injection into a partition.

lemma inj_partition:
assumes Al: b € inj(X,Y)
shows
Vx € X. {(x, {b(x)}). x € X}(x) = {b(x)} and
{(x, {b(x)}). x € X} {is partition}
proof -
let p = {(x, {(bx)}). x € X}
{ fix x assume x € X
from A1 have b : X — Y using inj_def
by simp
with « € X» have {b(x)} € Pow(Y)
using apply_funtype by simp
} hence Vx € X. {b(x)} € Pow(Y) by simp
then have p : X — Pow(Y) using ZF_fun_from_total
by simp
then have domain(p) = X using funcl_1_L1
by simp
from @ : X — Pow(Y)) show I: Vx € X. p(x) = {b(x)}
using ZF_fun_from_tot_valO by simp
{ fix x assume x € X
with I have p(x) = {b(x)} by simp
hence p(x) # 0 by simp
moreover
{ fix t assume t € X and x # t
with Al x € X have b(x) # b(t) using inj_def
by auto
with I x€X « € X have p(x) N p(t) =0
by auto }
ultimately have
px) #0 A (Vt € X. x4t — p(x) N pk) = 0)
by simp
} with «domain(p) = X» show {(x, {b(x)}). x € X} {is partition}
using Partition_def by simp
qed

end

21 Enumerations

theory Enumeration_ZF imports NatOrder_ZF FiniteSeq_ZF FinOrd_ZF

begin

Suppose r is a linear order on a set A that has n elements, where n € N .
In the FinOrd_ZF theory we prove a theorem stating that there is a unique
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order isomorphism between n = {0, 1,..,n — 1} (with natural order) and A.
Another way of stating that is that there is a unique way of counting the
elements of A in the order increasing according to relation r. Yet another
way of stating the same thing is that there is a unique sorted list of elements
of A. We will call this list the Enumeration of A.

21.1 Enumerations: definition and notation

In this section we introduce the notion of enumeration and define a proof
context (a "locale” in Isabelle terms) that sets up the notation for writing
about enumarations.

We define enumeration as the only order isomorphism beween a set A and
the number of its elements. We are using the formula | J{z} = x to extract
the only element from a singleton. Le is the (natural) order on natural
numbers, defined is Nat_ZF theory in the standard Isabelle library.

definition
Enumeration(A,r) = |J ord_iso(|Al|,Le,A,r)

To set up the notation we define a locale enums. In this locale we will assume
that r is a linear order on some set X. In most applications this set will
be just the set of natural numbers. Standard Isabelle uses < to denote
the ”less or equal” relation on natural numbers. We will use the < symbol
to denote the relation r. Those two symbols usually look the same in the
presentation, but they are different in the source.To shorten the notation the
enumeration Enumeration(A,r) will be denoted as o(A). Similarly as in the
Semigroup theory we will write a <= x for the result of appending an element
x to the finite sequence (list) a. Finally, a b will denote the concatenation
of the lists a and b.

locale enums =

fixes X r
assumes linord: IsLinOrder(X,r)

fixes ler (infix < 70)
defines ler_def[simpl: x < y = (x,y) € ¢

fixes o
defines o_def [simp]l: 0(A) = Enumeration(A,r)

fixes append (infix < 72)
defines append_def [simp]: a <= x = Append(a,x)

fixes concat (infixl U 69)
defines concat_def [simp]: a U b = Concat(a,b)
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21.2 Properties of enumerations
In this section we prove basic facts about enumerations.

A special case of the existence and uniqueess of the order isomorphism for
finite sets when the first set is a natural number.

lemma (in enums) ord_iso_nat_fin:
assumes A € FinPow(X) and n € nat and A = n
shows J!f. f € ord_iso(n,Le,A,r)
using assms NatOrder_ZF_1_L2 linord nat_finpow_nat
fin_ord_iso_ex_uniq by simp

An enumeration is an order isomorhism, a bijection, and a list.

lemma (in enums) enum_props: assumes A € FinPow(X)
shows
o(A) € ord_iso(|A|,Le, A,r)
o(h) € bij(IAl,A)
o(A) : |Al — A
proof -
from assms have
IsLinOrder(nat,Le) and |A| € FinPow(nat) and A =~ |A]
using NatOrder_ZF_1_L2 card_fin_is_nat nat_finpow_nat
by auto
with assms show o(A) € ord_iso(|Al|,Le, A,r)
using linord fin_ord_iso_ex_uniq singleton_extract
Enumeration_def by simp
then show o(A) € bij(lAl,A) and o(A) : [A] — A
using ord_iso_def bij_def surj_def
by auto
qed

A corollary from enum_props. Could have been attached as another assertion,
but this slows down verification of some other proofs.

lemma (in enums) enum_fun: assumes A € FinPow(X)
shows o(A) : |Al — X
proof -
from assms have o(A) : |A|] — A and ACX
using enum_props FinPow_def by auto
then show o(A) : |A| — X by (rule funcil_1_L1B)
qed

If a list is an order isomorphism then it must be the enumeration.

lemma (in enums) ord_iso_enum: assumes Al: A € FinPow(X) and
A2: n € nat and A3: f € ord_iso(n,Le,A,r)
shows f = o(A)
proof -
from A3 have n ~ A using ord_iso_def eqpoll_def
by auto
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then have A ~ n by (rule eqpoll_sym)
with A1 A2 have J!f. f € ord_iso(n,Le,A,r)
using ord_iso_nat_fin by simp
with assms (A = n) show f = ¢(A)
using enum_props card_card by blast
qed

What is the enumeration of the empty set?

lemma (in enums) empty_enum: shows ¢(0) = 0
proof -
have
0 € FinPow(X) and O € nat and 0 € ord_iso(0,Le,0,r)
using empty_in_finpow empty_ord_iso_empty
by auto
then show ¢(0) = 0 using ord_iso_enum
by blast
qed

Adding a new maximum to a set appends it to the enumeration.

lemma (in enums) enum_append:
assumes Al: A € FinPow(X) and A2: b € X-A and
A3: VaeA. a<b
shows o(A U {b}) = c(A)< b
proof -
let £ =0(A) U {(IAl,b)}
from A1 have |A| € nat using card_fin_is_nat
by simp
from A1 A2 have A U {b} € FinPow(X)
using singleton_in_finpow union_finpow by simp
moreover from this have |[A U {b}| € nat
using card_fin_is_nat by simp
moreover have f € ord_iso(|A U {b}| , Le, A U {b} ,r)
proof -
from A1 A2 have
o(A) € ord_iso(|Al,Le, A,r) and
Al ¢ IAl and b ¢ A
using enum_props mem_not_refl by auto
moreover from (|A| € nat) have
Vk € |Al. (k, |Al) € Le
using elem_nat_is_nat by blast
moreover from A3 have VacA. (a,b) € r by simp
moreover have antisym(Le) and antisym(r)
using linord NatOrder_ZF_1_L2 IsLinOrder_def by auto
moreover
from A2 (|A| € nat’ have
(IAl,1Al) € Le and (b,b) €
using linord NatOrder_ZF_1_L2 IsLinOrder_def
total_is_refl refl_def by auto
hence (|Al,|Al) € Le +— (b,b) € r by simp
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ultimately have f € ord_iso(|A|l U {IAl} , Le, A U {b} ,r)
by (rule ord_iso_extend)
with A1 A2 show f € ord_iso(lA U {b}| , Le, A U {b} ,r)
using card_fin_add_one by simp
qed
ultimately have f = (A U {b})
using ord_iso_enum by simp
moreover have c(A)< b = f
proof -
have o(A)<= b = 0(A) U {(domain(c(A)),b)}
using Append_def by simp
moreover from Al have domain(c(A)) = |A]
using enum_props funcl_1_L1 by blast
ultimately show o(A)+= b = f by simp
qed
ultimately show o(A U {b})
qed

oc(A)<> b by simp

What is the enumeration of a singleton?

lemma (in enums) enum_singleton:
assumes Al: x€X shows oc({x}): 1 — X and o({x})(0) = x
proof -
from A1 have
0 € FinPow(X) and x € (X - 0) and Vae0. a<x
using empty_in_finpow by auto
then have ¢(0 U {x}) = 0(0)+> x by (rule enum_append)
with Al show oc({x}): 1 — X and oc({x})(0) = x
using empty_enum empty_appendl by auto
qed

end

22 Semigroups

theory Semigroup_ZF imports Partitions_ZF Fold_ZF Enumeration_ZF
begin

It seems that the minimal setup needed to talk about a product of a sequence
is a set with a binary operation. Such object is called "magma”. However,
interesting properties show up when the binary operation is associative and
such alebraic structure is called a semigroup. In this theory file we define and
study sequences of partial products of sequences of magma and semigroup
elements.
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22.1 Products of sequences of semigroup elements

Semigroup is a a magma in which the binary operation is associative. In this
section we mostly study the products of sequences of elements of semigroup.
The goal is to establish the fact that taking the product of a sequence is
distributive with respect to concatenation of sequences, i.e for two sequences
a, b of the semigroup elements we have [[(aUb) = ([]a)- (][ b), where "alUb”
is concatenation of a and b (a++b in Haskell notation). Less formally, we
want to show that we can discard parantheses in expressions of the form

(ap-ay-..-ap)-(bp-.. by).

First we define a notion similar to Fold, except that that the initial element
of the fold is given by the first element of sequence. By analogy with Haskell
fold we call that Fold1

definition
Fold1(f,a) = Fold(f,a(0),Tail(a))

The definition of the semigr0 context below introduces notation for writing
about finite sequences and semigroup products. In the context we fix the
carrier and denote it G. The binary operation on G is called f. All theorems
proven in the context semigr0 will implicitly assume that f is an associative
operation on G. We will use multiplicative notation for the semigroup oper-
ation. The product of a sequence a is denoted [[ a. We will write a <= x for
the result of appending an element z to the finite sequence (list) a. This is a
bit nonstandard, but I don’t have a better idea for the "append” notation.
Finally, a U b will denote the concatenation of the lists a and b.

locale semigrO =
fixes G f
assumes assoc_assum: f {is associative on} G

fixes prod (infixl - 72)
defines prod_def [simpl: x - y = £(x,y)

fixes seqprod ([] - 71)
defines seqprod_def [simpl: [] a = Foldi(f,a)

fixes append (infix < 72)
defines append_def [simpl: a <> x = Append(a,x)

fixes concat (infixl U 69)
defines concat_def [simp]: a Ll b = Concat(a,b)

The next lemma shows our assumption on the associativity of the semigroup
operation in the notation defined in in the semigr0O context.

lemma (in semigrO) semigr_assoc: assumes x € G y € G z € G
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shows xy-z = x-(y-2)
using assms assoc_assum IsAssociative_def by simp

In the way we define associativity the assumption that f is associative on
G also implies that it is a binary operation on X.

lemma (in semigrO) semigr_binop: shows f : GxG — G
using assoc_assum IsAssociative_def by simp

Semigroup operation is closed.

lemma (in semigrO) semigr_closed:
assumes acG beG shows ab € G
using assms semigr_binop apply_funtype by simp

Lemma append_1lelem written in the notation used in the semigr0 context.

lemma (in semigrO) append_lelem_nice:
assumes n € nat and a: n — X and b : 1 — X
shows a U b = a + b(0)
using assms append_lelem by simp

Lemma concat_init_last_elem rewritten in the notation used in the semigro0
context.

lemma (in semigrO) concat_init_last:
assumes n € nat k € nat and
a:n — X and b : succ(k) — X
shows (a Ul Init(b)) < b(k) = a b
using assms concat_init_last_elem by simp

The product of semigroup (actually, magma — we don’t need associativity
for this) elements is in the semigroup.

lemma (in semigrO) prod_type:
assumes n € nat and a : succ(n) — G
shows ([] a) € G
proof -
from assms have
succ(n) € nat f : GXG — G Tail(a) : n — G
using semigr_binop tail_props by auto
moreover from assms have a(0) € G and G # 0
using empty_in_every_succ apply_funtype
by auto
ultimately show ([] a) € G using Foldl_def fold_props
by simp
qed

What is the product of one element list?

lemma (in semigrO) prod_of_lelem: assumes Al: a: 1 — G
shows ([] a) = a(0)
proof -
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have f : GXG — G using semigr_binop by simp

moreover from Al have Tail(a) : 0 — G using tail_props
by blast

moreover from Al have a(0) € G and G # 0O
using apply_funtype by auto

ultimately show ([] a) = a(0) using fold_empty Foldl_def
by simp

qed

What happens to the product of a list when we append an element to the
list?
lemma (in semigrO) prod_append: assumes Al: n € nat and
A2: a : succ(n) — G and A3: x€G
shows ([] a«x) = (] & - x
proof -
from A1 A2 have I: Tail(a) : n — G a(0) € G
using tail_props empty_in_every_succ apply_funtype
by auto
from assms have (J] a+x) = Fold(f,a(0),Tail(a)+x)
using head_of_append tail_append_commute Foldl_def

by simp
also from A1 A3 I have ... = (J] a) - x
using semigr_binop fold_append Foldl_def
by simp
finally show thesis by simp
qed

The main theorem of the section: taking the product of a sequence is dis-
tributive with respect to concatenation of sequences. The proof is by induc-
tion on the length of the second list.

theorem (in semigr0) prod_conc_distr:
assumes Al: n € nat k € nat and
A2: a : succ(n) - G b: succ(k) = G
shows ([] a) - (J[ ©) =[] (a U b)
proof -
from A1 have k € nat by simp
moreover have Vb € succ(0) — G. ([] a) - (J] b) =] (& U b)
proof -
{ fix b assume A3: b : succ(0) — G
with A1 A2 have
succ(n) € nat a : succ(n) - G b : 1 — G
by auto
then have a U b = a < b(0) by (rule append_lelem_nice)
with A1 A2 A3 have (J] a) - ([T b) =[] (a U b)
using apply_funtype prod_append semigr_binop prod_of_lelem
by simp
} thus thesis by simp
qed
moreover have Vj € nat.
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Vb € succ(j) = G. (J] & - (I ») =]] (a U b)) —
(Vb € succ(succ(j)) — G. (] &) - (J] » =]] (a U b))
proof -
{ fix j assume A4: j € nat and
A5: (Vb € succ(j) — G. (] & - (J] b) =
{ fix b assume A6: b : succ(succ(j)) — G
let ¢ = Init(b)
from A4 A6 have T: b(succ(j)) € G and
I: ¢ : succ(j) — G and II: b = c<>b(succ(j))
using apply_funtype init_props by auto
from A1 A2 A4 A6 have
succ(n) € nat succ(j) € nat
a : succ(m) - G b : succ(succ(j)) — G
by auto
then have III: (a U c) ¢ b(succ(j)) =a lUb
by (rule concat_init_last)
from A4 I T have (J] c+b(succ(j))) = (J] <) - b(succ(j))
by (rule prod_append)
with II have
T & - (I v = (] a - (] <) - b(succ(j)))
by simp
moreover from Al A2 A4 T I have
(II @ € ¢ (] ¢ € G Db(succ(j)) € G
using prod_type by auto
ultimately have
(T & - qI v = ] & - (I <)) - b(succ(j))
using semigr_assoc by auto
with A5 I have ([] a) - (J] b) = (J] (a U ¢))-b(succ(j))
by simp
moreover
from A1 A2 A4 T have
T1: succ(n) € nat succ(j) € nat and
a : succ(m) - G c¢ : succ(j) — G
by auto
then have Concat(a,c): succ(n) #+ succ(j) — G
by (rule concat_props)
with A1 A4 T have
succ(n #+ j) € nat
a Ll ¢ : succ(succ(n #+j)) — G
b(succ(j)) € G
using succ_plus by auto
then have
(JI (a U c)+=b(succ(j))) = (] (a U ))-blsucc(j))
by (rule prod_append)
with III have ([] (a U ¢))-b(succ(j)) = [[ (a U b)
by simp
ultimately have ([[ a) - (J[] ) =[] (a U b)
by simp
} hence (Vb € succ(succ(j)) — G. (J] a) - (J] ») =] (a U b))

[T @ uv)
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by simp
} thus thesis by blast
qed
ultimately have Vb € succ(k) — G. (J] a) - (] ®) =[] (@ U b)
by (rule ind_on_nat)
with A2 show (J] a) - (J] ) =[] (a2 U b) by simp
qed

22.2 Products over sets of indices

In this section we study the properties of expressions of the form [[;c, a; =
@y - @y - .. - @i—1, i.e. what we denote as [[(A,a). A here is a finite subset of
some set X and a is a function defined on X with values in the semigroup

G.

Suppose a : X — G is an indexed family of elements of a semigroup G
and A = {ig,41,..,in—1} € N is a finite set of indices. We want to define
Hz’eA a; = Qi - @i, - .. - aj—1. To do that we use the notion of Enumeration
defined in the Enumeration_ZF theory file that takes a set of indices and lists
them in increasing order, thus converting it to list. Then we use the Fold1l
to multiply the resulting list. Recall that in Isabelle/ZF the capital letter
”0” denotes the composition of two functions (or relations).

definition
SetFold(f,a,A,r) = Foldli(f,a 0 Enumeration(A,r))

For a finite subset A of a linearly ordered set X we will write o(A) to denote
the enumeration of the elements of A, i.e. the only order isomorphism |A| —
A, where |[A| € N is the number of elements of A. We also define notation
for taking a product over a set of indices of some sequence of semigroup
elements. The product of semigroup elements over some set A C X of
indices of a sequence a : X — G (i.e. [[;c @) is denoted [J(A,a). In the
semigrl context we assume that a is a function defined on some linearly
ordered set X with values in the semigroup G.

locale semigrl = semigrO +

fixes X r
assumes linord: IsLinOrder (X,r)

fixes a
assumes a_is_fun: a : X — G

fixes o
defines o_def [simp]l: 0(A) = Enumeration(A,r)

fixes setpr (D
defines setpr_def [simp]l: [[(A,b) = SetFold(f,b,A,r)
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We can use the enums locale in the semigr0O context.

lemma (in semigrl) enums_valid_in_semigrl: shows enums(X,r)
using linord enums_def by simp

Definition of product over a set expressed in notation of the semigr0 locale.

lemma (in semigrl) setproddef:
shows [[(A,a) = [ (a 0 a(A))
using SetFold_def by simp

A composition of enumeration of a nonempty finite subset of N with a se-
quence of elements of G is a nonempty list of elements of G. This implies
that a product over set of a finite set of indices belongs to the (carrier of)
semigroup.

lemma (in semigrl) setprod_type: assumes
Al: A € FinPow(X) and A2: A#0
shows
Jn € nat . |Al = succ(m) A a0 og(A) : succ(n) — G
and [[(A,a) € G
proof -
from assms obtain n where n € nat and |A| = succ(n)
using card_non_empty_succ by auto
from A1 have o(A) : [A]l — A
using enums_valid_in_semigrl enums.enum_props
by simp
with A1 have a 0 c(A): |Al — G
using a_is_fun FinPow_def comp_fun_subset

by simp

with (@ € nat) and (|A| = succ(n)) show
dn € nat . |A]l = succ(n) A a0 o(A) : succ(n) — G
by auto

from @ € nat) (|Al = succ(@)) @ 0 c(A): |Al - @
show [[(A,a) € G using prod_type setproddef
by auto
qed

The enum_append lemma from the Enemeration theory specialized for natural
numbers.

lemma (in semigrl) semigrl_enum_append:
assumes A € FinPow(X) and
n € X - A and VkeA. (k,n) € r
shows c(A U {n}) = c(A)< n
using assms FinPow_def enums_valid_in_semigrl
enums . enum_append by simp

What is product over a singleton?

lemma (in semigrl) gen_prod_singleton:
assumes Al: x € X
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shows [[({x},a) = a(x)
proof -
from A1 have c({x}): 1 — X and o({x})(0) = x
using enums_valid_in_semigrl enums.enum_singleton
by auto
then show [[({x},2) = a(x)
using a_is_fun comp_fun setproddef prod_of_lelem
comp_fun_apply by simp
qed

A generalization of prod_append to the products over sets of indices.

lemma (in semigrl) gen_prod_append:
assumes
Al: A € FinPow(X) and A2: A # 0 and
A3: n € X - A and
A4: VkeA. (k,n) € r
shows [[(A U {n}, a) = (J[(A,2)) - a(n)
proof -
have J[[(A U {n}, a) = [] (a0 o U {n}))
using setproddef by simp
also from A1 A3 A4 have ... = [[ (a 0 (6(A)¢ n))
using semigrl_enum_append by simp
also have ... = [[ ((a 0 d(A))+ a(n))
proof -
from A1 A3 have
Al € nat and o0(A) : |Al - X and n € X
using card_fin_is_nat enums_valid_in_semigrl enums.enum_fun

by auto
then show thesis using a_is_fun list_compose_append
by simp
qed
also from assms have ... = ([ (a 0 o(A)))-a(n)
using a_is_fun setprod_type apply_funtype prod_append
by blast
also have ... = (J[(A,a)) - a(n)

using SetFold_def by simp
finally show [[(A U {n}, a) = (J[(A,a)) - a(n)
by simp
qed

Very similar to gen_prod_append: a relation between a product over a set of
indices and the product over the set with the maximum removed.

lemma (in semigrl) gen_product_rem_point:
assumes Al: A € FinPow(X) and
A2: n € A and A4: A - {n} # 0 and
A3: VkeA. (k, n) € r
shows
(IIA - {n},a)) - a(n) = [[(4, a)

proof -
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let A = A - {n}
from Al A2 have A € FinPow(X) and n € X - A
using fin_rem_point_fin FinPow_def by auto
with A3 A4 have [[(A U {n}, a) = ([[(A,a)) - a(n)
using a_is_fun gen_prod_append by blast
with A2 show thesis using rem_add_eq by simp
qed

22.3 Commutative semigroups

Commutative semigroups are those whose operation is commutative, i.e.
a-b = 0b-a. This implies that for any permutation s : n — n we have
[Tj—o a; = ITj—o as(j), or, closer to the notation we are using in the semigro
context, [[a = [](a o s). Maybe one day we will be able to prove this,
but for now the goal is to prove something simpler: that if the semigroup
operation is commutative taking the product of a sequence is distributive

with respect to the operation: [T}_y(a;-b;) = (H?:o aj)> (H;'L:o bj)>. Many
of the rearrangements (namely those that don’t use the inverse) proven in

the AbelianGroup_ZF theory hold in fact in semigroups. Some of them will
be reproven in this section.

A rearrangement with 3 elements.

lemma (in semigrO) rearr3elems:
assumes f {is commutative on} G and a€G beG ceG
shows ab-c = a-c'b
using assms semigr_assoc IsCommutative_def by simp

A rearrangement of four elements.

lemma (in semigrO) rearr4elems:
assumes Al: f {is commutative on} G and
A2: aeG beG ceG deG
shows a'b-(c-d) = a-c-(b-d)
proof -
from A2 have a'b-(c-d) = ab-cd
using semigr_closed semigr_assoc by simp
also have a'b-c.d = a-c-(b-d)
proof -
from A1 A2 have ab-cd = c-(a-b)-d
using IsCommutative_def semigr_closed

by simp
also from A2 have ... = c-a-bd
using semigr_closed semigr_assoc
by simp
also from A1 A2 have ... = a-c:bd
using IsCommutative_def semigr_closed
by simp
also from A2 have ... = a-c-(b-d)
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using semigr_closed semigr_assoc

by simp
finally show a'b-c:d = a-.c-(b-d) by simp
qed
finally show a-b-(c-d) = a-c-(b-d)
by simp
qed

We start with a version of prod_append that will shorten a bit the proof of
the main theorem.

lemma (in semigrO) shorter_seq: assumes Al: k € nat and
A2: a € succ(succ(k)) — G
shows ([] a) = (J] Init(a)) - a(succ(k))
proof -
let x = Init(a)
from assms have
a(succ(k)) € G and x : succ(k) — G
using apply_funtype init_props by auto
with A1 have (J] xz«a(succ(k))) = (J] %) - a(succ(k))
using prod_append by simp
with assms show thesis using init_props
by simp
qed

A lemma useful in the induction step of the main theorem.

lemma (in semigrO) prod_distr_ind_step:

assumes Al: k € nat and

A2: a : succ(succ(k)) — G and

A3: b : succ(succ(k)) — G and

A4: ¢ : succ(succ(k)) — G and

A5: Vjesucc(succ(k)). c(j) = a(j) - b(j)

shows

Init(a) : succ(k) — G

Init(b) : succ(k) — G

Init(c) : succ(k) — G

Vjesucc(k). Init(c)(j) = Init(a)(j) - Init(b)(j)

proof -

from A1 A2 A3 A4 show
Init(a) : succ(k) — G
Init(b) : succ(k) — G
Init(c) : succ(k) — G
using init_props by auto

from A1l have T: succ(k) € nat by simp

from T A2 have Vje€succ(k). Init(a)(j) = a(j)
by (rule init_props)

moreover from T A3 have V jé&succ(k). Init(b)(j) = b(j)
by (rule init_props)

moreover from T A4 have Vjesucc(k). Init(c)(j) = c(j)
by (rule init_props)
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moreover from A5 have Vj€succ(k). c(j) = a(j) - b(j)
by simp
ultimately show Vj€succ(k). Init(c)(j) = Init(a)(j) - Init(b) (j)
by simp
qed

For commutative operations taking the product of a sequence is distributive
with respect to the operation. This version will probably not be used in
applications, it is formulated in a way that is easier to prove by induction.
For a more convenient formulation see prod_comm_distrib. The proof by
induction on the length of the sequence.

theorem (in semigr0) prod_comm_distr:
assumes Al: f {is commutative on} G and A2: n€nat
shows V a b c.
(a : succ(m)—G A b : succ(m)—G A c : succ(n)—G A
(Vjesucc(n). c(j) = a(j) - b(j))) —
I o = I 2 - (] »
proof -
note A2
moreover have V a b c.
(a : succ(0)—G A b : succ(0)—G A ¢ : succ(0)—G A
(Vjesucc(0). c(j) = a(j) - b(j))) —
I o = I & - (] »
proof -
{ fixabc
assume a : succ(0)—G A b : succ(0)—G A ¢ : succ(0)—G A
(Vjesucc(0). c(j) = a(j) - b(3))
then have
I:a: 125G b: 125G ¢ : 1—-G and
II: c(0) = a(0) - b(0) by auto
from I have
(IT @ = a0 and (J] b) = b(0) and ([] <) = c(0)
using prod_of_lelem by auto
with IT have ([[ ¢) = ([[ a - (][ b) by simp
} then show thesis using Foldl_def by simp
qed
moreover have Vk € nat.
(Vv abec.
(a : succ(k)—G A b : succ(k)—G A ¢ : succ(k)—=G A
(Vjesucc(k). c(j) = a(§) - b)) —
] o = {q] 2 - (] 1)) —
(Vv abec.
(a : succ(succ(k))—G A b : succ(succ(k))—G A ¢ : succ(succ(k))—G

(Vjesucc(succ(k)). c(j) = a(G) - b(P)) —
I < = {qI 2 - (] »»
proof
fix k assume k € nat
show (Va b c.
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a € succ(k) — G A
b € succ(k) - G A ¢ € succ(k) — G A
(Vjesucc(k). c(j) = a(j) - b(§)) —
II o = T a - (] ») —
(Wa b c.
a € succ(succ(k)) — G A
b € succ(succ(k)) — G A
c € succ(succ(k)) — G A
(Vjesucc(succ(k)). c(j) = a(j) - b(j)) —
(II o = {qT a - (] »»
proof
assume A3: Va b c.
a € succ(k) — G A
b € succ(k) = G A ¢ € succ(k) — G A
(Vj€succ(k). c(j) = a(G) - v(j)) —
II o = I a - (] »
show Va b c.
a € succ(succ(k)) — G A
b € succ(succ(k)) — G A
c € succ(succ(k)) — G A
(Vjesucc(succ(k)). c(j) = a(j) - b(j)) —
] o = (] 2 - (] »
proof -
{fixabec
assume
a € succ(succ(k)) — G A
b € succ(succ(k)) — G A
c € succ(succ(k)) — G A
(Vjesucc(succk)). c(§) = a(j) - b(G)
with & € nat) have I:
a : succ(succ(k)) — G
b : succ(succ(k)) — G
¢ : succ(succ(k)) — G
and II: Vj€succ(succ(k)). c(j) = a(j) - b(j)
by auto
let x = Init(a)
let y = Init(b)
let z = Init(c)
from <k € nat) I have III:
I 2 = (I = - a(succ(k))
(I » = (I ) - b(succ(k)) and
IV: (] o = (] 2) - c(succ(k))
using shorter_seq by auto
moreover
from <& € nat) I II have
x : succ(k) — G
y : succ(k) — G
z : succ(k) — G and
Vjesucc(k). z(j) = x(3) - y(I)
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using prod_distr_ind_step by auto
with A3 II IV have
I © = I »-{(] y)-(alsucc(k)) - b(succ(k)))
by simp
moreover from Al (k € nat) I III have
(I =] y)-(alsucc(k)) - b(succ(k)))=
(II 2 - I »
using init_props prod_type apply_funtype
rearrd4elems by simp
ultimately have ([] <) = (J] a) - (J] ®)
by simp
} thus thesis by auto
qged
qed
qed
ultimately show thesis by (rule ind_on_nat)
qed

A reformulation of prod_comm_distr that is more convenient in applications.

theorem (in semigr0) prod_comm_distrib:
assumes f {is commutative on} G and ncnat and
a : succ(n)—G b : succ(n)—G c¢ : succ(n)—G and
Vjesucc(n). c(j) = a(j) - b(j)
shows (J] o) = (] a - (] v

using assms prod_comm_distr by simp

A product of two products over disjoint sets of indices is the product over
the union.

lemma (in semigrl) prod_bisect:
assumes Al: f {is commutative on} G and A2: A € FinPow(X)
shows
VP € Bisections(A). [J(A,a) = ([[(£st(P),a))-(J[(snd(P),a))
proof -
have IsLinOrder(X,r) using linord by simp
moreover have
VP € Bisections(0). [](0,2) = (J[(£fst(P),a)) - (J](snd(P),a))
using bisec_empty by simp
moreover have V A € FinPow(X).
(VneX-A
(VP € Bisections(A). [[(A,2) = (J[(£fst(P),a))-(J[(snd(P),a)))
A (VkeA. (k,n) € v ) —
(VQ € Bisections(A U {n}).
[1¢A U {n},a) = (J[(£st(Q),2))-([](snd(Q),a))))
proof -
{ fix A assume A € FinPow(X)
fix n assume n € X - A
have ( VP € Bisections(A).
[Ia,a) = (J](£st(P),a))-(J[(snd(P),a)))
A (VkeA. (k,n) €T ) —
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(VQ € Bisections(A U {n}).
[1¢A U {n},a) = (J]£st(Q@),a))-([](snd(Q),a)))
proof -
{ assume I:
VP € Bisections(4). [[(4,a) = ([[(£st(P),a))-(J][(snd(P),a))
and II: VkeA. (k,n) € r
have VQ € Bisections(A U {n}).
[TCA U {n},a) = (J](£st(Q),2))-(J](snd(Q),a))
proof -
{ fix Q assume Q € Bisections(A U {n})
let Qp = fst(Q)
let Q; = snd(Q)
from (A € FinPow(X)) @ € X - A have A U {n} € FinPow(X)
using singleton_in_finpow union_finpow by auto
with (@ € Bisections(A U {n})) have
Qo € FinPow(X) Qp # 0 and Q; € FinPow(X) Q; # O
using bisect_fin bisec_is_pair Bisections_def by auto
then have [[(Qp,a) € G and [[(Q;,a) € G
using a_is_fun setprod_type by auto
from (Q € Bisections(A U {n})) (A € FinPow(X)) n € X-A
have refl(X,r) Qp € A U {n} @ € A U {n}
ACXandn € X
using linord IsLinOrder_def total_is_refl Bisections_def
FinPow_def by auto
from refl(X,r)> Q C AU {nph A CX»meX II
have III: Vk € Qy. (k, n) € r by (rule refl_add_point)
from (refl(X,r)> @ C AU {nph A CXmeX II
have IV: Vk € Q;. (k, n) € r by (rule refl_add_point)
from (mn € X - A (@ € Bisections(A U {n})> have
Qo = {n} vV Q; = {n} V (Q - {n},Q:-{n}) € Bisections(A)
using bisec_is_pair bisec_add_point by simp
moreover
{ assume Q; = {n}
from @m € X - & have n ¢ A by auto
moreover
from <«Q € Bisections(A U {n})
have (Qp,Q; ) € Bisections(A U {n})
using bisec_is_pair by simp
with @; = {n} have (Qp, {n}) € Bisections(A U {n})
by simp
ultimately have Qy = A and A # 0
using set_point_bisec by auto
with (A € FinPow(X)) m € X - A II @ = {n}
have [[(A U {n},a) = (J](Qop,a))-[[(Q:,a)
using a_is_fun gen_prod_append gen_prod_singleton
by simp }
moreover
{ assume Qy = {n}
from @m € X - A have n € X by auto
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then have {n} € FinPow(X) and {n} # 0
using singleton_in_finpow by auto
from @ € X - A have n ¢ A by auto
moreover
from <Q € Bisections(A U {n})
have (Qo, Q1) € Bisections(A U {n})
using bisec_is_pair by simp
with @ = {n} have ({n}, Qi) € Bisections(A U {n})
by simp
ultimately have Q; = A and A # 0 using point_set_bisec
by auto
with Al (A € FinPow(X)) @m € X - A II
{n} € FinPow(X)» {n} # O Qy = {n}
have J[(A U {n},a) = (J](Qo,a))-(J](Q:,a))
using a_is_fun gen_prod_append gen_prod_singleton
setprod_type IsCommutative_def by auto }
moreover
{ assume A4: (Qp - {n},Q; - {n}) € Bisections(A)
with (A € FinPow(X)) have
Qo - {n} € FinPow(X) Qg - {n} # 0 and
Q; - {n} € FinPow(X) Q; - {n} # O
using FinPow_def Bisections_def by auto
with m € X - A have
[1Qo - {n},a) € G J[(@Q; - {n},a) € G and
T: a(n) € G
using a_is_fun setprod_type apply_funtype by auto
from (Q € Bisections(A U {n})) A4 have
({Qo, Q1 - {n}) € Bisections(A) A n € Q1) V
({(Qo - {n}, Q;) € Bisections(A) A n € Qo)
using bisec_is_pair bisec_add_point_case3 by auto
moreover
{ assume (Qp, Q; - {n}) € Bisections(A) and n € Q4
then have A # 0 using bisec_props by simp
with A2 (A € FinPow(X)) m € X - A I IT T IV
{Qo, Q1 - {n}) € Bisections(A)) (J[(Qp,a) € &
qI@1 - {n},a) € ® @ € FinPow(X)
@m € Qp @ - {n} # 0
have JJ(A U {n},a) = (J](Qo,a))-(J](Q1,a))
using gen_prod_append semigr_assoc gen_product_rem_point
by simp }
moreover
{ assume (Qp - {n}, Q) € Bisections(A) and n € Qo
then have A # 0 using bisec_props by simp
with A1 A2 (A € FinPow(X)») m € X - A I IT III T
Qo - {n}, Q;)€Bisections(A)) (J[(Qp - {n},a)e®
JI€Q1,2) € & Qp € FinPow(X)) @ € Qp (Qo-{n}#0
have [J(A U {n},a) = (J](Qo,a))-(J](Q1,a))
using gen_prod_append rearr3elems gen_product_rem_point
by simp }
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ultimately have
[1¢A U {n},a) = ([1(Qo,a))-([1(Q1,2))
by auto }
ultimately have [[(A U {n},a) = ([[(Qo,a))-(J](Q:,2))
by auto
} thus thesis by simp
qed
} thus thesis by simp
qed
} thus thesis by simp
qed
moreover note A2
ultimately show thesis by (rule fin_ind_add_max)
qed

A better looking reformulation of prod_bisect.

theorem (in semigrl) prod_disjoint: assumes
Al: f {is commutative on} G and
A2: A € FinPow(X) A # 0 and
A3: B € FinPow(X) B # 0 and
Ad: ANB=20
shows [[(AUB,a) = ([[(A,a))-([[(B,a))
proof -
from A2 A3 A4 have (A,B) € Bisections(AUB)
using is_bisec by simp
with A1 A2 A3 show thesis
using a_is_fun union_finpow prod_bisect by simp
qed

A generalization of prod_disjoint.

lemma (in semigrl) prod_list_of_lists: assumes
Al: f {is commutative on} G and A2: n € nat
shows VM € succ(n) — FinPow(X).
M {is partition} —
(T {1, J[JM@E),a)). i € succ@}) =
(TTWUi € succ@m). M(i),a))
proof -
note A2
moreover have VM € succ(0) — FinPow(X).
M {is partition} —
(IT L@, [T ,a)). i € succ(@}) = (JIJi € succ(0). M(i),a))
using a_is_fun funcl_1_L1 Partition_def apply_funtype setprod_type
list_lenl_singleton prod_of_lelem
by simp
moreover have Vk € nat.
(VM € succ(k) — FinPow(X).
M {is partition} —
(T ¢4, JJMGE) ). 1 € succk)}) =
(ITU1i € succ(r). M(i),a))) —
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(VM € succ(succ(k)) — FinPow(X).
M {is partition} —
(IT @G, ]Gy ,a)). i € succ(suce(k))}) =
(JIUi € succ(succ(k)). M(i),a)))
proof -
{ fix k assume k € nat
assume A3: VM € succ(k) — FinPow(X).
M {is partition} —
(I €@E,JJME) ,a). i € succX)}) =
(JTWUJi € succ(k). M(i),a))
have (VN € succ(succ(k)) — FinPow(X).
N {is partition} —
(IT €@, [JW),a)). i € succ(succ(k))}) =
(ITWJ1i € succ(succ(k)). N(i),a)))
proof -
{ fix N assume A4: N : succ(succ(k)) — FinPow(X)
assume A5: N {is partition}
with A4 have I: Vi € succ(succ(k)). N(i) # O
using funcl_1_L1 Partition_def by simp
let b = {(i,[[(N(i),a)). i € succ(succ(k))}
let ¢ = {(i,[[(N(i),a)). i € succ(k)}
have II: Vi € succ(succ(k)). JJ(N(i),a) € G
proof
fix i assume i € succ(succ(k))
with A4 T have N(i) € FinPow(X) and N(i) # 0
using apply_funtype by auto
then show [[(N(i),a) € G using setprod_type
by simp
qed
hence Vi € succ(k). [[(N(i),a) € G by auto
then have ¢ : succ(k) — G by (rule ZF_fun_from_total)
have b = {(i,[[(N(i),a)). i € succ(succ(k))}
by simp
with IT have b = Append(c,[[(N(succ(k)),a))
by (rule set_list_append)
with II (& € nat) ¢ : succ(k) = &
have (J] b) = (J] )-(J[(N(succ(k)),a))
using prod_append by simp
also have
.= (JIWUJi € suce(k). N(i),a))-(J](N(succ(k)),a))
proof -
let M = restrict(N,succ(k))
have succ(k) C succ(succ(k)) by auto
with (N : succ(succ(k)) — FinPow(X))
have M : succ(k) — FinPow(X) and
III: Vi € succ(k). M(i) = N(i)
using restrict_type2 restrict apply_funtype
by auto
with A5 M : succ(k) — FinPow(X)have M {is partition}
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using funcl_1_L1 Partition_def by simp

with A3 M : succ(k) — FinPow(X)) have
(T {@E.[JM@ ,a). i € succk)}) =
(TTWUi € succx). M(i),a))

by blast
with IIT show thesis by simp
qed
also have ... = (JJ(Ui € succ(succ(k)). N(i),a))
proof -

let A =Ji € succ(k). N(i)
let B = N(succ(k))
from A4 (k € nat) have succ(k) € nat and
Vi € succ(k). N(i) € FinPow(X)
using apply_funtype by auto
then have A € FinPow(X) by (rule union_fin_list_fin)
moreover from I have A # 0 by auto
moreover from A4 I have
N(succ(k)) € FinPow(X) and N(succ(k)) # O
using apply_funtype by auto
moreover from (succ(k) € nat) A4 A5 have A N B =0
by (rule list_partition)
moreover note Al
ultimately have [[(AUB,a) = (J]J(A,2))-(J][(B,a))
using prod_disjoint by simp
moreover have A U B = (|Ji € succ(succ(k)). N(i))
by auto
ultimately show thesis by simp
qed
finally have ([] {(i,[[(N(i),a)). i € succ(succ(k))}) =
(ITWJ1i € succ(succ(k)). N(i),a))
by simp
} thus thesis by auto
qed
} thus thesis by simp
qed
ultimately show thesis by (rule ind_on_nat)

qed

A more convenient reformulation of prod_list_of_lists.

theorem (in semigrl) prod_list_of_sets:

assumes Al: f {is commutative on} G and
A2: n € nat n # 0 and

A3: M : n — FinPow(X) M {is partition}
shows

(IT {,[IMG),a)). i € nb) = (JIU1 € n. M(1),a))

proof -

from A2 obtain k where k € nat and n = succ(k)
using Nat_ZF_1_L3 by auto
with Al A3 show thesis using prod_list_of_lists

221



by simp
qed

The definition of the product [J(A,a) = SetFold(f,a,A,r) of a some (finite)
set of semigroup elements requires that r is a linear order on the set of indices
A. This is necessary so that we know in which order we are multiplying the
elements. The product over A is defined so that we have [[,a = [[aco(A)
where o : |A| — A is the enumeration of A (the only order isomorphism
between the number of elements in A and A), see lemma setproddef. How-
ever, if the operation is commutative, the order is irrelevant. The next
theorem formalizes that fact stating that we can replace the enumeration
o(A) by any bijection between |A| and A. In a way this is a generalization
of setproddef. The proof is based on application of prod_list_of_sets to
the finite collection of singletons that comprise A.

theorem (in semigrl) prod_order_irr:
assumes Al: f {is commutative on} G and
A2: A € FinPow(X) A # 0 and
A3: b € bij(IAl,A)
shows ([ (a 0 b)) = [[(4,a)
proof -
let n = [A]
let M = {(k, {b(X)}). k € n}
have (J[ (a 0 b)) = ([] {(i,[JM@E),a)). 1 € n})
proof -
have Vi € n. [[(M(i),a) = (a 0 b) (1)
proof
fix i assume i € n
with A2 A3 (i € n have b(i) € X
using bij_def inj_def apply_funtype FinPow_def
by auto
then have [[({b(i)},a) = a(b(i))
using gen_prod_singleton by simp
with A3 (1 € m have [[({b(i)},a) = (a 0 b) (i)
using bij_def inj_def comp_fun_apply by auto
with i € n A3 show [[(M(i),a) = (a 0 b) (i)
using bij_def inj_partition by auto

qed

hence {(i,[J(M(i),a)). i € n} = {(i,(a 0 b)(i)). i € n}
by simp

moreover have {(i,(a 0 b)(i)). 1 €n} =a0b

proof -

from A3 have b : n — A using bij_def inj_def by simp
moreover from A2 have A C X using FinPow_def by simp
ultimately have b : n — X by (rule funci_1_L1B)
then have a 0 b: n — G using a_is_fun comp_fun

by simp
then show {(i,(a 0 b)(i)). i € n} =a0b

using fun_is_set_of_pairs by simp
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qed
ultimately show thesis by simp
qed
also have ... = (JJ(Ui € n. M(i),a))
proof -
note Al
moreover from A2 have n € nat and n # 0
using card_fin_is_nat card_non_empty_non_zero by auto
moreover have M : n — FinPow(X) and M {is partition}
proof -
from A2 A3 have Vk € n. {b(k)} € FinPow(X)
using bij_def inj_def apply_funtype FinPow_def
singleton_in_finpow by auto
then show M : n — FinPow(X) using ZF_fun_from_total
by simp
from A3 show M {is partition} using bij_def inj_partition
by auto
qed
ultimately show
(IT €@, [TMGE ,a)). 1 € aB) = (Ui € n. M(i),a))
by (rule prod_list_of_sets)
qed
also from A3 have ([[(Ji € n. M(i),a)) = [[(A,a)
using bij_def inj_partition surj_singleton_image
by auto
finally show thesis by simp
qed

Another way of expressing the fact that the product dos not depend on the
order.

corollary (in semigrl) prod_bij_same:
assumes f {is commutative on} G and
A € FinPow(X) A # 0 and
b € bij(lAl,A) c € bij(lAl,A)
shows ([T (@0 b)) = (][ (@ 0 ¢))

using assms prod_order_irr by simp

end

23 Commutative Semigroups
theory CommutativeSemigroup_ZF imports Semigroup_ZF
begin

In the Semigroup theory we introduced a notion of SetFold(f,a,A,r) that
represents the sum of values of some function a valued in a semigroup where
the arguments of that function vary over some set A. Using the additive

223



notation something like this would be expressed as ) ., f(z) in informal
mathematics. This theory considers an alternative to that notion that is
more specific to commutative semigroups.

23.1 Sum of a function over a set

The r parameter in the definition of SetFold(f,a,A,r) (from Semigroup_ZF)
represents a linear order relation on A that is needed to indicate in what
order we are summing the values f(z). If the semigroup operation is com-
mutative the order does not matter and the relation r is not needed. In this
section we define a notion of summing up values of some functiona : X — G
over a finite set of indices I' C X, without using any order relation on X.

We define the sum of values of a function a : X — G over a set A as the only
element of the set of sums of lists that are bijections between the number of
values in A (which is a natural number n = {0, 1,..,n — 1} if A is finite) and
A. The notion of Fold1(f,c) is defined in Semigroup_ZF as the fold (sum) of
the list ¢ starting from the first element of that list. The intention is to use
the fact that since the result of summing up a list does not depend on the
order, the set {Foldi(f,a 0 b). b € bij( [Al, A)} is a singleton and we
can extract its only value by taking its union.

definition

CommSetFold(f,a,A) = [J{Fold1(f,a 0 b). b € bij(IAl, A}

the next locale sets up notation for writing about summation in commutative
semigroups. We define two kinds of sums. One is the sum of elements of a list
(which are just functions defined on a natural number) and the second one
represents a more general notion the sum of values of a semigroup valued
function over some set of arguments. Since those two types of sums are
different notions they are represented by different symbols. However in the
presentations they are both intended to be printed as ).

locale commsemigr =
fixes G £
assumes csgassoc: f {is associative on} G
assumes csgcomm: f {is commutative on} G

fixes csgsum (infixl + 69)
defines csgsum_def[simpl: x + y = f(x,y)

fixes X a
assumes csgaisfun: a : X — G

fixes csglistsum (Y. _ 70)
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defines csglistsum_def [simp]: Y k = Fold1(f,k)

fixes csgsetsum (}))
defines csgsetsum_def [simp]: Z(A,h) = CommSetFold(f,h,A)

Definition of a sum of function over a set in notation defined in the commsemigr
locale.

lemma (in commsemigr) CommSetFolddef:
shows (> (A,a)) = (U{dD (@ 0Db). b € bij(lAl, OB
using CommSetFold_def by simp

The next lemma states that the result of a sum does not depend on the order
we calculate it. This is similar to lemma prod_order_irr in the Semigroup
theory, except that the semigri locale assumes that the domain of the func-
tion we sum up is linearly ordered, while in commsemigr we don’t have this
assumption.

lemma (in commsemigr) sum_over_set_bij:
assumes Al: A € FinPow(X) A # 0 and A2: b € bij(|A],A)
shows (3> (4,a)) = (& (a 0 b))
proof -
have
Ve € bij(lAl,A). ¥V d € bij(IAl,A). G (@0 c)) =G (a0 d)
proof -
{ fix c assume c € bij(|Al,A)
fix d assume d € bij(lAl,A)
let r = InducedRelation(converse(c), Le)
have semigr1(G,f,A,r,restrict(a, A))
proof -
have semigr0(G,f) using csgassoc semigrO_def by simp
moreover from Al «c € bij(|Al|,A)) have IsLinOrder(A,r)
using bij_converse_bij card_fin_is_nat
natord_lin_on_each_nat ind_rel_pres_lin by simp
moreover from A1l have restrict(a, A) : A — G
using FinPow_def csgaisfun restrict_fun by simp
ultimately show thesis using semigrl_axioms.intro semigrl_def
by simp
qed
moreover have f {is commutative on} G using csgcomm
by simp
moreover from Al have A € FinPow(A) A # 0O
using FinPow_def by auto
moreover note ¢ € bij(|Al,A) «d € bij(|Al,A)
ultimately have
Foldi(f,restrict(a,A) 0 c) = Foldil(f,restrict(a,A) 0 4)
by (rule semigrl.prod_bij_same)
hence (3. (restrict(a,A) 0 ¢)) = (0. (restrict(a,A) 0 d))
by simp
moreover from Al ¢ € bij(|Al,A)) @ € bij(|Al,A)
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have
restrict(a,A) 0 ¢ = a 0 ¢ and restrict(a,A) 0d =a0d
using bij_def surj_def csgaisfun FinPow_def comp_restrict
by auto
ultimately have (> (a 0 ¢)) = (3. (a 0 d)) by simp
} thus thesis by blast
qed
with A2 have ((J{> (a 0 b). b € bij(IAl, )} = . (a 0 b))
by (rule singleton_comprehension)
then show thesis using CommSetFolddef by simp
qed

The result of a sum is in the semigroup. Also, as the second assertion
we show that every semigroup valued function generates a homomorphism
between the finite subsets of a semigroup and the semigroup. Adding an
element to a set coresponds to adding a value.

lemma (in commsemigr) sum_over_set_add_point:
assumes Al: A € FinPow(X) A # O
shows > (A,a) € G and
Vx € X-A. > (A U {x},a) = G (4,a)) + a(x)
proof -
from A1 obtain b where b € bij(|Al,A)
using fin_bij_card by auto
with A1 have > (A,a) = (3. (a 0 b))
using sum_over_set_bij by simp
from Al have |A| € nat using card_fin_is_nat by simp
have semigrO0(G,f) using csgassoc semigrO_def by simp
moreover
from A1l obtain n where n € nat and |A| = succ(n)
using card_non_empty_succ by auto
with A1 ® € bij(lAl,A)) have
n € nat and a 0 b : succ(n) — G
using bij_def inj_def FinPow_def comp_fun_subset csgaisfun
by auto
ultimately have Foldi(f,a 0 b) € G by (rule semigrO.prod_type)
with 3 (A,a) = (& (a 0 b))) show Y (A,a) € G
by simp
{ fix x assume x € X-A
with A1 have (A U {x}) € FinPow(X) and A U {x} # 0
using singleton_in_finpow union_finpow by auto
moreover have Append(b,x) € bij(lA U {x}I, A U {x})
proof -
note (|A| € nat) (b € bij(IAl,A)
moreover from (x € X-A have x ¢ A by simp
ultimately have Append(b,x) € bij(succ(lAl), A U {x})
by (rule bij_append_point)
with Al <« € X-A show thesis
using card_fin_add_one by auto
qed

226



ultimately have (3_(A U {x},a)) = (_ (a 0 Append(b,x)))
using sum_over_set_bij by simp

also have ... = (3 Append(a 0 b, a(x)))
proof -

note (|A| € nat)

moreover

from A1 b € bij(lAl, A)) have
b: |Al] - Aand A C X
using bij_def inj_def using FinPow_def by auto
then have b : |Al — X by (rule funci1_1_L1B)
moreover from x € X-A have x € X and a : X — G
using csgaisfun by auto
ultimately show thesis using list_compose_append
by simp
qed
also have ... = (5 (4,2)) + a(x)
proof -
note (semigrO(G,f)) @ € nat> @ 0 b : succ(n) — @
moreover from x € X-A have a(x) € G
using csgaisfun apply_funtype by simp
ultimately have
Fold1(f,Append(a 0 b, a(x))) = f(Foldi(f,a 0 b),a(x))
by (rule semigrO.prod_append)
with A1 b € bij(|Al,A)) show thesis
using sum_over_set_bij by simp

qed
finally have (3 (A U {x},a)) = (3_(4,a)) + a(x)
by simp
} thus Vx € X-A. Y (A U {x},a) = (3 (A,a)) + a(x)
by simp
qed
end

24 Monoids

theory Monoid_ZF imports func_ZF
begin

This theory provides basic facts about monoids.

24.1 Definition and basic properties

In this section we talk about monoids. The notion of a monoid is similar to
the notion of a semigroup except that we require the existence of a neutral
element. It is also similar to the notion of group except that we don’t require
existence of the inverse.
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Monoid is a set G with an associative operation and a neutral element. The
operation is a function on G x G with values in G. In the context of ZF set
theory this means that it is a set of pairs (x, y), where x € Gx G and y € G.
In other words the operation is a certain subset of (G x G) x G. We express
all this by defing a predicate IsAmonoid(G,f). Here GG is the ”carrier” of the
group and f is the binary operation on it.

definition
IsAmonoid(G,f) =
f {is associative on} G A
(JeeG. (Vv geG. ( (f({e,g)) =g AN (£({g,e)) = )

The next locale called "monoid0” defines a context for theorems that concern
monoids. In this contex we assume that the pair (G, f) is a monoid. We will
use the @& symbol to denote the monoid operation (for no particular reason).

locale monoid0 =
fixes G
fixes f
assumes monoidAsssum: IsAmonoid(G,f)

fixes monoper (infixl ¢ 70)
defines monoper_def [simp]l: a & b = f(a,b)

The result of the monoid operation is in the monoid (carrier).

lemma (in monoidO) groupO_1_L1:
assumes acG beG shows adb € G
using assms monoidAsssum IsAmonoid_def IsAssociative_def apply_funtype
by auto

There is only one neutral element in a monoid.

lemma (in monoid0) groupO_1_L2: shows
dle. ecG A (V geG. ( (edg = g) A gbe = g))
proof
fix ey
assume e € G A (VgeG. e P g=g A gD e=g)
and y € GA (VgeG. y D g=gANgdy=g
then have y®e = y yPe = e by auto
thus e = y by simp
next from monoidAsssum show
Je. e€ G A (V g€G. edg = g N ghe = g)
using IsAmonoid_def by auto
qed

We could put the definition of neutral element anywhere, but it is only usable
in conjuction with the above lemma.

definition
TheNeutralElement (G,f) =
( THE e. e€G A (V g€G. fle,g) = g A f(g,e) = g))
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The neutral element is neutral.

lemma (in monoid0) unit_is_neutral:
assumes Al: e = TheNeutralElement(G,f)
shows e € G A (VgeG. e D g=g AN gde=g)
proof -

let n = THE b. b€ G A (V g€G. bPg = g A gbb = g)
have 3!b. be G A (V g€G. bdg = g A gbb = g)
using group0_1_L2 by simp
then have ne G A (V g€G. ndg = g A gbn = g)
by (rule thel)
with Al show thesis
using TheNeutralElement_def by simp
qed
The monoid carrier is not empty.
lemma (in monoid0) groupO_1_L3A: shows G#0
proof -
have TheNeutralElement(G,f) € G using unit_is_neutral
by simp
thus thesis by auto
qed

The range of the monoid operation is the whole monoid carrier.

lemma (in monoid0) groupO_1_L3B: shows range(f) = G
proof
from monoidAsssum have f : GXG—G
using IsAmonoid_def IsAssociative_def by simp
then show range(f) C G
using funcl_1_L5B by simp
show G C range(f)
proof
fix g assume Al: geG
let e = TheNeutralElement(G,f)
from A1 have (e,g) € GXG g = f(e,g)
using unit_is_neutral by auto
with «f : GXxG—G& show g € range(f)
using funcli_1_L5A by blast
qed
qed

Another way to state that the range of the monoid operation is the whole
monoid carrier.

lemma (in monoid0) range_carr: shows f(GxG) = G
using monoidAsssum IsAmonoid_def IsAssociative_def
groupO_1_L3B range_image_domain by auto

In a monoid any neutral element is the neutral element.

lemma (in monoid0) groupO_1_L4:
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assumes Al: e € G A (VgeG. e D g=g A gD e=g)
shows e = TheNeutralElement (G,f)
proof -
let n = THE b. be G A (V geG. bdg = g A gdb
have J!b. be G A (V g€G. bdg = g A gbb = g)
using groupO_1_L2 by simp
moreover note Al
ultimately have n = e by (rule the_equality2)
then show thesis using TheNeutralElement_def by simp
qed

=g)

The next lemma shows that if the if we restrict the monoid operation to a
subset of GG that contains the neutral element, then the neutral element of
the monoid operation is also neutral with the restricted operation.

lemma (in monoid0) groupO_1_L5:
assumes Al: VxcH.VycH. x®y € H
and A2: HCG
and A3: e = TheNeutralElement (G,f)
and A4: g = restrict(f,HxH)

and A5: ecH

and A6: heH

shows g(e,h) = h A g(h,e) = h
proof -

from A4 A6 A5 have
g(e,h) = e®h A g(h,e) = hde
using restrict_if by simp
with A3 A4 A6 A2 show
g(e,h) = h A glh,e) = h
using unit_is_neutral by auto
qed

The next theorem shows that if the monoid operation is closed on a subset
of G then this set is a (sub)monoid (although we do not define this notion).
This fact will be useful when we study subgroups.

theorem (in monoid0) groupO_1_T1:
assumes Al: H {is closed under} f
and A2: HCG
and A3: TheNeutralElement(G,f) € H
shows IsAmonoid(H,restrict(f,HxH))

proof -
let g = restrict(f,HxH)
let e = TheNeutralElement (G,f)

from monoidAsssum have f € GXG—G
using IsAmonoid_def IsAssociative_def by simp
moreover from A2 have HxH C GxG by auto
moreover from Al have Vp € HxH. f(p) € H
using IsOpClosed_def by auto
ultimately have g € HxH—H
using funcl_2_L4 by simp
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moreover have VxcH.VyeH.VzecH.
glg(x,y) »z) = g(x,g(y,2))
proof -
from Al have Vx€H.VyeH.VzeH.
g(g(x,y),z) = xDydz
using IsOpClosed_def restrict_if by simp
moreover have VxceH.VyeH.VzeH. xPydz = xPB(yPz)
proof -
from monoidAsssum have
Vx€EG.VyeG.VzeG. xdydz = x®(ybz)
using IsAmonoid_def IsAssociative_def
by simp
with A2 show thesis by auto
qed
moreover from Al have
VxeH.VyeH.VzeH. x®(ydz) = g{ x,g(y,2z) )
using IsOpClosed_def restrict_if by simp
ultimately show thesis by simp
qed
moreover have
JneH. (VheH. g(n,h) = h A g(h,n) = h)
proof -
from A1 have Vx€H.VycH. x®y € H
using IsOpClosed_def by simp
with A2 A3 have
V heH. ge,h) = h A glh,e) = h
using groupO_1_L5 by blast
with A3 show thesis by auto
qed
ultimately show thesis using IsAmonoid_def IsAssociative_def
by simp
qed

Under the assumptions of group0_1_T1 the neutral element of a submonoid
is the same as that of the monoid.

lemma group0O_1_L6:
assumes Al: IsAmonoid(G,f)
and A2: H {is closed under} f
and A3: HCG
and A4: TheNeutralElement(G,f) € H
shows TheNeutralElement (H,restrict(f,HxH)) = TheNeutralElement (G, f)
proof -
let e = TheNeutralElement(G,f)
let g = restrict(f,HxH)
from assms have monoidO(H,g)
using monoidO_def monoidO.groupO_1_T1
by simp
moreover have
e € HA (VheH. ge,h) = h A g(h,e) = h)
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proof -
{ fix h assume h € H
with assms have
monoid0(G,f) VxeH.VyeH. f(x,y) € H
HCG e = TheNeutralElement(G,f) g =
ecH hecHlH
using monoidO_def IsOpClosed_def by auto
then have g(e,h) = h A g(h,e) = h
by (rule monoidO.groupO_1_L5)
} hence VheH. g(e,h) = h A g(h,e) = h by simp
with A4 show thesis by simp
qed
ultimately have e = TheNeutralElement(H,g)
by (rule monoid0.groupO_1_L4)
thus thesis by simp
qed

restrict (f,HxH)

If a sum of two elements is not zero, then at least one has to be nonzero.

lemma (in monoid0) sum_nonzero_elmnt_nonzero:
assumes a @ b # TheNeutralElement (G,f)
shows a # TheNeutralElement(G,f) V b # TheNeutralElement(G,f)
using assms unit_is_neutral by auto

end

25 Groups - introduction
theory Group_ZF imports Monoid_ZF
begin

This theory file covers basics of group theory.

25.1 Definition and basic properties of groups

In this section we define the notion of a group and set up the notation for
discussing groups. We prove some basic theorems about groups.

To define a group we take a monoid and add a requirement that the right
inverse needs to exist for every element of the group.

definition
IsAgroup(G,f) =
(IsAmonoid(G,f) A (VgeG. IbeG. f(g,b) = TheNeutralElement(G,f)))

We define the group inverse as the set {(x,y) € G x G : x -y = e}, where
e is the neutral element of the group. This set (which can be written as
(-)~He}) is a certain relation on the group (carrier). Since, as we show
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later, for every x € G there is exactly one y € G such that x -y = e this
relation is in fact a function from G to G.

definition
GroupInv(G,f) = {(x,y) € GxG. f(x,y) = TheNeutralElement(G,f)}

We will use the miltiplicative notation for groups. The neutral element is
denoted 1.

locale group0 =
fixes G
fixes P
assumes groupAssum: IsAgroup(G,P)

fixes neut (1)
defines neut_def [simp]: 1 = TheNeutralElement (G,P)

fixes groper (infixl - 70)
defines groper_def[simp]l: a - b = P(a,b)

fixes inv (_7' [90] 91)
defines inv_def [simp]l: x~! = GroupInv(G,P) (x)

First we show a lemma that says that we can use theorems proven in the
monoid0 context (locale).

lemma (in group0) groupO_2_L1: shows monoid0(G,P)
using groupAssum IsAgroup_def monoidO_def by simp

In some strange cases Isabelle has difficulties with applying the definition of
a group. The next lemma defines a rule to be applied in such cases.

lemma definition_of_group: assumes IsAmonoid(G,f)
and VgeG. IbeG. f(g,b) = TheNeutralElement(G,f)
shows IsAgroup(G,f)
using assms IsAgroup_def by simp

A technical lemma that allows to use 1 as the neutral element of the group
without referencing a list of lemmas and definitions.

lemma (in group0) groupO_2_L2:
shows 1€G A (VgeG.(1.g =g A gl = g))
using groupO_2_L1 monoid0.unit_is_neutral by simp

The group is closed under the group operation. Used all the time, useful to
have handy.

lemma (in group0) group_op_closed: assumes acG beG
shows a'b € G using assms group0_2_L1 monoid0.groupO_1_L1
by simp

The group operation is associative. This is another technical lemma that
allows to shorten the list of referenced lemmas in some proofs.
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lemma (in group0) group_oper_assoc:
assumes acG beG ceG shows a-(b.c) = ab-c
using groupAssum assms IsAgroup_def IsAmonoid_def
IsAssociative_def group_op_closed by simp

The group operation maps G x G into G. It is conveniet to have this fact
easily accessible in the group0 context.

lemma (in group0) group_oper_assocA: shows P : GXG—G
using groupAssum IsAgroup_def IsAmonoid_def IsAssociative_def
by simp

The definition of a group requires the existence of the right inverse. We
show that this is also the left inverse.

theorem (in group0) groupO_2_T1:
assumes Al: geG and A2: beG and A3: gb =1
shows bg = 1
proof -
from A2 groupAssum obtain ¢ where I: ¢ € G A bc =1
using IsAgroup_def by auto
then have ceG by simp
have 1€G using group0_2_L2 by simp
with A1 A2 T have b.g = b-(g-(b-c))
using group_op_closed groupO_2_L2 group_oper_assoc
by simp
also from A1l A2 (ce® have b-(g-(b:c)) = b-(gb-c)
using group_oper_assoc by simp
also from A3 A2 I have b-(gb-c)= 1 using group0_2_L2 by simp
finally show b-g = 1 by simp
qed

For every element of a group there is only one inverse.

lemma (in group0) groupO_2_L4:
assumes Al: x€G shows J!y. yeG A xy = 1
proof
from A1l groupAssum show dy. yeG A xy =1
using IsAgroup_def by auto
fix yn
assume A2: yeG A xy = 1 and A3:neG A xn = 1 show y=n
proof -
from A1 A2 have T1: yx =1
using group0_2_T1 by simp
from A2 A3 have y = y-(xn)
using group0_2_L2 by simp

also from A1 A2 A3 have ... = (yx)n
using group_oper_assoc by blast
also from T1 A3 have ... = n

using group0_2_L2 by simp
finally show y=n by simp
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qed
qed

The group inverse is a function that maps G into G.

theorem group0_2_T2:
assumes Al: IsAgroup(G,f) shows GroupInv(G,f) : G—G
proof -
have GroupInv(G,f) C GxG using GroupInv_def by auto
moreover from Al have
VxeG. Ily. yeG A (x,y) € GroupInv(G,f)
using group0_def groupO.group0_2_L4 GroupInv_def by simp
ultimately show thesis using func1_1_L11 by simp
qed

We can think about the group inverse (the function) as the inverse image of
the neutral element. Recall that in Isabelle £-(A) denotes the inverse image
of the set A.

theorem (in group0) groupO0_2_T3: shows P-{1} = GroupInv(G,P)
proof -
from groupAssum have P : GXG — G
using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp
then show P-{1} = GroupInv(G,P)
using funcl_1_L14 GroupInv_def by auto
qed

The inverse is in the group.

lemma (in group0O) inverse_in_group: assumes Al: x€G shows x '€G
proof -
from groupAssum have GroupInv(G,P) : G—G using group0_2_T2 by simp
with Al show thesis using apply_type by simp
qed

The notation for the inverse means what it is supposed to mean.

lemma (in group0) groupO_2_L6:
assumes Al: x€G shows xx 1 =1 A x 1x =1
proof
from groupAssum have GroupInv(G,P) : G—G
using group0_2_T2 by simp
with A1 have (x,x ') € GroupInv(G,P)
using apply_Pair by simp
then show x-x~! = 1 using GroupInv_def by simp
with A1 show x !x = 1 using inverse_in_group group0_2_T1
by blast
qged

The next two lemmas state that unless we multiply by the neutral element,
the result is always different than any of the operands.
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lemma (in group0) groupO_2_L7:
assumes Al: acG and A2: beG and A3: ab = a
shows b=1
proof -
from A3 have a=! - (ab) = a~!-a by simp
with A1 A2 show thesis using
inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2
by simp
qed

See the comment to group0_2_L7.

lemma (in group0) groupO_2_L8:
assumes Al: acG and A2: beG and A3: ab =b
shows a=1
proof -
from A3 have (a-b)-b~! = bb~! by simp
with A1 A2 have a-(b-b™') = b-b~! using
inverse_in_group group_oper_assoc by simp
with A1 A2 show thesis
using group0_2_L6 group0_2_L2 by simp
qed

The inverse of the neutral element is the neutral element.

lemma (in group0) group_inv_of_one: shows 17! = 1
using group0_2_L2 inverse_in_group groupO_2_L6 groupO_2_L7 by blast

ifa=! =1, then a = 1.

lemma (in group0) groupO_2_L8A:
assumes Al: acG and A2: a=! =1
shows a =1
proof -
from A1 have a:a™" = 1 using group0_2_L6 by simp
with A1 A2 show a = 1 using group0_2_L2 by simp
qed

1

If a is not a unit, then its inverse is not a unit either.

lemma (in group0) groupO_2_L8B:
assumes acG and a # 1
shows a=! # 1 using assms group0_2_L8A by auto

If a=! is not a unit, then a is not a unit either.

lemma (in group0) groupO_2_L8C:
assumes acG and a~! # 1
shows a#1
using assms group0_2_L8A group_inv_of_one by auto

If a product of two elements of a group is equal to the neutral element then
they are inverses of each other.
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lemma (in group0) groupO_2_L9:
assumes Al: acG and A2: beG and A3: ab =1
shows a = b~ and b = a~!
proof -
from A3 have a-bb™! = 1.b~! by simp
with A1 A2 have a-(b-b~!) = 1.b~! using
inverse_in_group group_oper_assoc by simp
with A1 A2 show a = b~! using
group0_2_L6 inverse_in_group groupO_2_L2 by simp
from A3 have a=!-(ab) = a~!-1 by simp
with A1 A2 show b = a~! using
inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2
by simp
qed

It happens quite often that we know what is (have a meta-function for) the
right inverse in a group. The next lemma shows that the value of the group
inverse (function) is equal to the right inverse (meta-function).

lemma (in group0) groupO_2_L9A:
assumes Al: VgeG. b(g) € G A gb(g) =1
shows VgeG. b(g) = g !
proof
fix g assume geG
moreover from Al ge® have b(g) € G by simp
moreover from Al gc® have gb(g) = 1 by simp
ultimately show b(g) = g~ by (rule group0_2_L9)
qed

What is the inverse of a product?

lemma (in group0) group_inv_of_two:
assumes Al: acG and A2: beG
shows b la"! = (ab)™!
proof -

from A1 A2 have
b~ leG aleG abeG b laleq
using inverse_in_group group_op_closed
by auto

from A1 A2 ® 'a™! € @ have ab-(bla”!) = a(b-(b"ta"!))
using group_oper_assoc by simp

moreover from A2 (b '€G @ '€G have b-(b~ta"!) = bbb lal
using group_oper_assoc by simp

moreover from A2 @ '€® have bb la"! = a~
using group0_2_L6 group0_2_L2 by simp

ultimately have ab-(b~'a™!) = aa™!
by simp

with A1 have ab-(b~'a™!) =1
using group0_2_L6 by simp

with @b € @ ® ta"l € & show b ta™l = (ab)~!
using group0_2_L9 by simp

1
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qed

What is the inverse of a product of three elements?

lemma (in group0) group_inv_of_three:
assumes Al: acG beG ceG

shows
(abc)™! = ¢ l(ab)!
(abc) ! = ¢c (b ta™h)

(abc)”! = ¢clptal
proof -
from A1 have T:
abeG aleG bleG clega
using group_op_closed inverse_in_group by auto
with A1 show
(abc)™! = c7l(ab)7! and (abc)! = c 7l (b tal)
using group_inv_of_two by auto
with T show (a-b-c)™! = ¢ !-b~!.a”! using group_oper_assoc
by simp
qed

The inverse of the inverse is the element.

lemma (in group0) group_inv_of_inv:
assumes a€G shows a = (a=!)~!
using assms inverse_in_group groupO_2_L6 groupO_2_L9
by simp

Group inverse is nilpotent, therefore a bijection and involution.

lemma (in group0) group_inv_bij:
shows GroupInv(G,P) 0 GroupInv(G,P) = id(G) and GroupInv(G,P) € bij(G,G)
and
GroupInv(G,P) = converse(GroupInv(G,P))
proof -
have I: GroupInv(G,P): G—G using groupAssum group0_2_T2 by simp
then have GroupInv(G,P) 0 GroupInv(G,P): G—G and id(G):G—G
using comp_fun id_type by auto
moreover
{ fix g assume gecG
with I have (GroupInv(G,P) 0 GroupInv(G,P))(g) = id(®) (g)
using comp_fun_apply group_inv_of_inv id_conv by simp
} hence VgeG. (GroupInv(G,P) 0 GroupInv(G,P))(g) = id(G)(g) by simp
ultimately show GroupInv(G,P) 0 GroupInv(G,P) = id(G)
by (rule func_eq)
with I show GroupInv(G,P) € bij(G,G) using nilpotent_imp_bijective
by simp
with (GroupInv(G,P) 0 GroupInv(G,P) = id(G))» show
GroupInv(G,P) = converse(GroupInv(G,P)) using comp_id_conv by simp
qed

For the group inverse the image is the same as inverse image.
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lemma (in group0) inv_image_vimage: shows GroupInv(G,P) (V) = GroupInv(G,P)-(V)
using group_inv_bij vimage_converse by simp

If the unit is in a set then it is in the inverse of that set.

lemma (in group0) neut_inv_neut: assumes ACG and 1€A
shows 1 € GroupInv(G,P) (A4)
proof -
have GroupInv(G,P):G—G using groupAssum group0_2_T2 by simp
with assms have 17! € GroupInv(G,P)(A) using func_imagedef by auto
then show thesis using group_inv_of_one by simp
qed

The group inverse is onto.

lemma (in group0) group_inv_surj: shows GroupInv(G,P)(G) = G
using group_inv_bij bij_def surj_range_image_domain by auto

Ifa='-b=1, then a = b.

lemma (in group0) groupO_2_L11:

assumes Al: acG beG and A2: a~!b =1

shows a=b
proof -

from A1 A2 have a=! € G beG a'b =1

using inverse_in_group by auto

then have b = (a=!)~! by (rule group0_2_L9)

with Al show a=b using group_inv_of_inv by simp
qed

Ifa-b~! =1, then a = b.

lemma (in group0) groupO_2_L11A:

assumes Al: acG beG and A2: ab™ ! =1

shows a=b
proof -

from A1 A2 have a € G b !eG ab! =1

using inverse_in_group by auto

then have a = (b~!)~! by (rule group0_2_L9)

with A1 show a=b using group_inv_of_inv by simp
qed

If if the inverse of b is different than a, then the inverse of a is different than

b.

lemma (in group0) group0_2_L11B:
assumes Al: acG and A2: b™! # a
shows a=! # b
proof -
{ assume a=! = b
then have (a=')~! = b~! by simp
with A1 A2 have False using group_inv_of_inv
by simp
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} then show a=! # b by auto
qed

What is the inverse of ab~1 ?

lemma (in group0) group0_2_L12:
assumes Al: acG beG

shows

(ab™ 1)1 = bat

(a=lb)~! = b la
proof -

from A1 have
@bt = ®H ! atand (@) = b (@)
using inverse_in_group group_inv_of_two by auto
with A1 show (ab )" ! =ba! (a7 'b)' =pla
using group_inv_of_inv by auto
qed

A couple useful rearrangements with three elements: we can insert a b-b"
between two group elements (another version) and one about a product of
an element and inverse of a product, and two others.

lemma (in group0) groupO_2_L14A:
assumes Al: acG beG ceG
shows
a-c = (ab 1) -(bc™h)
a lc = (alb)-(b~tc)
a-(bc)” ! = aclp?
a-(bc!) = abc!
(ab lc™)~ ! = cba!
abc l(cbl) = a
a-(b-c)-c! = ab
proof -
from A1 have T:
aleac pvlec clea
albeG ableG abega
cb™l €G becedg
using inverse_in_group group_op_closed

by auto

from A1 T have
ac !l = a@®!lb)c!
alc= al(mb e

using group0_2_L2 group0_2_L6 by auto
with A1 T show
acl= (ab 1) (bch)
a~lc = (atb)-(b7tc)
using group_oper_assoc by auto
from A1 have a-(b-c)™! = a-(c7tb™1)
using group_inv_of_two by simp
with A1 T show a:(b-c)~! =a.c7lb~!
using group_oper_assoc by simp
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from A1 T show a-(b-c™!) = abc™!
using group_oper_assoc by simp

from A1 T show (ab lc™1)~! = cba!
using group_inv_of_three group_inv_of_inv
by simp

from T have a-b-c ! (cb™!) = ab-(c!-(cb™1))
using group_oper_assoc by simp

also from A1 T have ... = abb!
using group_oper_assoc groupO_2_L6 group0O_2_L2
by simp

also from A1 T have ... = a-(b-b™1)
using group_oper_assoc by simp

also from A1 have ... = a

using group0_2_L6 group0_2_L2 by simp
finally show ab-c™!-(c:b™!) = a by simp
from A1 T have a-(b-c)-c™! = a-(b-(cc™!))
using group_oper_assoc by simp
also from A1 T have ... = ab
using group0_2_L6 group0_2_L2 by simp
finally show a-(b-c)-c™! = ab
by simp
qed

Another lemma about rearranging a product of four group elements.

lemma (in group0) group0_2_L15:
assumes Al: acG beG ceG deG
shows (a-b)-(c:d)™! = a-(b-d"1)-a"t-(ac™h)
proof -
from A1 have T1:
d7'eG c'€G abeG a-(b-d H)eG
using inverse_in_group group_op_closed
by auto
with A1 have (ab)-(c-d)~! = (ab)-(d7tc™!)
using group_inv_of_two by simp

also from A1 T1 have ... = a-(b-d™1).c!
using group_oper_assoc by simp
also from A1 T1 have ... = a-(b-d1-a"t-(ac™!)

using group0_2_L14A by blast
finally show thesis by simp
qed

We can cancel an element with its inverse that is written next to it.

lemma (in group0) inv_cancel_two:
assumes Al: acG beG

shows

ab lb =a
abb ! =a
a ' (ab) = b
a-(a!b) =D
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proof -
from A1 have
ab™'b = a( b)) abb!=ab ")
al-(ab) =altab a(alb) =aald
using inverse_in_group group_oper_assoc by auto
with Al show
ab lb=a
abb ! =
a~l-(ab) = b
a-(a”tb) = b
using group0_2_L6 group0_2_L2 by auto
qed

o

Another lemma about cancelling with two group elements.

lemma (in group0) groupO_2_L16A:
assumes Al: acG beG
shows a-(b-a)~! = b~!
proof -
from A1 have (b-a)™!' = alb! b!ecg
using group_inv_of_two inverse_in_group by auto
with A1 show a-(b-a)™' = b~! using inv_cancel_two
by simp
qed

Adding a neutral element to a set that is closed under the group operation
results in a set that is closed under the group operation.

lemma (in group0) group0_2_L17:
assumes HCG
and H {is closed under} P
shows (H U {1}) {is closed under} P
using assms IsOpClosed_def group0_2_L2 by auto

We can put an element on the other side of an equation.

lemma (in group0) group0_2_L18:
assumes Al: acG beG ceG
and A2: ¢ = ab
shows cb™' =a alc=0»
proof-
from A2 A1 have c¢b! = a(bb 1) alc=(ata)b
using inverse_in_group group_oper_assoc by auto
moreover from Al have a-(bb™!) =a (a la)b=">
using group0_2_L6 group0_2_L2 by auto
ultimately show c¢b ! =a alc=0b
by auto
qed

Multiplying different group elements by the same factor results in different
group elements.
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lemma (in group0) groupO_2_L19:
assumes Al: a€G beG ceG and A2: a#b
shows a:c # b-c and c-a # cb
proof -
{ assume a-c = b.c V ca =cb
then have ac-:c™! = bccc™! V ¢! (ca) = ¢ !-(cb)
by auto
with A1 A2 have False using inv_cancel_two by simp
} then show a-c # bc and c-a # cb by auto
qed

25.2 Subgroups

There are two common ways to define subgroups. One requires that the
group operation is closed in the subgroup. The second one defines subgroup
as a subset of a group which is itself a group under the group operations.
We use the second approach because it results in shorter definition.

The rest of this section is devoted to proving the equivalence of these two
definitions of the notion of a subgroup.

A pair (H, P) is a subgroup if H forms a group with the operation P re-
stricted to H x H. It may be surprising that we don’t require H to be a
subset of G. This however can be inferred from the definition if the pair
(G, P) is a group, see lemma group0_3_L2.

definition
IsAsubgroup(H,P) = IsAgroup(H, restrict(P,HxH))

Formally the group operation in a subgroup is different than in the group as
they have different domains. Of course we want to use the original operation
with the associated notation in the subgroup. The next couple of lemmas
will allow for that.

The next lemma states that the neutral element of a subgroup is in the
subgroup and it is both right and left neutral there. The notation is very
ugly because we don’t want to introduce a separate notation for the subgroup
operation.

lemma group0_3_L1:
assumes Al: IsAsubgroup(H,f)
and A2: n = TheNeutralElement(H,restrict(f,HxH))
shows n € H
VheH. restrict(f,HxH)(n,h ) = h
VheH. restrict(f,HxH)(h,n) = h
proof -
let b = restrict(f,HxH)
let e = TheNeutralElement (H,restrict(f,HxH))
from Al have groupO(H,b)
using IsAsubgroup_def groupO_def by simp
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then have I:
e € HA (VheH. (be,h ) = h A blh,e) = h))
by (rule groupO.group0O_2_L2)
with A2 show n € H by simp
from A2 I show VheH. b(n,h) = h and VheH. bh,n) = h
by auto
qed

A subgroup is contained in the group.

lemma (in group0) groupO_3_L2:
assumes Al: IsAsubgroup(H,P)
shows H C G
proof
fix h assume heH
let b = restrict(P,HxH)
let n = TheNeutralElement (H,restrict(P,HxH))
from A1 have b € HxH—H
using IsAsubgroup_def IsAgroup_def
IsAmonoid_def IsAssociative_def by simp
moreover from Al (el have ( n,h) € HxH
using group0_3_L1 by simp
moreover from Al (el have h = b(n,h )
using group0_3_L1 by simp
ultimately have ((n,h),h) € b
using funcl_1_L5A by blast
then have ((n,h),h) € P using restrict_subset by auto
moreover from groupAssum have P:GxG—G
using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp
ultimately show heG using funcl_1_L5
by blast
qed

The group’s neutral element (denoted 1 in the group0 context) is a neutral
element for the subgroup with respect to the group action.

lemma (in group0) groupO_3_L3:
assumes IsAsubgroup(H,P)
shows VheH. 1'h = h A h-l =h
using assms groupAssum groupO_3_L2 group0_2_L2
by auto

The neutral element of a subgroup is the same as that of the group.

lemma (in group0) groupO_3_L4: assumes Al: IsAsubgroup(H,P)
shows TheNeutralElement (H,restrict(P,HxH)) =1

proof -
let n = TheNeutralElement (H,restrict(P,HxH))
from A1 have n € H using group0_3_L1 by simp
with groupAssum A1 have neG using group0_3_L2 by auto
with Al (« € ) show thesis using
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group0_3_L1 restrict_if group0_2_L7 by simp
qed

The neutral element of the group (denoted 1 in the group0 context) belongs
to every subgroup.

lemma (in group0) groupO_3_L5: assumes Al: IsAsubgroup(H,P)
shows 1 € H
proof -
from A1 show 1€H using groupO_3_L1 group0_3_L4
by fast
qed

Subgroups are closed with respect to the group operation.

lemma (in group0) groupO_3_L6: assumes Al: IsAsubgroup(H,P)
and A2: a€H beH
shows ab € H
proof -
let £ = restrict(P,HxH)
from A1 have monoidO(H,f) using
IsAsubgroup_def IsAgroup_def monoidO_def by simp
with A2 have f ((a,b)) € H using monoid0.group0O_1_L1
by blast
with A2 show ab € H using restrict_if by simp
qed

A preliminary lemma that we need to show that taking the inverse in the
subgroup is the same as taking the inverse in the group.

lemma group0_3_L7A:
assumes Al: IsAgroup(G,f)
and A2: IsAsubgroup(H,f) and A3: g = restrict(f,HxH)
shows GroupInv(G,f) N HxH = GroupInv(H,g)
proof -
let e = TheNeutralElement(G,f)
let e; = TheNeutralElement(H,g)
from A1 have group0(G,f) using groupO_def by simp
from A2 A3 have groupO(H,g)
using IsAsubgroup_def groupO_def by simp
from (group0(G,f)) A2 A3 have GroupInv(G,f) = f-{e;}
using group0.group0_3_L4 groupl.group0_2_T3
by simp
moreover have g-{e;} = f-{e;} N HxH
proof -
from A1 have f € GXG—G
using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp
moreover from A2 (group0(G,f)) have HxH C GxG
using group0.group0_3_L2 by auto
ultimately show g-{e;} = f-{e;} N HxH
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using A3 funcl_2_L1 by simp
qed
moreover from A3 (groupO(H,g)) have GroupInv(H,g) = g-{e;}
using group0.group0_2_T3 by simp
ultimately show thesis by simp
qed

Using the lemma above we can show the actual statement: taking the inverse
in the subgroup is the same as taking the inverse in the group.

theorem (in group0) groupO_3_T1:
assumes Al: IsAsubgroup(H,P)
and A2: g = restrict(P,HxH)
shows GroupInv(H,g) = restrict(GroupInv(G,P),H)
proof -
from groupAssum have GroupInv(G,P) : G—G
using group0_2_T2 by simp
moreover from Al A2 have GroupInv(H,g) : H—H
using IsAsubgroup_def group0_2_T2 by simp
moreover from Al have H C G
using group0_3_L2 by simp
moreover from groupAssum Al A2 have
GroupInv(G,P) N HxH = GroupInv(H,g)
using group0_3_L7A by simp
ultimately show thesis
using funcl1_2_L3 by simp
qed

A sligtly weaker, but more convenient in applications, reformulation of the
above theorem.

theorem (in group0) group0_3_T2:
assumes IsAsubgroup(H,P)
and g = restrict(P,HxH)
shows VheH. GroupInv(H,g)(h) = h~!
using assms group0_3_T1 restrict_if by simp

Subgroups are closed with respect to taking the group inverse.

theorem (in group0) groupO_3_T3A:
assumes Al: IsAsubgroup(H,P) and A2: heH
shows h™'c H
proof -
let g = restrict(P,HxH)
from Al have GroupInv(H,g) € H—H
using IsAsubgroup_def group0_2_T2 by simp
with A2 have GroupInv(H,g)(h) € H
using apply_type by simp
with A1 A2 show h~!€ H using group0_3_T2 by simp
qed

The next theorem states that a nonempty subset of a group G that is closed
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under the group operation and taking the inverse is a subgroup of the group.

theorem (in group0) groupO_3_T3:
assumes Al: H#O
and A2: HCG
and A3: H {is closed under} P
and A4: VxeH. x ! € H
shows IsAsubgroup(H,P)
proof -
let g = restrict(P,HxH)
let n = TheNeutralElement(H,g)
from A3 have I: VxeH.VyeH. xy € H
using IsOpClosed_def by simp
from A1 obtain x where x€H by auto
with A4 I A2 have 1€H
using group0_2_L6 by blast
with A3 A2 have T2: IsAmonoid(H,g)
using group0_2_L1 monoidO.groupO_1_T1
by simp
moreover have YheH.3beH. g(h,b) = n
proof
fix h assume heH
with A4 A2 have h-h™! = 1
using group0_2_L6 by auto
moreover from groupAssum A2 A3 <1€) have 1 = n
using IsAgroup_def groupO_1_L6 by auto
moreover from A4 kel have g(h,h™!) = h-h™!
using restrict_if by simp
ultimately have g(h,h™!) = n by simp
with A4 (el show JbeH. g(h,b) = n by auto
qed
ultimately show IsAsubgroup(H,P) using
IsAsubgroup_def IsAgroup_def by simp
qed

Intersection of subgroups is a subgroup.

lemma group0_3_L7:
assumes Al: IsAgroup(G,f)
and A2: IsAsubgroup(H;,f)
and A3: IsAsubgroup(Hs,f)
shows IsAsubgroup(HiNHy,restrict (f,H; xHi))
proof -
let e = TheNeutralElement (G,f)
let g = restrict(f,H; xH;)
from A1 have I: groupO(G,f)
using groupO_def by simp
from A2 have groupO(H;,g)
using IsAsubgroup_def groupO_def by simp
moreover have HiNHy; # 0O
proof -
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from A1 A2 A3 have e € HiNHy
using groupO_def groupO.group0_3_L5 by simp
thus thesis by auto
qed
moreover have HiNHy, C H; by auto
moreover from A2 A3 I (HiNHy C Hp;» have
HiNHy {is closed under} g
using group0.group0_3_L6 IsOpClosed_def
func_ZF_4_L7 func_ZF_4_L5 by simp
moreover from A2 A3 I have
Vx € HiNHy. GroupInv(H;,g) (x) € HiNHy
using group0.group0_3_T2 groupl.group0_3_T3A
by simp
ultimately show thesis
using group0.group0_3_T3 by simp
qed

The range of the subgroup operation is the whole subgroup.

lemma image_subgr_op: assumes Al: IsAsubgroup(H,P)
shows restrict(P,HxH) (HxH) = H
proof -
from Al have monoidO(H,restrict(P,HxH))
using IsAsubgroup_def IsAgroup_def monoidO_def
by simp
then show thesis by (rule monoid0.range_carr)
qed

If we restrict the inverse to a subgroup, then the restricted inverse is onto
the subgroup.

lemma (in group0) restr_inv_onto: assumes Al: IsAsubgroup(H,P)
shows restrict(GroupInv(G,P),H)(H) = H
proof -
from A1 have GroupInv(H,restrict(P,HxH))(H) = H
using IsAsubgroup_def groupO_def groupO.group_inv_surj

by simp
with Al show thesis using group0_3_T1 by simp
qed
end
26 Groups 1

theory Group_ZF_1 imports Group_ZF
begin

In this theory we consider right and left translations and odd functions.
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26.1 Translations

In this section we consider translations. Translations are maps T : G — G
of the form Ty(a) = g-a or Tg(a) = a-g. We also consider two-dimensional
translations Ty : G x G — G x G, where Ty(a,b) = (a-g,b- g) or Ty(a,b) =
(g-a,g-b).

For an element a € G the right translation is defined a function (set of pairs)
such that its value (the second element of a pair) is the value of the group
operation on the first element of the pair and g. This looks a bit strange in
the raw set notation, when we write a function explicitely as a set of pairs
and value of the group operation on the pair (a,b) as P(a,b) instead of the
usual infix a - b or a + b.

definition
RightTranslation(G,P,g) = {( a,b) € GxG. P(a,g) = b}

A similar definition of the left translation.

definition
LeftTranslation(G,P,g) = {(a,b) € GxG. P(g,a) = b}

Translations map G into G. Two dimensional translations map G x G into
itself.

lemma (in group0) groupO_5_L1: assumes Al: geG
shows RightTranslation(G,P,g) : G—G and LeftTranslation(G,P,g)
G—G
proof -
from Al have VacG. ag € G and VacG. ga € G
using group_oper_assocA apply_funtype by auto
then show
RightTranslation(G,P,g) : G—G
LeftTranslation(G,P,g) : G—G
using RightTranslation_def LeftTranslation_def funcl_1_L11A
by auto
qed

The values of the translations are what we expect.

lemma (in group0) groupO0_5_L2: assumes gcG acG
shows
RightTranslation(G,P,g) (a) = ag
LeftTranslation(G,P,g) (a) = ga
using assms groupO_5_L1 RightTranslation_def LeftTranslation_def
funcl1_1_L11B by auto

Composition of left translations is a left translation by the product.

lemma (in group0) groupO_5_L4: assumes Al: g€G heG acG and
A2: T, = LeftTranslation(G,P,g) T, = LeftTranslation(G,P,h)
shows
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T4(Tp(a)) = gha
Ty (T (a)) LeftTranslation(G,P,gh) (a)
proof -
from A1 have I: h-aceG gheG
using group_oper_assocA apply_funtype by auto
with A1 A2 show T,(T,(a)) = gha
using group0_5_L2 group_oper_assoc by simp
with A1 A2 I show
T4(Tp(a)) = LeftTranslation(G,P,g-h)(a)
using groupO0_5_L2 group_oper_assoc by simp
qed

Composition of right translations is a right translation by the product.

lemma (in group0) groupO_5_L5: assumes Al: g€G heG acG and
A2: T, = RightTranslation(G,P,g) T; = RightTranslation(G,P,h)
shows
T4(Tp(a)) = ah.g
T,(Tp(a)) = RightTranslation(G,P,h-g) (a)
proof -
from A1 have I: a-heG h-g €G
using group_oper_assocA apply_funtype by auto
with A1 A2 show T,(T,(a)) = ahg
using groupO0_5_L2 group_oper_assoc by simp
with A1 A2 T show
T4(Tp(a)) = RightTranslation(G,P,h-g)(a)
using group0_5_L2 group_oper_assoc by simp
qed

Point free version of group0_5_L4 and group0O_5_L5.

lemma (in group0) trans_comp: assumes g&€G heG shows
RightTranslation(G,P,g) O RightTranslation(G,P,h) = RightTranslation(G,P,h-g)
LeftTranslation(G,P,g) 0 LeftTranslation(G,P,h) = LeftTranslation(G,P,gh)
proof -
let T, = RightTranslation(G,P,g)
let T; = RightTranslation(G,P,h)
from assms have T,:G—G and Tj,:G—G
using groupO_5_L1 by auto
then have T, 0 Tj,:G—G using comp_fun by simp
moreover from assms have RightTranslation(G,P,h-g):G—G
using group_op_closed groupO_5_L1 by simp
moreover from assms (Tj,:G—& have
VacG. (T, O Tp)(a) = RightTranslation(G,P,h-g) (a)
using comp_fun_apply group0_5_L5 by simp
ultimately show T, 0 T, = RightTranslation(G,P,h-g)
by (rule func_eq)
next
let T, = LeftTranslation(G,P,g)
let T, = LeftTranslation(G,P,h)
from assms have T,:G—G and Tj,:G—G
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using groupO_5_L1 by auto

then have T, 0 Tj,:G—G using comp_fun by simp

moreover from assms have LeftTranslation(G,P,gh):G—G
using group_op_closed group0_5_L1 by simp

moreover from assms (T :G—& have
VacG. (T, 0 Tp)(a) = LeftTranslation(G,P,g-h) (a)
using comp_fun_apply groupO_5_L4 by simp

ultimately show T, 0 T, = LeftTranslation(G,P,gh)
by (rule func_eq)

qed

The image of a set under a composition of translations is the same as the
image under translation by a product.

lemma (in group0) trans_comp_image: assumes Al: g€G heG and
A2: T, = LeftTranslation(G,P,g) T, = LeftTranslation(G,P,h)
shows T,(T,(A)) = LeftTranslation(G,P,gh)(A)
proof -
from A2 have T,(T,(A)) = (T, 0 Tp) (A)
using image_comp by simp
with assms show thesis using trans_comp by simp
qed

Another form of the image of a set under a composition of translations

lemma (in group0) groupO_5_L6:
assumes Al: geG heG and A2: ACG and
A3: T, = RightTranslation(G,P,g) T; = RightTranslation(G,P,h)
shows T, (T, (A)) = {ah-g. acA}
proof -
from A2 have VacA. acG by auto
from A1 A3 have T, : G=G T, : G—=G
using group0_5_L1 by auto
with assms (VacA. ae® show
Ty(Tp(A)) = {a'h-g. acA}
using funcl_1_L15C group0_5_L5 by auto
qed

The translation by neutral element is the identity on group.

lemma (in group0) trans_neutral: shows

RightTranslation(G,P,1) = id(G) and LeftTranslation(G,P,1) = id(G)
proof -
have RightTranslation(G,P,1):G—G and VacG. RightTranslation(G,P,1) (a)
a

using group0_2_L2 group0_5_L1 group0_5_L2 by auto
then show RightTranslation(G,P,1) = id(G) by (rule indentity_fun)
have LeftTranslation(G,P,1):G—G and VacG. LeftTranslation(G,P,1) (a)
a

using group0_2_L2 group0_5_L1 group0_5_L2 by auto
then show LeftTranslation(G,P,1) = id(G) by (rule indentity_fun)
qed
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Composition of translations by an element and its inverse is identity.

lemma (in group0) trans_comp_id: assumes gcG shows
RightTranslation(G,P,g) O RightTranslation(G,P,g~!) = id(G) and
RightTranslation(G,P,g_l) 0 RightTranslation(G,P,g) id(G) and
LeftTranslation(G,P,g) 0 LeftTranslation(G,P,g™!') = id(G) and
LeftTranslation(G,P,gfl) 0 LeftTranslation(G,P,g) = id(G)
using assms inverse_in_group trans_comp groupO_2_L6 trans_neutral by
auto

Translations are bijective.

lemma (in group0) trans_bij: assumes gcG shows
RightTranslation(G,P,g) € bij(G,G) and LeftTranslation(G,P,g) € bij(G,G)
proof-
from assms have
RightTranslation(G,P,g) :G—G and
RightTranslation(G,P,g~!):G—G and
RightTranslation(G,P,g) O RightTranslation(G,P,g_l) 1d(G)
RightTranslation(G,P,g~!) 0 RightTranslation(G,P,g) = id(G)
using inverse_in_group groupO_5_L1 trans_comp_id by auto
then show RightTranslation(G,P,g) € bij(G,G) using fg_imp_bijective
by simp
from assms have
LeftTranslation(G,P,g) :G—G and
LeftTranslation(G,P,g_l):G—%G and
LeftTranslation(G,P,g) O LeftTranslation(G,P,g_l) id(G)
LeftTranslation(G,P,g~!') 0 LeftTranslation(G,P,g) id(G)
using inverse_in_group groupO_5_L1 trans_comp_id by auto
then show LeftTranslation(G,P,g) € bij(G,G) using fg_imp_bijective
by simp
qed

Converse of a translation is translation by the inverse.

lemma (in group0) trans_conv_inv: assumes ge€G shows
converse (RightTranslation(G,P,g)) = RightTranslation(G,P,g_l) and
converse(LeftTranslation(G,P,g)) = LeftTranslation(G,P,g_l) and
LeftTranslation(G,P,g) = converse(LeftTranslation(G,P,gfl)) and
RightTranslation(G,P,g) = converse(RightTranslation(G,P,g~!))
proof -
from assms have
RightTranslation(G,P,g) € bij(G,G) RightTranslation(G,P,g"!) € bij(G,G)
and
LeftTranslation(G,P,g) € bij(G,G) LeftTranslation(G,P,g’l) € bij(G,®)
using trans_bij inverse_in_group by auto
moreover from assms have
RightTranslation(G,P,g_l) 0 RightTranslation(G,P,g) = id(G) and

LeftTranslation(G,P,g_l) 0 LeftTranslation(G,P,g) = id(G) and
LeftTranslation(G,P,g) 0 LeftTranslation(G,P,g™ ') = id(G) and
LeftTranslation(G,P,gfl) 0 LeftTranslation(G,P,g) = id(G)

using trans_comp_id by auto
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ultimately show
converse(RightTranslation(G,P,g)) = RightTranslation(G,P,g~!) and
converse (LeftTranslation(G,P,g)) = LeftTranslation(G,P,g”!) and
LeftTranslation(G,P,g) = converse(LeftTranslation(G,P,g_l)) and
RightTranslation(G,P,g) = converse(RightTranslation(G,P,g_l))
using comp_id_conv by auto
qed

The image of a set by translation is the same as the inverse image by by the
inverse element translation.

lemma (in group0) trans_image_vimage: assumes gcG shows
LeftTranslation(G,P,g) (A) = LeftTranslation(G,P,g’l)—(A) and
RightTranslation(G,P,g) (A) = RightTranslation(G,P,g 1)-(A)
using assms trans_conv_inv vimage_converse by auto

Another way of looking at translations is that they are sections of the group
operation.

lemma (in group0) trans_eq_section: assumes ge€G shows
RightTranslation(G,P,g) = Fix2ndVar(P,g) and
LeftTranslation(G,P,g) = FixlstVar(P,g)
proof -
let T = RightTranslation(G,P,g)
let F = Fix2ndVar(P,g)
from assms have T: G—G and F: G—G
using group0_5_L1 group_oper_assocA fix_2nd_var_fun by auto
moreover from assms have VacG. T(a) = F(a)
using groupO0_5_L2 group_oper_assocA fix_var_val by simp
ultimately show T = F by (rule func_eq)

next
let T = LeftTranslation(G,P,g)
let F = FixlstVar(P,g)

from assms have T: G—G and F: GG
using groupO0_5_L1 group_oper_assocA fix_1st_var_fun by auto
moreover from assms have VacG. T(a) = F(a)
using group0_5_L2 group_oper_assocA fix_var_val by simp
ultimately show T = F by (rule func_eq)
qed

A lemma about translating sets.

lemma (in group0) ltrans_image: assumes Al: VCG and A2: x€G
shows LeftTranslation(G,P,x) (V) = {xv. veV}
proof -
from assms have LeftTranslation(G,P,x) (V) = {LeftTranslation(G,P,x) (v).
vevr
using group0_5_L1 func_imagedef by blast
moreover from assms have VveV. LeftTranslation(G,P,x) (v) = xv
using group0_5_L2 by auto
ultimately show thesis by auto
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qed

A technical lemma about solving equations with translations.

lemma (in group0) ltrans_inv_in: assumes Al: VCG and A2: yeG and
A3: x € LeftTranslation(G,P,y) (GroupInv(G,P) (V))
shows y € LeftTranslation(G,P,x) (V)
proof -
have xeG
proof -
from A2 have LeftTranslation(G,P,y):G—G using groupO_5_L1 by simp
then have LeftTranslation(G,P,y) (GroupInv(G,P)(V)) C G
using funcl_1_L6 by simp
with A3 show x€G by auto

qed
have Jvev. x = yv !
proof -
have GroupInv(G,P): G—G using groupAssum group0O_2_T2
by simp

with assms obtain z where z € GroupInv(G,P)(V) and x = yz
using funcl_1_L6 ltrans_image by auto

with A1 (GroupInv(G,P): G—& show thesis using func_imagedef by auto
qed
then obtain v where veV and x = y-v_! by auto
with Al A2 have y = x-v using inv_cancel_two by auto
with assms x€® «veV) show thesis using ltrans_image by auto

qed

We can look at the result of interval arithmetic operation as union of trans-
lated sets.

lemma (in group0) image_ltrans_union: assumes ACG BCG shows
(P {lifted to subsets of} G)(A,B) = (|JacA. LeftTranslation(G,P,a)(B))
proof
from assms have I: (P {lifted to subsets of} G){(A,B) = {ab . (a,b) €
AxB}
using group_oper_assocA lift_subsets_explained by simp
{ fix c assume c € (P {lifted to subsets of} G)(A,B)
with I obtain a b where ¢ = a-b and acA beB by auto
hence ¢ € {a:b. beB} by auto
moreover from assms (a€Ad) have
LeftTranslation(G,P,a) (B) = {a-b. beB} using ltrans_image by auto
ultimately have ¢ € LeftTranslation(G,P,a)(B) by simp
with @€h have ¢ € (|Ja€A. LeftTranslation(G,P,a)(B)) by auto
} thus (P {lifted to subsets of} G)(A,B) C (|JacA. LeftTranslation(G,P,a)(B))
by auto
{ fix c assume c € (|Ja€A. LeftTranslation(G,P,a)(B))
then obtain a where acA and ¢ € LeftTranslation(G,P,a) (B)
by auto
moreover from assms (ach) have LeftTranslation(G,P,a)(B) = {ab.
beB?
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using ltrans_image by auto
ultimately obtain b where beB and ¢ = a-b by auto
with I (@a€d have ¢ € (P {lifted to subsets of} G)(A,B) by auto

} thus (|JacA. LeftTranslation(G,P,a) (B)) C (P {lifted to subsets of}

G)(A,B)
by auto
qed

If the neutral element belongs to a set, then an element of group belongs
the translation of that set.

lemma (in group0) neut_trans_elem:

assumes Al: ACG geG and A2: 1€A

shows g € LeftTranslation(G,P,g) (A)
proof -

from assms have g-1 € LeftTranslation(G,P,g) (A)

using ltrans_image by auto

with A1 show thesis using group0_2_L2 by simp

qed

The neutral element belongs to the translation of a set by the inverse of an
element that belongs to it.
lemma (in group0) elem_trans_neut: assumes Al: ACG and A2: geA
shows 1 € LeftTranslation(G,P,g’l)(A)
proof -
from assms have g=! € G using inverse_in_group by auto
with assms have g~!'g € LeftTranslation(G,P,g 1) (A)
using ltrans_image by auto
moreover from assms have g!.g = 1 using group0_2_L6 by auto
ultimately show thesis by simp
qed

26.2 0Odd functions
This section is about odd functions.

Odd functions are those that commute with the group inverse: f(a=!) =
(f(a))~".

definition
Is0dd(G,P,f) = (VaeG. f(GroupInv(G,P)(a)) = GroupInv(G,P)(f(a)) )

Let’s see the definition of an odd function in a more readable notation.

lemma (in group0) groupO_6_L1:
shows Is0dd(G,P,p) <— ( VacG. p(a™!) = (p@)~')
using IsOdd_def by simp

We can express the definition of an odd function in two ways.

lemma (in group0) groupO_6_L2:
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assumes Al: p : G—G
shows
(VacG. pa™) = (p(a))™H) +— (YacG. (pa ) ! = pa)
proof
assume VacG. p(a~!) = (p(a))~!
with A1 show VacG. (p(a=!))~! = p(a)
using apply_funtype group_inv_of_inv by simp
next assume A2: VacG. (p(a=!))~! = p(a)
{ fix a assume acG
with A1 A2 have
pa™) € G and ((pa )" Ht = (p))!
using apply_funtype inverse_in_group by auto
then have p(a=!) = (p(a))~!
using group_inv_of_inv by simp
} then show VacG. p(a™!) = (p(a))~! by simp
qed

end

27 Groups - and alternative definition

theory Group_ZF_1b imports Group_ZF
begin

In a typical textbook a group is defined as a set G with an associative
operation such that two conditions hold:

A: there is an element e € G such that for all g € G we have e- g = g and
g-e = g. We call this element a "unit” or a "neutral element” of the group.
B: for every a € G there exists a b € G such that a - b = e, where e is the
element of G whose existence is guaranteed by A.

The validity of this definition is rather dubious to me, as condition A does
not define any specific element e that can be referred to in condition B -
it merely states that a set of such units e is not empty. Of course it does
work in the end as we can prove that the set of such neutral elements has
exactly one element, but still the definition by itself is not valid. You just
can’t reference a variable bound by a quantifier outside of the scope of that
quantifier.

One way around this is to first use condition A to define the notion of a
monoid, then prove the uniqueness of e and then use the condition B to
define groups.

Another way is to write conditions A and B together as follows:
Jeea (vgeG e-g=gANg-e=g)A(YacgIreg a-b=ce).
This is rather ugly.

What I want to talk about is an amusing way to define groups directly
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without any reference to the neutral elements. Namely, we can define a
group as a non-empty set G with an associative operation ”-” such that

C: for every a,b € G the equations a-x = b and y-a = b can be solved in G.

This theory file aims at proving the equivalence of this alternative definition
with the usual definition of the group, as formulated in Group_zF.thy. The
informal proofs come from an Aug. 14, 2005 post by buli on the matem-
atyka.org forum.

27.1 An alternative definition of group
First we will define notation for writing about groups.

We will use the multiplicative notation for the group operation. To do this,
we define a context (locale) that tells Isabelle to interpret a - b as the value
of function P on the pair (a, b).

locale group2 =
fixes P
fixes dot (infix]l - 70)
defines dot_def [simp]l: a - b = P(a,b)

The next theorem states that a set G with an associative operation that
satisfies condition C is a group, as defined in IsarMathLib Group_zF theory.

theorem (in group2) altgroup_is_group:
assumes Al: G#0 and A2: P {is associative on} G
and A3: VaeG.VbeG. Ix€G. ax =D
and A4: VaeG.VbeG. JyeG. ya =D
shows IsAgroup(G,P)
proof -
from A1 obtain a where a€G by auto
with A3 obtain x where x€G and ax = a

by auto

from A4 (a€G obtain y where ycG and y-a = a
by auto

have I: VbeG. b = bx A b =yb

proof

fix b assume beG

with A4 a€® obtain y, where y,cG
and yp-a = b by auto

from A3 @a€® (bex obtain x;, where x,€G
and ax; = b by auto

from @x = a (ya=a ypa=>bm @x, =b

have b = y,-(a'x) and b = (y-a)x
by auto

moreover from A2 ack® xeG® yE& xE® (y,€G have
(ya)x, = y-(axy) yp(ax) = (ypa)x
using IsAssociative_def by auto

moreover from (y,-a = b (@x, = b have
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(yb.a).x = b-x y.(a.xb) = y.b

by auto
ultimately show b = b-x A b = y-b by simp
qed
moreover have x = y
proof -

from x€® I have x = y-x by simp
also from (ye&® I have y:x = y by simp
finally show x = y by simp
qged
ultimately have VbeG. bx = b A xb = b by simp
with A2 x€® have IsAmonoid(G,P) using IsAmonoid_def by auto
with A3 show IsAgroup(G,P)
using monoidO_def monoidO.unit_is_neutral IsAgroup_def
by simp
qed

The converse of altgroup_is_group: in every (classically defined) group con-
dition C holds. In informal mathematics we can say ” Obviously condition C
holds in any group.” In formalized mathematics the word ”obviously” is not
in the language. The next theorem is proven in the context called group0
defined in the theory Group_zZF.thy. Similarly to the group2 that context
defines a - b as P(a,b) It also defines notation related to the group inverse
and adds an assumption that the pair (G, P) is a group to all its theorems.
This is why in the next theorem we don’t explicitely assume that (G, P) is
a group - this assumption is implicit in the context.
theorem (in group0) group_is_altgroup: shows
VacG.VbeG. dx€G. ax = b and VacG.VbeG. dyeG. y-a =b
proof -
{ fix a b assume a€G beG
let x =al D
let y = ba~!
from @€ (beG® have
x€G ye€G and ax =b ya=b>b
using inverse_in_group group_op_closed inv_cancel_two

by auto
hence 3x€G. a-x = b and IyeG. y-a = b by auto
} thus
VaeG.VbeG. dx€G. ax = b and
Va€eG.VbeG. JyeG. ya =1b
by auto
qed
end

28 Abelian Group

theory AbelianGroup_ZF imports Group_ZF
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begin

A group is called “abelian“ if its operation is commutative, i.e. P{a,b) =
P{a,b) for all group elements a,b, where P is the group operation. It is
customary to use the additive notation for abelian groups, so this condition
is typically written as a+b = b+ a. We will be using multiplicative notation
though (in which the commutativity condition of the operation is written as
a-b=>b-a), just to avoid the hassle of changing the notation we used for
general groups.

28.1 Rearrangement formulae

This section is not interesting and should not be read. Here we will prove
formulas is which right hand side uses the same factors as the left hand side,
just in different order. These facts are obvious in informal math sense, but
Isabelle prover is not able to derive them automatically, so we have to prove
them by hand.

Proving the facts about associative and commutative operations is quite
tedious in formalized mathematics. To a human the thing is simple: we can
arrange the elements in any order and put parantheses wherever we want,
it is all the same. However, formalizing this statement would be rather
difficult (I think). The next lemma attempts a quasi-algorithmic approach
to this type of problem. To prove that two expressions are equal, we first
strip one from parantheses, then rearrange the elements in proper order,
then put the parantheses where we want them to be. The algorithm for
rearrangement is easy to describe: we keep putting the first element (from
the right) that is in the wrong place at the left-most position until we get
the proper arrangement. As far removing parantheses is concerned Isabelle
does its job automatically.

lemma (in group0) groupO_4_L2:
assumes A1:P {is commutative on} G
and A2:a€G beG ceG deG E€G FeG
shows (a-b)-(c-d)-(EF) = (a-(dF)) (b-(cE))
proof -
from A2 have (ab):-(c-d)-(E-F) = a-b.c-dEF
using group_op_closed group_oper_assoc
by simp
also have ab-c:dEF = a-dF-b-cE
proof -
from A1 A2 have a-b-c-d-E-F = F-(a-b-c-d-E)
using IsCommutative_def group_op_closed
by simp
also from A2 have F-(a'b-c-d‘E) = F-a-b-c-d-E
using group_op_closed group_oper_assoc
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by simp
also from A1 A2 have F-a:b-c:d-E = d-(F-a:b-c)-E
using IsCommutative_def group_op_closed
by simp
also from A2 have d-(F-a-b-c)-E = d-F-a-b-c:E
using group_op_closed group_oper_assoc
by simp
also from A1 A2 have d:F-ab.cE = a-(dF)-b-cE
using IsCommutative_def group_op_closed
by simp
also from A2 have a:-(d-F)-b.c:E = a:d-F-b-c:E
using group_op_closed group_oper_assoc
by simp
finally show thesis by simp
qed
also from A2 have a-d-Fb-.cE = (a-(d-F))-(b-(cE))
using group_op_closed group_oper_assoc
by simp
finally show thesis by simp
qed

Another useful rearrangement.

lemma (in group0) groupO_4_L3:
assumes A1:P {is commutative on} G
and A2: acG beG and A3: ceG deG EeG FeG
shows ab-((c-d) "1 (EF)™!) = (a-(Ec)™ 1) (b-(F-d)™1)
proof -
from A3 have T1:
c'€G d7'eG E'eG F1eG (cd)teG (EF)leG
using inverse_in_group group_op_closed
by auto
from A2 T1 have
ab-((cd)"LEFY = ab(cd) LER!
using group_op_closed group_oper_assoc
by simp
also from A2 A3 have
ab-(c:d) L(EF)! = (ab)-(dtec - (FLET)
using group_inv_of_two by simp
also from A1 A2 T1 have
(ab)-(@te™H-(FHE™) = (a(c™HET))-(b-(da - FT1))
using group0_4_L2 by simp
also from A2 A3 have
(a:(c™E1))-(b- (@ F D) = (a(Ec) ™) (b-(F-d) )
using group_inv_of_two by simp
finally show thesis by simp
qed

Some useful rearrangements for two elements of a group.

lemma (in group0) groupO_4_L4:
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assumes Al1:P {is commutative on} G
and A2: acG beG

shows

b~lal = a lp!

(ab)~! = a=lpt

(ab ™)1 =alyp
proof -

from A2 have T1: b !€G a~'€G using inverse_in_group by auto
with A1 show b~ !-a=! = a~!.b~! using IsCommutative_def by simp
with A2 show (ab)~! = a~!-b~! using group_inv_of_two by simp
from A2 T1 have (ab !)~! = (b7!)~l.a=! using group_inv_of_two by simp
with A1 A2 T1 show (ab ')~! =alb
using group_inv_of_inv IsCommutative_def by simp
qed

Another bunch of useful rearrangements with three elements.

lemma (in group0) groupO_4_L4A:
assumes Al: P {is commutative on} G
and A2: aeG beG ceG
shows
ab-c = cab
a (e = (a(bc) ™!
a-(bc)™! = ab tc!
a-(bc™)! = ablc
ab lc! = actp!
proof -
from A1 A2 have ab-c = c-(a'b)
using IsCommutative_def group_op_closed
by simp
with A2 show a'b.c = c-a'b using
group_op_closed group_oper_assoc
by simp
from A2 have T:
b 'eG c'eG b lct €G abeG
using inverse_in_group group_op_closed
by auto
with A1 A2 show a ' (b~t.c™)7! = (a-(bc) 17!
using group_inv_of_two IsCommutative_def
by simp
from A1 A2 T have a-(b-c)™! = a-(b~tc™!)
using group_inv_of_two IsCommutative_def by simp
with A2 T show a-(b-c)™! = ab tc™!
using group_oper_assoc by simp
from A1 A2 T have a-(b-c™!)7! = a:- (b7t (c™H) 1)
using group_inv_of_two IsCommutative_def by simp
with A2 T show a-(b-c™!)~! = ab~lc
using group_oper_assoc group_inv_of_inv by simp
from A1 A2 T have ab l.c™! = a:(c7tb™ 1)
using group_oper_assoc IsCommutative_def by simp
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with A2 T show ab l:c™! = ac™lp!
using group_oper_assoc by simp
qed

Another useful rearrangement.

lemma (in group0) groupO_4_L4B:
assumes P {is commutative on} G
and acG beG ceG
shows ab ! (bc™!) = ac™
using assms inverse_in_group group_op_closed
group0_4_L4 group_oper_assoc inv_cancel_two by simp

1

A couple of permutations of order for three alements.

lemma (in group0) groupO_4_L4C:
assumes Al: P {is commutative on} G
and A2: a€G beG ceG
shows
a-b-c = c-ab
ab-c = a-(cb)
a-b-c = c-(a-b)
a-b-c = cba
proof -
from A1 A2 show I: abc = cab
using group0_4_L4A by simp
also from A1 A2 have c-ab = acb
using IsCommutative_def by simp
also from A2 have a-cb = a-(cb)
using group_oper_assoc by simp
finally show a'b-c = a-(c:b) by simp
from A2 I show ab-c = c-(a'b)
using group_oper_assoc by simp
also from A1 A2 have c-(ab) = c-(b-a)
using IsCommutative_def by simp
also from A2 have c-(b-a) = cb-a
using group_oper_assoc by simp
finally show a-b-c = c-b-a by simp
qed

Some rearangement with three elements and inverse.

lemma (in group0) groupO_4_L4D:
assumes Al: P {is commutative on} G
and A2: aceG beG ceG
shows
a lblc=rcalp!
b~ralc =calb?
(atbc)”! = abtct
proof -
from A2 have T:
aleac plea clea
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using inverse_in_group by auto

with A1 A2 show
a~lblc =calp?
btalc=rcalb!
using group0_4_L4A by auto

from A1 A2 T show (a~!'bc)™! = ablc7!
using group_inv_of_three group_inv_of_inv groupO_4_L4C
by simp

qed

Another rearrangement lemma with three elements and equation.

lemma (in group0) groupO_4_L5: assumes Al1:P {is commutative on} G
and A2: aeG beG ceG
and A3: ¢ = ab!
shows a = b-c
proof -
from A2 A3 have c-(b~1)"! = a
using inverse_in_group groupO_2_L18
by simp
with Al A2 show thesis using
group_inv_of_inv IsCommutative_def by simp
qed

In abelian groups we can cancel an element with its inverse even if separated
by another element.

lemma (in group0) groupO_4_L6A: assumes Al: P {is commutative on} G
and A2: aeG beG
shows
abal =
a~lba =
a~l-(ba)
a-(b-a™!)
proof -

from A1 A2 have

aba! =alab

using inverse_in_group groupO_4_L4A by blast
also from A2 have ... = b

using group0_2_L6 group0_2_L2 by simp
finally show ab-a~! = b by simp
from A1 A2 have

a lba=aalb

using inverse_in_group groupO_4_L4A by blast
also from A2 have ... = b

using group0_2_L6 group0_2_L2 by simp
finally show a~!b-a = b by simp
moreover from A2 have a~!b-a = a=!-(b-a)

using inverse_in_group group_oper_assoc by simp
ultimately show a=!-(b-a) = b by simp
from A1 A2 show a-(b-a™!) = b

I o o

b
b
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using inverse_in_group IsCommutative_def inv_cancel_two
by simp
qed

Another lemma about cancelling with two elements.

lemma (in group0) groupO_4_L6AA:
assumes Al: P {is commutative on} G and A2: a€G beG
shows ab~l.a™! = p~!
using assms inverse_in_group groupO_4_L6A
by auto

Another lemma about cancelling with two elements.

lemma (in group0) groupO_4_L6AB:
assumes Al: P {is commutative on} G and A2: acG beG
shows

a-(ab)~! = p7!
a-(ba”!) = b
proof -

from A2 have a-(ab)~! = a-(b"tal)
using group_inv_of_two by simp

also from A2 have ... = ab l.a™!
using inverse_in_group group_oper_assoc by simp
also from Al A2 have ... = b!

using group0_4_L6AA by simp
finally show a-(a-b)™! = b~! by simp
from A1 A2 have a-(b-a™!) = a-(a=!'b)
using inverse_in_group IsCommutative_def by simp

also from A2 have ... = b
using inverse_in_group group_oper_assoc groupO_2_L6 groupO_2_L2
by simp
finally show a-(b-a=!) = b by simp
qed

Another lemma about cancelling with two elements.

lemma (in group0) groupO_4_L6AC:
assumes P {is commutative on} G and acG beG
shows a-(ab™!1)"! = b
using assms inverse_in_group groupO_4_L6AB group_inv_of_inv
by simp

In abelian groups we can cancel an element with its inverse even if separated
by two other elements.

lemma (in group0) groupO_4_L6B: assumes Al: P {is commutative on} G
and A2: acG beG ceG

shows

ab-cca”! = bc

a lbca = bc
proof -
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from A2 have
ab-ca”! = a-(b-c)a”!
a~!lbca=al(bc)a
using group_op_closed group_oper_assoc inverse_in_group
by auto

with A1 A2 show
ab-cca”! = bc
a~lb-ca = bc
using group_op_closed groupO_4_L6A
by auto

qed

In abelian groups we can cancel an element with its inverse even if separated
by three other elements.

lemma (in group0) groupO_4_L6C: assumes Al: P {is commutative on} G
and A2: a&€G beG ceG deG
shows ab-c-da”! = b-cd
proof -
from A2 have ab-c-da”! = a-(b-cd)-a”!
using group_op_closed group_oper_assoc
by simp
with A1 A2 show thesis
using group_op_closed groupO_4_L6A
by simp
qed

Another couple of useful rearrangements of three elements and cancelling.

lemma (in group0) groupO_4_L6D:
assumes Al: P {is commutative on} G
and A2: aeG beG ceG
shows

ab l(ac!)7! = cp!
(ac) " L(bc) = alp
a-(b-(cca”tp 1)) =c¢
abc t(cal) =b

proof -
from A2 have T:
aleG bleg ctea
abe G ablea claleg caltea
using inverse_in_group group_op_closed by auto
with A1 A2 show ab '-(ac™!)™! = cb!
using group0_2_L12 group_oper_assoc groupO_4_L6B
IsCommutative_def by simp
from A2 T have (a-c) !-(b-c) = c l.albc
using group_inv_of_two group_oper_assoc by simp
also from A1 A2 T have ... = a~!b
using group0_4_L6B by simp
finally show (a-c) '-(bc) = a~'b
by simp
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from A1 A2 T show a-(b-(c-a”!b™1)) = ¢
using group_oper_assoc groupO_4_L6B group0_4_L6A
by simp

from T have ab.c™!-(cca™!) = ab-(c7t-(ca™!))
using group_oper_assoc by simp

also from A1 A2 T have ... = b
using group_oper_assoc group0_2_L6 group0_2_L2 group0_4_L6A
by simp
finally show ab-c™!-(c-a”!) = b by simp
qed

Another useful rearrangement of three elements and cancelling.

lemma (in group0) groupO_4_L6E:
assumes Al: P {is commutative on} G
and A2: aeG beG ceG
shows
a-b-(a-c)”! = bc?
proof -
from A2 have T: b ! € ¢ ¢! €@
using inverse_in_group by auto
with A1 A2 have
a-(b_l)_l-(a-(c_l)_l)_l = C—l_(b—l)—l
using group0_4_L6D by simp
with A1 A2 T show ab-(ac)”! = bc!
using group_inv_of_inv IsCommutative_def
by simp
qed

A rearrangement with two elements and canceelling, special case of group0_4_L6D
when ¢ = b~ L.

lemma (in group0) groupO_4_L6F:
assumes Al: P {is commutative on} G
and A2: a€G beG
shows a-b~!-(ab) ™! = b~ 1b!
proof -
from A2 have b™! € G
using inverse_in_group by simp
with A1 A2 have ab~!-(a- (b))~ = p~Lp~!
using group0_4_L6D by simp
with A2 show ab~!-(ab)”! = b lb!
using group_inv_of_inv by simp
qed

Some other rearrangements with four elements. The algorithm for proof as
in group0_4_L2 works very well here.

lemma (in group0) rearr_ab_gr_4_elemA:
assumes Al: P {is commutative on} G
and A2: acG beG ceG deG
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shows
a-b-c-d = a-d-b-c
ab-c:d = a-c-(b-d)
proof -
from A1 A2 have ab-c-d = d-(a-b-c)
using IsCommutative_def group_op_closed

by simp

also from A2 have ... = d-a-b-c
using group_op_closed group_oper_assoc
by simp

also from A1 A2 have ... = a-db-c
using IsCommutative_def group_op_closed
by simp

finally show a-b-c.d = a-d'b-c
by simp

from A1 A2 have ab-c:d = c-(a-b)-d
using IsCommutative_def group_op_closed

by simp

also from A2 have ... = c-a-b-d
using group_op_closed group_oper_assoc
by simp

also from A1 A2 have ... = a-cb-d
using IsCommutative_def group_op_closed
by simp

also from A2 have ... = a-c-(b-d)
using group_op_closed group_oper_assoc
by simp

finally show a‘b-c-d = a-c-(b-d)
by simp

qed

Some rearrangements with four elements and inverse that are applications
of rearr_ab_gr_4_elem

lemma (in group0) rearr_ab_gr_4_elemB:
assumes Al: P {is commutative on} G
and A2: aeG beG ceG deG
shows
ab lctd ! = adlptlc!
ab-c:d”! = a.d lbc
abc a7l = acl(bab)
proof -
from A2 have T: b € G cleG datlea
using inverse_in_group by auto
with A1 A2 show
ab lcl.d™! = adtplc!
abcd ! = ad lbc
abcld! = act(bd™h)
using rearr_ab_gr_4_elemA by auto
qed
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Some rearrangement lemmas with four elements.

lemma (in group0) groupO_4_L7:

assumes Al: P {is commutative on} G

and A2: aeG beG ceG deG

shows

abc:d™! = a-d7!- bc

a-d-(b-d-(c:d))! = a(bc)~td!

a-(b-c)-d = ab-d-c

proof -

from A2 have T:
bc € Gd!eGbles ctea
d'beGcldeG (ba) ! €G
bd € G bdce G (bdc) ' €
ad € G bc e G
using group_op_closed inverse_in_group
by auto

with A1 A2 have abcd™' = a-(d"!b-c)
using group_oper_assoc groupO_4_L4A by simp

also from A2 T have a-(d 'b-c) = a-d !bc
using group_oper_assoc by simp

finally show ab-c:d™! = a-d™!- b-.c by simp

from A2 T have a-d-(b-d-(c:d))™! = a-d-(d7 - (b-dc)™h)
using group_oper_assoc group_inv_of_two by simp

also from A2 T have ... = a-(b-d-c)!

using group_oper_assoc inv_cancel_two by simp
also from A1 A2 have ... = a-(d-(b-c))™!

using IsCommutative_def group_oper_assoc by simp
also from A2 T have ... = a-((b-c)~1.d71)

using group_inv_of_two by simp
also from A2 T have ... = a-(b-c) t.d7!

using group_oper_assoc by simp
finally show a-d-(b-d-(c-d))~! = a-(b-c)~l.d!
by simp
from A2 have a-(b-c)-d = a-(b-(c-d))
using group_op_closed group_oper_assoc by simp

also from A1 A2 have ... = a-(b-(d-c))
using IsCommutative_def group_op_closed by simp
also from A2 have ... = abd-c

using group_op_closed group_oper_assoc by simp
finally show a-(b-c)-d = a'b-d-c by simp
qed

Some other rearrangements with four elements.

lemma (in group0) groupO_4_L8:
assumes Al: P {is commutative on} G
and A2: aeG beG ceG  deG
shows
a-(bc) ! = (ad te)-(@ap™ )
a'b-(c:d) = c-a(b-d)
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a-b-(c:d) = a-c-(b-d)
a-(b-c1)-d = ab-dc!
(ab)-(c:d) "t (bd 1)t = ac?
proof -
from A2 have T:
bc€GabeGd'!eGbletclea
d'b eGecldeG (ba) ! €
abeG (cd) ' eG (dH'les dblega
using group_op_closed inverse_in_group
by auto
from A2 have a-(b-c)~! = a.c”'b~! using group0_2_L14A by blast
moreover from A2 have a-c! = (a-d7!)-(d-c™!) using group0_2_L14A
by blast
ultimately have a-(b-c)~! = (a-d™!)-(d-c™!)-b~! by simp
with A1 A2 T have a-(b-c)~!'= a-d™'-(c7td)-b!
using IsCommutative_def by simp
with A2 T show a-(b-c)™! = (a-d™'c™1)-(db™ 1)
using group_op_closed group_oper_assoc by simp
from A2 T have a-b-(c:d) = ab-cd
using group_oper_assoc by simp
also have ab-c.d = c-a-b-d
proof -
from A1 A2 have ab-cd = c-(ab)-d
using IsCommutative_def group_op_closed

by simp
also from A2 have ... = c-a-bd
using group_op_closed group_oper_assoc
by simp
finally show thesis by simp
qed

also from A2 have c-a-b-d = c-a-(b-d)
using group_op_closed group_oper_assoc
by simp
finally show a'b-(c-d) = c-a-(b-d) by simp
with A1 A2 show ab-(c:d) = a-c-(b-d)
using IsCommutative_def by simp
from A1 A2 T show a-(b.c™')-d = abdc™!
using group0_4_L7 by simp
from T have (ab)-(c-d) " !-(b-d™1)~! = (ab)-((c:d) ! (bda™Hh
using group_oper_assoc by simp

also from A1 A2 T have ... = (ab)-(c td!-(ab™1))
using group_inv_of_two groupO_2_L12 IsCommutative_def
by simp

also from T have ... = (a-b)-(c™!-(d7 ' (db 1))
using group_oper_assoc by simp

also from A1 A2 T have ... = a-c™!

using group_oper_assoc group0O_2_L6 group0_2_L2 IsCommutative_def
inv_cancel_two by simp
finally show (ab)-(c:d) ! (b-d™1)"! = ac™!
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by simp
qed

Some other rearrangements with four elements.

lemma (in group0) groupO_4_L8A:
assumes Al: P {is commutative on} G
and A2: aceG beG ceG  deG

shows

ab !l (cd™!) = ac(®tad)

ab t(cd™!) = acbhb td!
proof -

from A2 have
T: acG b ' € G ceG d ' €@
using inverse_in_group by auto

with A1 show ab !'-(c:d™!) = ac-(b~ta™ 1)
by (rule group0_4_L8)

with A2 T show ab '-(c:d!) = acb l.d!
using group_op_closed group_oper_assoc
by simp

qed

Some rearrangements with an equation.

lemma (in group0) groupO_4_L9:
assumes Al: P {is commutative on} G
and A2: aceG beG ceG deG
and A3: a = b-c '.d7!
shows
d = baltc!
d=atlbc!
b = a-d-c
proof -
from A2 have T:
aleG clec ates beclea
using group_op_closed inverse_in_group
by auto
with A2 A3 have a-(d™)~! = bc!
using group0_2_L18 by simp
with A2 have b-c™! = ad
using group_inv_of_inv by simp
with A2 T have I: a~!-(bc™!) =d
using group0_2_L18 by simp
with A1 A2 T show
d = balc!
d=albc!
using group_oper_assoc IsCommutative_def by auto
from A3 have a-d-c = (b-c !-d"!)-d-c by simp

also from A2 T have ... = b-c - (a7 1d)-c
using group_oper_assoc by simp
also from A2 T have ... = b-clc
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using group0_2_L6 group0_2_L2 by simp

also from A2 T have ... = b-(c !-c)
using group_oper_assoc by simp
also from A2 have ... = b

using group0_2_L6 groupO_2_L2 by simp
finally have a-d-c = b by simp
thus b = a-d-.c by simp
qed

end

29 Groups 2

theory Group_ZF_2 imports AbelianGroup_ZF func_ZF EquivClassl
begin

This theory continues Group_ZF.thy and considers lifting the group struc-
ture to function spaces and projecting the group structure to quotient spaces,
in particular the quotient qroup.

29.1 Lifting groups to function spaces

If we have a monoid (group) G than we get a monoid (group) structure on
a space of functions valued in in G by defining (f - g)(z) := f(z) - g(z). We
call this process "lifting the monoid (group) to function space”. This section
formalizes this lifting.

The lifted operation is an operation on the function space.

lemma (in monoid0) Group_ZF_2_1_LOA:
assumes Al: F = f {lifted to function space over} X
shows F : (X—G) x (X—G) —(X—G)
proof -
from monoidAsssum have f : GXG—G
using IsAmonoid_def IsAssociative_def by simp
with Al show thesis
using func_ZF_1_L3 groupO_1_L3B by auto
qed

The result of the lifted operation is in the function space.

lemma (in monoid0) Group_ZF_2_1_LO:
assumes Al1:F = f {lifted to function space over} X
and A2:s:X—G r:X—G
shows F( s,r) : X—G
proof -
from A1 have F : (X—G) x (X—G)—(X—G)
using Group_ZF_2_1_LOA
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by simp
with A2 show thesis using apply_funtype
by simp
qed

The lifted monoid operation has a neutral element, namely the constant
function with the neutral element as the value.

lemma (in monoidO) Group_ZF_2_1_L1:
assumes Al: F = f {lifted to function space over} X
and A2: E = ConstantFunction(X,TheNeutralElement(G,f))
shows E : X—G A (Vs€X—G. F( E,s) = s A F( s,E) = 8)
proof
from A2 show T1:E : X—G
using unit_is_neutral funcl_3_L1 by simp
show VseX—G. F( E,s) = s A F( s,E) = s
proof
fix s assume A3:s:X—G
from monoidAsssum have T2:f : GXG—G
using IsAmonoid_def IsAssociative_def by simp
from A3 A1 T1 have
F( E,s) : X=G F( s,E) : X=»G s : X—G
using Group_ZF_2_1_LO by auto
moreover from T2 A1 T1 A2 A3 have
VxeX. (F( E,s))(x) = s(x)
VxeX. (F( s,E))(x) = s(x)
using func_ZF_1_L4 groupO_1_L3B funcl_3_L2
apply_type unit_is_neutral by auto
ultimately show
F(E,s) = s A F( s,E) =s
using fun_extension_iff by auto
qed
qed

Monoids can be lifted to a function space.

lemma (in monoid0) Group_ZF_2_1_T1:
assumes Al: F = f {lifted to function space over} X
shows IsAmonoid (X—G,F)
proof -
from monoidAsssum Al have
F {is associative on} (X—G)
using IsAmonoid_def func_ZF_2_L4 groupO_1_L3B
by auto
moreover from Al have
3 E € X>G. Vs € X=»G. F( E,s) = s A F( s,E) = s
using Group_ZF_2_1_L1 by blast
ultimately show thesis using IsAmonoid_def
by simp
qed
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The constant function with the neutral element as the value is the neutral
element of the lifted monoid.

lemma Group_ZF_2_1_L2:
assumes Al: IsAmonoid(G,f)
and A2: F = f {lifted to function space over} X
and A3: E = ConstantFunction(X,TheNeutralElement(G,f))
shows E = TheNeutralElement (X—G,F)
proof -
from A1 A2 have
T1:monoid0(G,f) and T2:monoid0(X—G,F)
using monoidO_def monoidO.Group_ZF_2_1_T1
by auto
from T1 A2 A3 have
E : X—»G A (Vs€X—G. F( E,s) = s A F( s,E) = s)
using monoidO.Group_ZF_2_1_L1 by simp
with T2 show thesis
using monoidO.groupO_1_L4 by auto
qed

The lifted operation acts on the functions in a natural way defined by the
monoid operation.

lemma (in monoid0) lifted_val:
assumes F = f {lifted to function space over} X
and s:X—G r:X—G
and xe€X
shows (F(s,r)) (x) = s(x) & r(x)
using monoidAsssum assms IsAmonoid_def IsAssociative_def
groupO_1_L3B func_ZF_1_14
by auto

The lifted operation acts on the functions in a natural way defined by the
group operation. This is the same as 1ifted_val, but in the group0 context.

lemma (in group0) Group_ZF_2_1_L3:
assumes F = P {lifted to function space over} X
and s:X—G r:X—G
and x€X
shows (F(s,r)) (x) = s(x)-r(x)
using assms groupO_2_L1 monoid0.lifted_val by simp

In the groupO context we can apply theorems proven in monoid0 context to
the lifted monoid.

lemma (in group0) Group_ZF_2_1_L4:
assumes Al: F = P {lifted to function space over} X
shows monoid0 (X—G,F)
proof -
from A1l show thesis
using group0_2_L1 monoidO.Group_ZF_2_1_T1 monoidO_def
by simp
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qed

The compostion of a function f : X — G with the group inverse is a right
inverse for the lifted group.

lemma (in group0) Group_ZF_2_1_L5:
assumes Al: F = P {lifted to function space over} X
and A2: s : X—=G
and A3: i = GroupInv(G,P) O s
shows i: X—G and F( s,i) = TheNeutralElement (X—G,F)
proof -
let E = ConstantFunction(X,1)
have E : X—G
using group0_2_L2 funcl_3_L1 by simp
moreover from groupAssum A2 A3 Al have
F( s,i) : X—G using group0_2_T2 comp_fun
Group_ZF_2_1_L4 monoid0O.groupO_1_L1
by simp
moreover from groupAssum A2 A3 Al have
VxeX. (F( s,i)) (x) = E(x)
using group0_2_T2 comp_fun Group_ZF_2_1_L3
comp_fun_apply apply_funtype groupO_2_L6 funcl_3_L2
by simp
moreover from groupAssum Al have
E = TheNeutralElement (X—G,F)
using IsAgroup_def Group_ZF_2_1_L2 by simp
ultimately show F( s,i) = TheNeutralElement (X—G,F)
using fun_extension_iff IsAgroup_def Group_ZF_2_1_L2
by simp
from groupAssum A2 A3 show i: X—G
using group0_2_T2 comp_fun by simp
qed

Groups can be lifted to the function space.

theorem (in group0O) Group_ZF_2_1_T2:
assumes Al: F = P {lifted to function space over} X
shows IsAgroup(X—G,F)
proof -
from A1 have IsAmonoid (X—G,F)
using group0_2_L1 monoid0.Group_ZF_2_1_T1
by simp
moreover have
VseX—G. Ji€X—G. F( s,i) = TheNeutralElement(X—G,F)
proof
fix s assume A2: s : X—G
let i = GroupInv(G,P) 0 s
from groupAssum A2 have i:X—G
using group0_2_T2 comp_fun by simp
moreover from Al A2 have
F( s,i) = TheNeutralElement (X—G,F)
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using Group_ZF_2_1_L5 by fast
ultimately show 3i€X—G. F( s,i) = TheNeutralElement (X—G,F)
by auto
qed
ultimately show thesis using IsAgroup_def
by simp
qed

What is the group inverse for the lifted group?

lemma (in group0) Group_ZF_2_1_L6:
assumes Al: F = P {lifted to function space over} X
shows Vsec(X—G). GroupInv(X—G,F)(s) = GroupInv(G,P) O s
proof -
from Al have group0(X—G,F)
using groupO_def Group_ZF_2_1_T2
by simp
moreover from Al have Vs€X—G. GroupInv(G,P) 0 s : X—G A
F( s,GroupInv(G,P) 0 s) = TheNeutralElement(X—G,F)
using Group_ZF_2_1_L5 by simp
ultimately have
Vse(X—G). GroupInv(G,P) 0 s = GroupInv(X—G,F) (s)
by (rule groupO.group0_2_L9A)
thus thesis by simp
qed

What is the value of the group inverse for the lifted group?

corollary (in group0) lift_gr_inv_val:
assumes F = P {lifted to function space over} X and
s : X—G and x€X
shows (GroupInv(X—G,F)(s))(x) = (s(x))!
using groupAssum assms Group_ZF_2_1_L6 groupO_2_T2 comp_fun_apply
by simp

What is the group inverse in a subgroup of the lifted group?
lemma (in group0) Group_ZF_2_1_L6A:

assumes Al: F = P {lifted to function space over} X
and A2: IsAsubgroup(H,F)

and A3: g = restrict(F,HxH)

and A4: scH
shows GroupInv(H,g) (s) = GroupInv(G,P) O s
proof -

from Al have T1: groupO(X—G,F)
using groupO_def Group_ZF_2_1_T2
by simp
with A2 A3 A4 have GroupInv(H,g)(s) = GroupInv(X—G,F)(s)
using group0.group0_3_T1 restrict by simp
moreover from T1 Al A2 A4 have
GroupInv(X—G,F)(s) = GroupInv(G,P) 0 s
using group0.group0_3_L2 Group_ZF_2_1_L6 by blast
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ultimately show thesis by simp
qed

If a group is abelian, then its lift to a function space is also abelian.

lemma (in group0) Group_ZF_2_1_L7:
assumes Al: F = P {lifted to function space over} X
and A2: P {is commutative on} G
shows F {is commutative on} (X—G)
proof-
from A1 A2 have
F {is commutative on} (X—range(P))
using group_oper_assocA func_ZF_2_L2
by simp
moreover from groupAssum have range(P) = G
using group0_2_L1 monoid0.groupO_1_L3B
by simp
ultimately show thesis by simp
qed

29.2 Equivalence relations on groups

The goal of this section is to establish that (under some conditions) given
an equivalence relation on a group or (monoid )we can project the group
(monoid) structure on the quotient and obtain another group.

The neutral element class is neutral in the projection.

lemma (in monoid0) Group_ZF_2_2_L1:
assumes Al: equiv(G,r) and A2:Congruent2(r,f)
and A3: F = ProjFun2(G,r,f)
and A4: e = TheNeutralElement(G,f)
shows r{e} € G//r A
(Ve € G//r. F{ r{e},c) = ¢ A F( c,r{e}) = ¢
proof
from A4 show Til:r{e} € G//r
using unit_is_neutral quotientI
by simp
show
Ve € G//r. F( r{e},c) = c A F( c,r{e}) =c
proof
fix ¢ assume A5:c € G//r
then obtain g where D1:gcG ¢ = r{g}
using quotient_def by auto
with A1 A2 A3 A4 D1 show
F( r{e},c) = c A F({ c,r{e}) = ¢
using unit_is_neutral EquivClass_1_L10
by simp
qed
qed
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The projected structure is a monoid.

theorem (in monoid0) Group_ZF_2_2_T1:
assumes Al: equiv(G,r) and A2: Congruent2(r,f)
and A3: F = ProjFun2(G,r,f)
shows IsAmonoid(G//r,F)
proof -
let E = r{TheNeutralElement(G,f)}
from A1 A2 A3 have
E € G//t N (VceG//r. F(E,c) = ¢ A F( c,E) = c)
using Group_ZF_2_2_L1 by simp
hence
JE€G//r. V c€G//r. F{ E,c) = c A F( ¢c,E) = c
by auto
with monoidAsssum A1 A2 A3 show thesis
using IsAmonoid_def EquivClass_2_T2
by simp
qed

The class of the neutral element is the neutral element of the projected
monoid.

lemma Group_ZF_2_2_L1:
assumes Al: IsAmonoid(G,f)
and A2: equiv(G,r) and A3: Congruent2(r,f)
and A4: F = ProjFun2(G,r,f)
and A5: e = TheNeutralElement(G,f)
shows r{e} = TheNeutralElement(G//r,F)
proof -
from A1 A2 A3 A4 have
T1:monoid0(G,f) and T2:monoid0(G//r,F)
using monoidO_def monoidO.Group_ZF_2_2_T1 by auto
from T1 A2 A3 A4 A5 have r{e} € G//r A
(Ve € G//r. F{ r{e},c) = ¢ A F( c,r{e}) = ©)
using monoidO.Group_ZF_2_2_L1 by simp
with T2 show thesis using monoid0.group0_1_L4
by auto
qed

The projected operation can be defined in terms of the group operation on
representants in a natural way.

lemma (in group0) Group_ZF_2_2_L2:
assumes Al: equiv(G,r) and A2: Congruent2(r,P)
and A3: F = ProjFun2(G,r,P)
and A4: a€G beG
shows F( r{a},r{b}) = r{a-b}
proof -
from A1 A2 A3 A4 show thesis
using EquivClass_1_L10 by simp
qed
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The class of the inverse is a right inverse of the class.

lemma (in group0) Group_ZF_2_2_L3:
assumes Al: equiv(G,r) and A2: Congruent2(r,P)
and A3: F = ProjFun2(G,r,P)

and A4: acG
shows F(r{a},r{a"'}) = TheNeutralElement(G//r,F)
proof -

from A1 A2 A3 A4 have
F(r{a},r{a"'}) = r{1}
using inverse_in_group Group_ZF_2_2_L2 group0_2_L6
by simp
with groupAssum Al A2 A3 show thesis
using IsAgroup_def Group_ZF_2_2_L1 by simp
qed

The group structure can be projected to the quotient space.

theorem (in group0) Group_ZF_3_T2:
assumes Al: equiv(G,r) and A2: Congruent2(r,P)
shows IsAgroup(G//r,ProjFun2(G,r,P))
proof -
let F = ProjFun2(G,r,P)
let E = TheNeutralElement(G//r,F)
from groupAssum A1 A2 have IsAmonoid(G//r,F)
using IsAgroup_def monoidO_def monoid0.Group_ZF_2_2_T1
by simp
moreover have
VceG//r. IbeG//r. F( c,b) = E
proof
fix ¢ assume A3: ¢ € G//r
then obtain g where D1: geG c = r{g}
using quotient_def by auto
let b = r{g~ '}
from D1 have b € G//r
using inverse_in_group quotientI

by simp
moreover from Al A2 D1 have
F( c,b) = E

using Group_ZF_2_2_L3 by simp
ultimately show 3IbeG//r. F( c,b) = E
by auto
qed
ultimately show thesis
using IsAgroup_def by simp
qed

The group inverse (in the projected group) of a class is the class of the
inverse.

lemma (in group0) Group_ZF_2_2_L4:
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assumes Al: equiv(G,r) and
A2: Congruent2(r,P) and
A3: F = ProjFun2(G,r,P) and
Ad: acG
shows r{a~!} = GroupInv(G//r,F) (r{a})
proof -
from A1 A2 A3 have group0(G//r,F)
using Group_ZF_3_T2 groupO_def by simp
moreover from A4 have
r{a} € 6¢//r r{a™'} € G//r
using inverse_in_group quotientI by auto
moreover from A1 A2 A3 A4 have
F(r{a},r{a"'}) = TheNeutralElement(G//r,F)
using Group_ZF_2_2_L3 by simp
ultimately show thesis
by (rule groupO.group0_2_L9)
qed

29.3 Normal subgroups and quotient groups

If H is a subgroup of G, then for every a € G we can cosider the sets
{a-hh € H} and {h-a.h € H} (called a left and right ”coset of H”,
resp.) These sets sometimes form a group, called the ”quotient group”.
This section discusses the notion of quotient groups.

A normal subgorup N of a group G is such that aba™! belongs to N if
a€G,beN.

definition
IsAnormalSubgroup(G,P,N) = IsAsubgroup(N,P) A
(VneN.VgeG. P( P( g,n ),GroupInv(G,P)(g) ) € N)

Having a group and a normal subgroup N we can create another group
consisting of eqivalence classes of the relation a ~ b = a-b"! € N. We
will refer to this relation as the quotient group relation. The classes of this
relation are in fact cosets of subgroup H.

definition
QuotientGroupRel(G,P,H) =
{( a,b) € GxG. P( a, GroupInv(G,P)(b)) € H}

Next we define the operation in the quotient group as the projection of the
group operation on the classses of the quotient group relation.

definition
QuotientGroupOp(G,P,H) = ProjFun2(G,QuotientGroupRel(G,P,H ),P)

Definition of a normal subgroup in a more readable notation.

lemma (in group0) Group_ZF_2_4_LO:
assumes IsAnormalSubgroup(G,P,H)
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and ge€G neH
shows gng™! € H
using assms IsAnormalSubgroup_def by simp

The quotient group relation is reflexive.

lemma (in group0) Group_ZF_2_4_L1:
assumes IsAsubgroup(H,P)
shows refl(G,QuotientGroupRel(G,P,H))
using assms group0_2_L6 group0_3_L5
QuotientGroupRel_def refl_def by simp

The quotient group relation is symmetric.

lemma (in group0) Group_ZF_2_4_L2:
assumes Al:IsAsubgroup(H,P)
shows sym(QuotientGroupRel(G,P,H))
proof -
{
fix a b assume A2: ( a,b) € QuotientGroupRel (G,P,H)
with A1 have (ab ')~ ! € H
using QuotientGroupRel_def groupO_3_T3A

by simp

moreover from A2 have (ab 1)7! = ba!
using QuotientGroupRel_def group0_2_L12
by simp

ultimately have b-a~! € H by simp
with A2 have ( b,a) € QuotientGroupRel(G,P,H)
using QuotientGroupRel_def by simp
}

then show thesis using symI by simp
qed

The quotient group relation is transistive.

lemma (in group0) Group_ZF_2_4_L3A:
assumes Al: IsAsubgroup(H,P) and
A2: ( a,b) € QuotientGroupRel(G,P,H) and
A3: ( b,c) € QuotientGroupRel(G,P,H)
shows ( a,c) € QuotientGroupRel(G,P,H)
proof -
let r = QuotientGroupRel(G,P,H)
from A2 A3 have Tl:a€G beG ceG
using QuotientGroupRel_def by auto
from A1 A2 A3 have (ab™!)-(b:c™!) € H
using QuotientGroupRel_def group0_3_L6
by simp
moreover from T1 have
ac ! = (ab 1) -(b-c™H
using group0_2_L14A by blast
ultimately have a-c™! € H
by simp
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with T1 show thesis using QuotientGroupRel_def
by simp
qed

The quotient group relation is an equivalence relation. Note we do not need
the subgroup to be normal for this to be true.

lemma (in group0) Group_ZF_2_4_L3: assumes Al:IsAsubgroup(H,P)
shows equiv(G,QuotientGroupRel (G,P,H))
proof -
let r = QuotientGroupRel(G,P,H)
from A1 have
Vabc. ((a, ) €er A (b, c) e€r — (a, ¢) € 1)
using Group_ZF_2_4_L3A by blast
then have trans(r)
using Foll_L2 by blast
with A1 show thesis
using Group_ZF_2_4_L1 Group_ZF_2_4_L2
QuotientGroupRel_def equiv_def
by auto
qed

The next lemma states the essential condition for congruency of the group
operation with respect to the quotient group relation.

lemma (in group0) Group_ZF_2_4_L4:
assumes Al: IsAnormalSubgroup(G,P,H)
and A2: (al,a2) € QuotientGroupRel(G,P,H)
and A3: (b1,b2) € QuotientGroupRel(G,P,H)
shows (al-bl, a2-b2) € QuotientGroupRel (G,P,H)
proof -
from A2 A3 have T1:
aleG a2eG bleG b22eG
albl € G a2b2 € G
b1b2™! € H ala2™! € H
using QuotientGroupRel_def groupO_2_L1 monoid0.groupO_1_L1
by auto
with Al show thesis using
IsAnormalSubgroup_def groupO_3_L6 groupO_2_L15
QuotientGroupRel_def by simp
qed

If the subgroup is normal, the group operation is congruent with respect to
the quotient group relation.

lemma Group_ZF_2_4_L5A:
assumes IsAgroup(G,P)
and IsAnormalSubgroup(G,P,H)
shows Congruent2(QuotientGroupRel(G,P,H),P)
using assms groupO_def groupO.Group_ZF_2_4_L4 Congruent2_def
by simp

281



The quotient group is indeed a group.

theorem Group_ZF_2_4_T1:
assumes IsAgroup(G,P) and IsAnormalSubgroup(G,P,H)
shows
IsAgroup(G//QuotientGroupRel(G,P,H) ,QuotientGroupOp(G,P,H))
using assms groupO_def groupO.Group_ZF_2_4_L3 IsAnormalSubgroup_def
Group_ZF_2_4_L5A groupO.Group_ZF_3_T2 QuotientGroupOp_def
by simp

The class (coset) of the neutral element is the neutral element of the quotient
group.

lemma Group_ZF_2_4_L5B:

assumes IsAgroup(G,P) and IsAnormalSubgroup(G,P,H)

and r = QuotientGroupRel(G,P,H)

and e = TheNeutralElement(G,P)

shows r{e} = TheNeutralElement(G//r,QuotientGroupOp(G,P,H))

using assms IsAnormalSubgroup_def groupO_def
IsAgroup_def groupO.Group_ZF_2_4_L3 Group_ZF_2_4_L5A
QuotientGroupOp_def Group_ZF_2_2_L1

by simp

A group element is equivalent to the neutral element iff it is in the subgroup
we divide the group by.

lemma (in group0) Group_ZF_2_4_L5C: assumes acG
shows (a,1) € QuotientGroupRel(G,P,H) «— acH
using assms QuotientGroupRel_def group_inv_of_one group0O_2_L2
by auto

A group element is in H iff its class is the neutral element of G/H.

lemma (in group0) Group_ZF_2_4_L5D:
assumes Al: IsAnormalSubgroup(G,P,H) and
A2: aeG and
A3: r = QuotientGroupRel(G,P,H) and
A4: TheNeutralElement(G//r,QuotientGroupOp(G,P,H)) = e
shows r{a} = e «— (a,1) € r
proof
assume r{a} = e
with groupAssum assms have
r{1} = r{a} and I: equiv(G,r)
using Group_ZF_2_4_L5B IsAnormalSubgroup_def Group_ZF_2_4_L3
by auto
with A2 have (1,a) € r using eq_equiv_class
by simp
with I show (a,1) € r by (rule equiv_is_sym)
next assume (a,1) € r
moreover from Al A3 have equiv(G,r)
using IsAnormalSubgroup_def Group_ZF_2_4_L3
by simp

282



ultimately have r{a} = r{1}
using equiv_class_eq by simp
with groupAssum Al A3 A4 show r{a} = e
using Group_ZF_2_4_L5B by simp
qed

The class of a € G is the neutral element of the quotient G/H iff a € H.
lemma (in group0) Group_ZF_2_4_L5E:

assumes IsAnormalSubgroup(G,P,H) and

acG and r = QuotientGroupRel(G,P,H) and
TheNeutralElement (G//r,QuotientGroupOp(G,P,H)) = e
shows r{a} = e +— acH

using assms Group_ZF_2_4_L5C Group_ZF_2_4_L5D

by simp

Essential condition to show that every subgroup of an abelian group is nor-
mal.

lemma (in group0) Group_ZF_2_4_L5:
assumes Al: P {is commutative on} G
and A2: IsAsubgroup(H,P)
and A3: geG heH
shows ghg! € H
proof -
from A2 A3 have T1:heG g ! € G
using group0_3_L2 inverse_in_group by auto
with A3 A1 have ghg™! = g l.gh
using group0_4_L4A by simp
with A3 T1 show thesis using
group0_2_L6 groupO0_2_L2
by simp
qed

Every subgroup of an abelian group is normal. Moreover, the quotient group
is also abelian.

lemma Group_ZF_2_4_L6:
assumes Al: IsAgroup(G,P)
and A2: P {is commutative on} G
and A3: IsAsubgroup(H,P)
shows IsAnormalSubgroup(G,P,H)
QuotientGroupOp(G,P,H) {is commutative on} (G//QuotientGroupRel(G,P,H))
proof -
from A1 A2 A3 show T1: IsAnormalSubgroup(G,P,H) using
groupO_def IsAnormalSubgroup_def groupO.Group_ZF_2_4_L5
by simp
let r = QuotientGroupRel(G,P,H)
from A1 A3 T1 have equiv(G,r) Congruent2(r,P)
using group0_def group0.Group_ZF_2_4_L3 Group_ZF_2_4_L5A
by auto
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with A2 show
QuotientGroupOp(G,P,H) {is commutative on} (G//QuotientGroupRel(G,P,H))
using EquivClass_2_T1 QuotientGroupOp_def
by simp
qed

The group inverse (in the quotient group) of a class (coset) is the class of
the inverse.

lemma (in group0) Group_ZF_2_4_L7:
assumes IsAnormalSubgroup(G,P,H)
and a€G and r = QuotientGroupRel(G,P,H)
and F = QuotientGroupOp(G,P,H)
shows r{a='} = GroupInv(G//r,F) (r{al})
using groupAssum assms IsAnormalSubgroup_def Group_ZF_2_4_L3
Group_ZF_2_4_L5A QuotientGroupOp_def Group_ZF_2_2_L4
by simp

29.4 Function spaces as monoids

On every space of functions {f : X — X} we can define a natural monoid
structure with composition as the operation. This section explores this fact.

The next lemma states that composition has a neutral element, namely the
identity function on X (the one that maps = € X into itself).

lemma Group_ZF_2_5_L1: assumes Al: F
shows 3Ic(X—X). Vfe(X—X). F( I,f)
proof-
let T = id(X)
from A1 have
I € XX A (VEEX=X). F(I,f) = £ A F( £,I) = £)
using id_type func_ZF_6_L1A by simp
thus thesis by auto
qged

Composition(X)
fAF(£,I)=1

The space of functions that map a set X into itsef is a monoid with compo-
sition as operation and the identity function as the neutral element.

lemma Group_ZF_2_5_L2: shows
IsAmonoid (X—X,Composition (X))
id(X) = TheNeutralElement (X—X,Composition(X))
proof -
let I id(X)
let F = Composition(X)
show IsAmonoid(X—X,Composition(X))
using func_ZF_5_L5 Group_ZF_2_5_L1 IsAmonoid_def
by auto
then have monoidO(X—X,F)
using monoid0_def by simp
moreover have
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I€X=XA (VEeE@E=X). F(I,f) =f A F( £,I) = f)
using id_type func_ZF_6_L1A by simp
ultimately show I = TheNeutralElement(X—X,F)
using monoid0O.group0_1_L4 by auto
qed

end

30 Groups 3

theory Group_ZF_3 imports Group_ZF_2 Finitel
begin

In this theory we consider notions in group theory that are useful for the
construction of real numbers in the Real_ZF_x series of theories.

30.1 Group valued finite range functions

In this section show that the group valued functions f : X — G, with the
property that f(X) is a finite subset of G, is a group. Such functions play
an important role in the construction of real numbers in the Real_ZF series.

The following proves the essential condition to show that the set of finite
range functions is closed with respect to the lifted group operation.

lemma (in group0) Group_ZF_3_1_L1:
assumes Al: F = P {lifted to function space over} X
and
A2: s € FinRangeFunctions(X,G) r € FinRangeFunctions(X,G)
shows F( s,r) € FinRangeFunctions(X,G)
proof -
let q = F{ s,1)
from A2 have T1:s:X—G r:X—G
using FinRangeFunctions_def by auto
with A1 have T2:q : X—G
using group0_2_L1 monoid0.Group_ZF_2_1_LO
by simp
moreover have q(X) € Fin(G)
proof -
from A2 have
{s(x). x€X} € Fin(G)
{r(x). x€X} € Fin(G)
using Finitel_L18 by auto
with A1 T1 T2 show thesis using
group_oper_assocA Finitel_L15 Group_ZF_2_1_L3 func_imagedef
by simp
qed
ultimately show thesis using FinRangeFunctions_def
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by simp
qed

The set of group valued finite range functions is closed with respect to the
lifted group operation.

lemma (in group0) Group_ZF_3_1_L2:

assumes Al: F = P {lifted to function space over} X

shows FinRangeFunctions(X,G) {is closed under} F
proof -

let A = FinRangeFunctions(X,G)

from A1 have VxeA. VyeA. F( x,y) € A

using Group_ZF_3_1_L1 by simp

then show thesis using IsOpClosed_def by simp

qed

A composition of a finite range function with the group inverse is a finite
range function.

lemma (in group0) Group_ZF_3_1_L3:
assumes Al: s € FinRangeFunctions(X,G)
shows GroupInv(G,P) 0 s € FinRangeFunctions(X,G)
using groupAssum assms groupO_2_T2 Finitel_L20 by simp

The set of finite range functions is s subgroup of the lifted group.

theorem Group_ZF_3_1_T1:
assumes Al: IsAgroup(G,P)
and A2: F = P {lifted to function space over} X

and A3: X#0
shows IsAsubgroup(FinRangeFunctions(X,G) ,F)
proof -

let e = TheNeutralElement (G,P)
let S = FinRangeFunctions(X,G)
from A1 have T1: groupO(G,P) using groupO_def
by simp
with A1 A2 have T2:group0(X—G,F)
using group0.Group_ZF_2_1_T2 groupO_def
by simp
moreover have S # 0
proof -
from T1 A3 have
ConstantFunction(X,e) € S
using group0.group0_2_L1 monoid0.unit_is_neutral
Finitel_L17 by simp
thus thesis by auto
qed
moreover have S C X—G
using FinRangeFunctions_def by auto
moreover from A2 T1 have
S {is closed under} F
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using group0.Group_ZF_3_1_L2
by simp
moreover from Al A2 T1 have
Vs € S. GroupInv(X—G,F)(s) € S
using FinRangeFunctions_def groupO.Group_ZF_2_1_L6
group0.Group_ZF_3_1_L3 by simp

ultimately show thesis
using group0.group0_3_T3 by simp
qed

30.2 Almost homomorphisms

An almost homomorphism is a group valued function defined on a monoid
M with the property that the set {f(m +n) — f(m) — f(n)}mnenm is finite.
This term is used by R. D. Arthan in ”The Eudoxus Real Numbers”. We
use this term in the general group context and use the A‘Campo’s term
"slopes” (see his ”A natural construction for the real numbers”) to mean
an almost homomorphism mapping interegers into themselves. We consider
almost homomorphisms because we use slopes to define real numbers in the
Real_ZF_x series.

HomDiff is an acronym for ”homomorphism difference”. This is the expres-
sion s(mn)(s(m)s(n))~L, or s(m+n)—s(m)—s(n) in the additive notation.
It is equal to the neutral element of the group if s is a homomorphism.

definition
HomDiff (G,f,s,x) =
f(s(f({ fst(x),snd(x))) ,
(GroupInv(G,f) (£f{ s(fst(x)),s(snd(x))))))

Almost homomorphisms are defined as those maps s : G — G such that the
homomorphism difference takes only finite number of values on G x G.

definition
AlmostHoms (G,f) =
{s € G—=G.{HomDiff(G,f,s,x). x € GXG } € Fin(G)}

AlHomOpl(G, f) is the group operation on almost homomorphisms defined
in a natural way by (s-7)(n) = s(n) - r(n). In the terminology defined in
funcl.thy this is the group operation f (on G) lifted to the function space
G — G and restricted to the set AlmostHoms(G, f).

definition
AlHomOp1 (G,f) =
restrict(f {lifted to function space over} G,
AlmostHoms (G, f) xAlmostHoms (G,f))

We also define a composition (binary) operator on almost homomorphisms
in a natural way. We call that operator AlHomOp2 - the second operation on
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almost homomorphisms. Composition of almost homomorphisms is used to
define multiplication of real numbers in Real_ZF series.

definition
AlHomOp2(G,f) =
restrict (Composition(G) ,AlmostHoms (G,f) xAlmostHoms (G,f))

This lemma provides more readable notation for the HomDiff definition.
Not really intended to be used in proofs, but just to see the definition in the
notation defined in the group0 locale.

lemma (in group0) HomDiff_notation:
shows HomDiff(G,P,s,( m,n)) = s(mn)-(s(m)-s(n)) "
using HomDiff_def by simp

The next lemma shows the set from the definition of almost homomorphism
in a different form.

lemma (in group0) Group_ZF_3_2_L1A: shows

{HomDiff (G,P,s,x). x € GXG } = {s(@mn)-(s(m)-s(m))~*. ( m,n) € GxG}
proof -
have VmeG.VneG. HomDiff(G,P,s,( m,n)) = s(mn)-(s(m)-s(n))*
using HomDiff_notation by simp
then show thesis by (rule ZF1_1_L4A)
qed

Let’s define some notation. We inherit the notation and assumptions from
the group0 context (locale) and add some. We will use AH to denote the
set of almost homomorphisms. ~ is the inverse (negative if the group is
the group of integers) of almost homomorphisms, (~ p)(n) = p(n)~t. § will
denote the homomorphism difference specific for the group (HomDiff(G, f)).
The notation s ~ r will mean that s,r are almost equal, that is they are in
the equivalence relation defined by the group of finite range functions (that
is a normal subgroup of almost homomorphisms, if the group is abelian).
We show that this is equivalent to the set {s(n)-7(n)~! : n € G} being
finite. We also add an assumption that the G is abelian as many needed
properties do not hold without that.

locale groupl = group0O +

assumes isAbelian: P {is commutative on} G

fixes AH
defines AH_def [simp]: AH = AlmostHoms(G,P)

fixes Op1
defines Opl_def [simp]: Opl = AlHomOp1(G,P)

fixes 0p2
defines Op2_def [simp]: Op2 = AlHomOp2(G,P)
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fixes FR
defines FR_def [simp]: FR = FinRangeFunctions(G,G)

fixes neg (~_ [90] 91)
defines neg_def [simp]: ~s = GroupInv(G,P) 0 s

fixes §
defines 0_def [simpl: §(s,x) = HomDiff(G,P,s,x)

fixes AHprod (infix - 69)
defines AHprod_def [simpl: s - r = AlHomOpl(G,P)(s,r)

fixes AHcomp (infix o 70)
defines AHcomp_def [simpl: s o r = AlHomOp2(G,P)(s,r)

fixes AlEq (infix = 68)
defines AlEq_def [simp]:
s AT (s,r) € QuotientGroupRel (AH,Op1,FR)

HomDiff is a homomorphism on the lifted group structure.

lemma (in groupl) Group_ZF_3_2_L1:
assumes Al: s:G—G r:G—G
and A2: x € GXG
and A3: F = P {lifted to function space over} G
shows 0 (F( s,r),x) = §(s,x)-0(r,x)
proof -
let p = F( s,1)
from A2 obtain m n where
D1: x = ( m,n) mEG neG
by auto
then have Tl:mn € G
using group0_2_L1 monoidO.groupO_1_L1 by simp
with A1 D1 have T2:
s(m)eG s(n)eG r(m)EG
r(n)eG s(mn)eG r(mn)€EG
using apply_funtype by auto
from A3 Al have T3:p : G—G
using group0_2_L1 monoid0.Group_ZF_2_1_LO
by simp
from D1 T3 have
d(p,x) = pmn)-((p@) - (pm)~—hH
using HomDiff_notation apply_funtype group_inv_of_two
by simp
also from A3 A1 D1 T1 isAbelian T2 have
... =0(s,x) 0(r,x)
using Group_ZF_2_1_L3 group0_4_L3 HomDiff_notation
by simp
finally show thesis by simp
qed

289



The group operation lifted to the function space over G preserves almost
homomorphisms.

lemma (in groupl) Group_ZF_3_2_L2: assumes Al: s € AH r € AH
and A2: F = P {lifted to function space over} G
shows F( s,r) € AH
proof -
let p = F( s,1)
from A1 A2 have p : G—G
using AlmostHoms_def groupO_2_L1 monoid0.Group_ZF_2_1_LO
by simp
moreover have
{0(p,x). x € GXG} € Fin(G)
proof -
from A1 have
{5(s,x). x € GXG } € Fin(G)
{0(r,x). x € GXG } € Fin(G)
using AlmostHoms_def by auto
with groupAssum A1 A2 show thesis
using IsAgroup_def IsAmonoid_def IsAssociative_def
Finitel_L15 AlmostHoms_def Group_ZF_3_2_L1
by auto
qed
ultimately show thesis using AlmostHoms_def
by simp
qed

The set of almost homomorphisms is closed under the lifted group operation.

lemma (in groupl) Group_ZF_3_2_L3:
assumes F = P {lifted to function space over} G
shows AH {is closed under} F
using assms IsOpClosed_def Group_ZF_3_2_L2 by simp

The terms in the homomorphism difference for a function are in the group.

lemma (in groupl) Group_ZF_3_2_L4:
assumes s:G—G and meG neG
shows
mn € G
s(mn) € G
s(m) € Gs(n) € G
§(s,(m,n) € G
s(m)-s(n) € G
using assms group_op_closed inverse_in_group
apply_funtype HomDiff_def by auto

It is handy to have a version of Group_ZF_3_2_L4 specifically for almost ho-
momorphisms.

assumes s € AH and meG neG

corollary (in groupl) Group_ZF_3_2_L4A:
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shows mn € G

s(mn) € G

s(m) € Gsn) € G

§(s,{ m,n)) € G

s(m)-s(n) € G

using assms AlmostHoms_def Group_ZF_3_2_L4
by auto

The terms in the homomorphism difference are in the group, a different
form.

lemma (in groupl) Group_ZF_3_2_L4B:
assumes Al:s € AH and A2:xeGXG
shows fst(x)-snd(x) € G
s(fst(x)-snd(x)) € G
s(fst(x)) € G s(snd(x)) € G
6(s,x) € G
s(fst(x))-s(snd(x)) € G
proof -
let m = fst(x)
let n = snd(x)
from A1 A2 show
mn € G s(mn) € G
s(m) € G s(n) € G
s(m)-s(n) € G
using Group_ZF_3_2_L4A
by auto
from A1 A2 have §(s,( m,n)) € G using Group_ZF_3_2_L4A
by simp
moreover from A2 have ( m,n) = x by auto
ultimately show §(s,x) € G by simp
qed

What are the values of the inverse of an almost homomorphism?

lemma (in groupl) Group_ZF_3_2_L5:
assumes s € AH and neG
shows (~s) (@) = (s(n)) !

using assms AlmostHoms_def comp_fun_apply by auto

Homomorphism difference commutes with the inverse for almost homomor-
phisms.

lemma (in groupl) Group_ZF_3_2_L6:
assumes Al:s € AH and A2:x€GXG
shows 0(~s,x) = (6(s,x)) !
proof -
let m = fst(x)
let n = snd(x)
have §(~s,x) = (~s)(@mn)-((~s) @) -(~s)@)) !
using HomDiff_def by simp
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from A1 A2 isAbelian show thesis
using Group_ZF_3_2_L4B HomDiff_def
Group_ZF_3_2_L5 group0_4_L4A
by simp
qed

The inverse of an almost homomorphism maps the group into itself.

lemma (in groupl) Group_ZF_3_2_L7:
assumes s € AH
shows ~s : G—G
using groupAssum assms AlmostHoms_def group0_2_T2 comp_fun by auto

The inverse of an almost homomorphism is an almost homomorphism.

lemma (in groupl) Group_ZF_3_2_L8:
assumes Al: F = P {lifted to function space over} G
and A2: s € AH
shows GroupInv(G—G,F)(s) € AH
proof -
from A2 have {§(s,x). x € GXG} € Fin(G)
using AlmostHoms_def by simp
with groupAssum have
GroupInv(G,P){d(s,x). x € GXG} € Fin(G)
using group0_2_T2 Finitel L6A by blast
moreover have
GroupInv(G,P){d(s,x). x € GXG} =
{(6(s,x)) 7. x € GxG}
proof -
from groupAssum have
GroupInv(G,P) : G—G
using group0_2_T2 by simp
moreover from A2 have
VxEGXG. 0(s,x)EG
using Group_ZF_3_2_L4B by simp
ultimately show thesis
using funcl_1_L17 by simp
qed
ultimately have {(§(s,x))"!. x € GXG} € Fin(G)
by simp
moreover from A2 have
{(5(s,x))7 . x € GxG} = {d(~s,x). x € GXG}
using Group_ZF_3_2_L6 by simp
ultimately have {j(~s,x). x € GXG} € Fin(G)
by simp
with A2 groupAssum Al show thesis
using Group_ZF_3_2_L7 AlmostHoms_def Group_ZF_2_1_L6
by simp
qed

The function that assigns the neutral element everywhere is an almost ho-
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momorphism.

lemma (in groupl) Group_ZF_3_2_L9: shows
ConstantFunction(G,1) € AH and AH#0
proof -
let z = ConstantFunction(G,1)
have GxG#0 using group0_2_L1 monoid0.groupO_1_L3A
by blast
moreover have VxeGxG. §(z,x) =1
proof
fix x assume Al:x € G X G
then obtain m n where x = ( m,n) meG neG
by auto
then show 0(z,x) =1
using group0_2_L1 monoidO.groupO_1_L1
funcl_3_L2 HomDiff_def groupO_2_L2
group_inv_of_one by simp
qed
ultimately have {§(z,x). x€GxG} = {1} by (rule ZF1_1_L5)
then show z € AH using groupO_2_L2 Finitel_L16
func1_3_L1 group0_2_L2 AlmostHoms_def by simp
then show AH#0 by auto
qed

If the group is abelian, then almost homomorphisms form a subgroup of the
lifted group.

lemma Group_ZF_3_2_L10:
assumes Al: IsAgroup(G,P)
and A2: P {is commutative on} G
and A3: F = P {lifted to function space over} G
shows IsAsubgroup(AlmostHoms(G,P),F)
proof -
let AH = AlmostHoms(G,P)
from A2 A1 have Ti: groupl(G,P)
using groupl_axioms.intro groupO_def groupl_def
by simp
from A1 A3 have group0(G—G,F)
using groupO_def groupO.Group_ZF_2_1_T2 by simp
moreover from T1 have AH#0
using groupl.Group_ZF_3_2_L9 by simp
moreover have T2:AH C G—G
using AlmostHoms_def by auto
moreover from T1 A3 have
AH {is closed under} F
using groupl.Group_ZF_3_2_L3 by simp
moreover from T1 A3 have
Vse€AH. GroupInv(G—G,F)(s) € AH
using groupl.Group_ZF_3_2_L8 by simp
ultimately show IsAsubgroup(AlmostHoms(G,P),F)
using group0.group0_3_T3 by simp
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qed

If the group is abelian, then almost homomorphisms form a group with the
first operation, hence we can use theorems proven in group0O context aplied
to this group.

lemma (in groupl) Group_ZF_3_2_L10A:
shows IsAgroup(AH,Opl) groupO(AH,0p1)
using groupAssum isAbelian Group_ZF_3_2_L10 IsAsubgroup_def

AlHomOp1_def groupO_def by auto

The group of almost homomorphisms is abelian

lemma Group_ZF_3_2_L11: assumes Al: IsAgroup(G,f)
and A2: f {is commutative on} G
shows
IsAgroup(AlmostHoms (G,f) ,A1HomOp1(G,£f))
AlHomOp1(G,f) {is commutative on} AlmostHoms(G,f)
proof-
let AH = AlmostHoms(G,f)
let F = £ {lifted to function space over} G
from A1 A2 have IsAsubgroup(AH,F)
using Group_ZF_3_2_L10 by simp
then show IsAgroup(AH,AlHomOp1(G,f))
using IsAsubgroup_def AlHomOpl_def by simp
from Al have F : (G—G) X (G—G)— (G—G)
using IsAgroup_def monoidO_def monoidO.Group_ZF_2_1_LOA
by simp
moreover have AH C G—G
using AlmostHoms_def by auto
moreover from Al A2 have
F {is commutative on} (G—G)
using group0_def groupO.Group_ZF_2_1_L7
by simp
ultimately show
AlHomOp1(G,f){is commutative on} AH
using func_ZF_4_L1 AlHomOpl_def by simp
qed

The first operation on homomorphisms acts in a natural way on its operands.

lemma (in groupl) Group_ZF_3_2_L12:
assumes sc€AH recAH and neG
shows (s:r)(n) = s(n)-r(n)
using assms AlHomOpl_def restrict AlmostHoms_def Group_ZF_2_1_L3

by simp

What is the group inverse in the group of almost homomorphisms?

lemma (in groupl) Group_ZF_3_2_L13:
assumes Al: scAH
shows
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GroupInv(AH,0pl) (s) = GroupInv(G,P) O s

GroupInv(AH,0pl)(s) € AH

GroupInv(G,P) 0 s € AH

proof -

let F = P {lifted to function space over} G

from groupAssum isAbelian have IsAsubgroup(AH,F)
using Group_ZF_3_2_L10 by simp

with Al show I: GroupInv(AH,0p1) (s) = GroupInv(G,P) O s
using AlHomOpl_def Group_ZF_2_1_L6A by simp

from A1 show GroupInv(AH,Opl)(s) € AH
using Group_ZF_3_2_L10A groupO.inverse_in_group by simp

with I show GroupInv(G,P) 0 s € AH by simp
qed

The group inverse in the group of almost homomorphisms acts in a natural
way on its operand.

lemma (in groupl) Group_ZF_3_2_L14:
assumes scAH and néeG
shows (GroupInv(AH,Op1)(s))(n) = (s(n)) !
using isAbelian assms Group_ZF_3_2_L13 AlmostHoms_def comp_fun_apply
by auto

The next lemma states that if s, are almost homomorphisms, then s - 7!

is also an almost homomorphism.

lemma Group_ZF_3_2_L15: assumes IsAgroup(G,f)

and f {is commutative on} G

and AH = AlmostHoms(G,f) Opl = AlHomOpi(G,f)

and s € AH r € AH

shows

Opi( s,r) € AH

GroupInv(AH,0p1) (r) € AH

Op1( s,GroupInv(AH,0p1) (xr)) € AH

using assms groupO_def groupl_axioms.intro groupl_def
groupl.Group_ZF_3_2_L10A groupO.groupO_2_L1
monoidO.groupO_1_L1 groupO.inverse_in_group by auto

A version of Group_zF_3_2_L15 formulated in notation used in groupi con-
text. States that the product of almost homomorphisms is an almost homo-
morphism and the the product of an almost homomorphism with a (point-
wise) inverse of an almost homomorphism is an almost homomorphism.

shows s:r € AH s-(~r) € AH
using assms isAbelian groupO_def groupl_axioms groupl_def
Group_ZF_3_2_L15 Group_ZF_3_2_L13 by auto

corollary (in groupl) Group_ZF_3_2_L16: assumes s € AH r € AH
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30.3 The classes of almost homomorphisms

In the Real_ZF series we define real numbers as a quotient of the group of
integer almost homomorphisms by the integer finite range functions. In this
section we setup the background for that in the general group context.

Finite range functions are almost homomorphisms.

lemma (in groupl) Group_ZF_3_3_L1: shows FR C AH
proof
fix s assume Al:s € FR
then have Ti:{s(n). n € G} € Fin(G)
{s(fst(x)). x€GxG} € Fin(G)
{s(snd(x)). x€GXG} € Fin(G)
using Finitel_L18 Finitel_L6B by auto
have {s(fst(x)-snd(x)). x € GxG} € Fin(G)
proof -
have VxeGxG. fst(x)-snd(x) € G
using group0_2_L1 monoid0.groupO_1_L1 by simp
moreover from T1 have {s(n). n € G} € Fin(G) by simp
ultimately show thesis by (rule Finitel_L6B)
qed
moreover have
{(s(fst(x))-s(snd(x)))~!. x€GxG} € Fin(G)
proof -
have VgcG. g~! € G using inverse_in_group
by simp
moreover from T1 have
{s(fst(x))-s(snd(x)). x€GXG} € Fin(G)
using group_oper_assocA Finitel L15 by simp
ultimately show thesis
by (rule Finitel_L6C)
qed
ultimately have {i(s,x). x€GXG} € Fin(G)
using HomDiff_def Finitel L15 group_oper_assocA
by simp
with Al show s € AH
using FinRangeFunctions_def AlmostHoms_def
by simp
qed

Finite range functions valued in an abelian group form a normal subgroup
of almost homomorphisms.

lemma Group_ZF_3_3_L2: assumes Al:IsAgroup(G,f)
and A2:f {is commutative on} G
shows
IsAsubgroup (FinRangeFunctions(G,G) ,A1HomOp1(G,f))
IsAnormalSubgroup (AlmostHoms (G,f) ,A1HomOp1(G,f),
FinRangeFunctions(G,G))

proof -
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let H1 = AlmostHoms(G,f)
let H2 = FinRangeFunctions(G,G)
let F = £ {lifted to function space over} G
from A1 A2 have T1:groupO(G,f)
monoid0(G,f) groupl(G,f)
using groupO_def group0.group0_2_L1
groupl_axioms.intro groupl_def
by auto
with Al A2 have IsAgroup(G—G,F)
IsAsubgroup(H1,F) IsAsubgroup(H2,F)
using group0.Group_ZF_2_1_T2 Group_ZF_3_2_L10
monoid0.groupO_1_L3A Group_ZF_3_1_T1
by auto
then have
IsAsubgroup (H1NH2,restrict (F,H1xH1))
using group0_3_L7 by simp
moreover from T1 have H1NH2 = H2
using groupl.Group_ZF_3_3_L1 by auto
ultimately show IsAsubgroup(H2,A1HomOp1(G,f))
using AlHomOpl_def by simp
with A1 A2 show IsAnormalSubgroup(AlmostHoms(G,f),A1HomOp1(G,f),
FinRangeFunctions(G,G))
using Group_ZF_3_2_L11 Group_ZF_2_4_L6
by simp
qed

The group of almost homomorphisms divided by the subgroup of finite range
functions is an abelian group.

theorem (in groupl) Group_ZF_3_3_T1:
shows
IsAgroup (AH//QuotientGroupRel (AH,0pl,FR) ,QuotientGroupOp (AH,0p1,FR))
and
QuotientGroupOp(AH,0p1,FR) {is commutative on}
(AH//QuotientGroupRel (AH,0p1,FR))
using groupAssum isAbelian Group_ZF_3_3_L2 Group_ZF_3_2_L10A

Group_ZF_2_4_T1 Group_ZF_3_2_L10A Group_ZF_3_2_L11

Group_ZF_3_3_L2 IsAnormalSubgroup_def Group_ZF_2_4_L6 by auto

It is useful to have a direct statement that the quotient group relation is an
equivalence relation for the group of AH and subgroup FR.

lemma (in groupl) Group_ZF_3_3_L3: shows
QuotientGroupRel (AH,Op1,FR) C AH x AH and
equiv (AH,QuotientGroupRel (AH,0p1,FR))
using groupAssum isAbelian QuotientGroupRel_def
Group_ZF_3_3_L2 Group_ZF_3_2_L10A groupO.Group_ZF_2_4_L3

by auto

The ”almost equal” relation is symmetric.

lemma (in groupl) Group_ZF_3_3_L3A: assumes Al: s~r
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shows rxs
proof -
let R = QuotientGroupRel (AH,0p1l,FR)
from Al have equiv(AH,R) and (s,r) € R
using Group_ZF_3_3_L3 by auto
then have (r,s) € R by (rule equiv_is_sym)
then show rxs by simp
qed

Although we have bypassed this fact when proving that group of almost
homomorphisms divided by the subgroup of finite range functions is a group,
it is still useful to know directly that the first group operation on AH is
congruent with respect to the quotient group relation.

lemma (in groupl) Group_ZF_3_3_L4:
shows Congruent2(QuotientGroupRel (AH,Op1,FR),0pl)
using groupAssum isAbelian Group_ZF_3_2_L10A Group_ZF_3_3_L2
Group_ZF_2_4_L5A by simp

The class of an almost homomorphism s is the neutral element of the quo-
tient group of almost homomorphisms iff s is a finite range function.

lemma (in groupl) Group_ZF_3_3_L5: assumes s € AH and
r = QuotientGroupRel (AH,Op1,FR) and
TheNeutralElement (AH//r,QuotientGroupOp(AH,Opl1,FR)) = e
shows r{s} = e +— s € FR
using groupAssum isAbelian assms Group_ZF_3_2_L11
groupO_def Group_ZF_3_3_L2 groupO.Group_ZF_2_4_L5E
by simp

The group inverse of a class of an almost homomorphism f is the class of
the inverse of f.

lemma (in groupl) Group_ZF_3_3_L6:
assumes Al: s € AH and
r = QuotientGroupRel (AH,0Op1,FR) and
F = ProjFun2(AH,r,0pl)
shows r{~s} = GroupInv(AH//r,F) (x{s})
proof -
from groupAssum isAbelian assms have
r{GroupInv(AH, Op1)(s)} = GroupInv(AH//r,F)(r {s})
using Group_ZF_3_2_L10A Group_ZF_3_3_L2 QuotientGroupOp_def

group0.Group_ZF_2_4_L7 by simp
with A1 show thesis using Group_ZF_3_2_L13
by simp

qed

30.4 Compositions of almost homomorphisms

The goal of this section is to establish some facts about composition of almost
homomorphisms. needed for the real numbers construction in Real_ZF_x
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series. In particular we show that the set of almost homomorphisms is
closed under composition and that composition is congruent with respect
to the equivalence relation defined by the group of finite range functions (a
normal subgroup of almost homomorphisms).

The next formula restates the definition of the homomorphism difference to
express the value an almost homomorphism on a product.

lemma (in groupl) Group_ZF_3_4_L1:
assumes s€AH and meG neG
shows s(mn) = s(m)-s(n)-0(s,( m,n))
using isAbelian assms Group_ZF_3_2_L4A HomDiff_def group0_4_L5
by simp

What is the value of a composition of almost homomorhisms?

lemma (in groupl) Group_ZF_3_4_L2:
assumes s€AH recAH and meG
shows (sor)(m) = s(r(m)) s(r(m)) € G
using assms AlmostHoms_def func_ZF_5_L3 restrict AlHomOp2_def
apply_funtype by auto

What is the homomorphism difference of a composition?

lemma (in groupl) Group_ZF_3_4_L3:
assumes Al: s€AH recAH and A2: meG neG
shows ¢(sor,( m,n)) =
0(s,( r@,r(n)))-s(0(r,( m,n)))-6(s,{ r(m)-r(n),i(r,( m,n))))
proof -
from A1 A2 have T1:
s(r(m))- s(r(m)) € G
0(s,{ r(m),r))€ G s(0(r,{ m,n))) €G
§(s,( (x(@)r(@)),d(r,( m,n)))) € G
using Group_ZF_3_4_L2 AlmostHoms_def apply_funtype
Group_ZF_3_2_L4A groupO_2_L1 monoidO.groupO_1_L1
by auto
from A1 A2 have §(sor,{ m,n)) =
s(r(m)-r(n)-0(r,( m,n)))-(s((x@m)))-sx@))) !
using HomDiff_def groupO_2_L1 monoidO.groupO_1_L1 Group_ZF_3_4_L2
Group_ZF_3_4_L1 by simp
moreover from Al A2 have
s(r(m) r(n)-0(r,{ m,n))) =
s(r(m)-r(m))-s(d(r,( m,n)))-0(s,( (x(m)-rn)),dé(r,( m,n))))
s(r(m)-r(n)) = s(xm))-s(x@))-6(s,{ r(m),r(n)))
using Group_ZF_3_2_L4A Group_ZF_3_4_L1 by auto
moreover from T1 isAbelian have
s(r(m))-s(r(m))-6(s,{ r(m),r(n)))-
s((r,( m,n)))0(s,{ (x@)-r(n)),d(r,( m,n))))-
(s((xm))-sx@))~*t =
d(s,{( r(m),r(m)))-s((xr,( m,n)))-d6(s,({ (x(m)-r(n)),d(r,( m,n))))
using group0_4_L6C by simp
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ultimately show thesis by simp
qed

What is the homomorphism difference of a composition (another form)?
Here we split the homomorphism difference of a composition into a product
of three factors. This will help us in proving that the range of homomorphism
difference for the composition is finite, as each factor has finite range.

lemma (in groupl) Group_ZF_3_4_L4:
assumes Al: s€AH reAH and A2: x € GXG
and A3:
A= 6(s,( r(fst(x)),r(snd(x))))
B s(0(r,x))
C = 6(s,( (r(fst(x))-r(snd(x))),d(x,x)))
shows ¢ (sor,x) = A-B-C
proof -
let m = fst(x)
let n = snd(x)
note Al
moreover from A2 have meG neG
by auto
ultimately have
d(sor,( m,n)) =
d(s,( r(m),r(m)))-s((xr,( m,n)))-
d(s,( (xr(m)-r(n)),d(r,( m,n))))
by (rule Group_ZF_3_4_L3)
with A1 A2 A3 show thesis
by auto

qed

The range of the homomorphism difference of a composition of two almost
homomorphisms is finite. This is the essential condition to show that a
composition of almost homomorphisms is an almost homomorphism.

lemma (in groupl) Group_ZF_3_4_L5:
assumes Al: scAH recAH
shows {d(Composition(G)( s,r),x). x € GXG} € Fin(G)
proof -
from A1 have
VxeGXG. ( r(fst(x)),r(snd(x))) € GXG
using Group_ZF_3_2_L4B by simp
moreover from Al have
{5(s,x). xEGXG} € Fin(G)
using AlmostHoms_def by simp
ultimately have
{0(s,{ r(£fst(x)),r(snd(x)))). xEGXG} € Fin(G®)
by (rule Finitel_L6B)
moreover have {s(6(r,x)). x€GxG} € Fin(G)
proof -
from A1 have VmeG. s(m) € G
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using AlmostHoms_def apply_funtype by auto
moreover from A1 have {§(r,x). x€GxG} € Fin(G)
using AlmostHoms_def by simp
ultimately show thesis
by (rule Finitel_L6C)
qed
ultimately have
{0(s,{ r(fst(x)),r(snd(x))))-s(6(r,x)). xEGXG} € Fin(®)
using group_oper_assocA Finitel_L15 by simp
moreover have
{0(s,{ (x(fst(x)) r(snd(x))),i(r,x))). xEGXG} € Fin(G)
proof -
from A1 have
VxeGxG. ( (r(fst(x))-r(snd(x))),6(r,x)) € GxG
using Group_ZF_3_2_L4B by simp
moreover from Al have
{6(s,x). x€GxG} € Fin(G)
using AlmostHoms_def by simp
ultimately show thesis by (rule Finitel_L6B)
qed
ultimately have
{0(s,{ r(£st(x)),r(snd(x))))-s(d(x,x))-
0(s,{ (xr(fst(x))-r(snd(x))),0(r,x))). x€GXG} € Fin(G)
using group_oper_assocA Finitel L15 by simp
moreover from Al have {§(sor,x). x€GXG} =
{0(s,{ r(fst(x)),r(snd(x))))-s(6(r,x))-
0(s,{ (x(fst(x))-r(snd(x))),0(r,x))). xEGXG}
using Group_ZF_3_4_L4 by simp
ultimately have {§(sor,x). x€GxG} € Fin(G) by simp
with Al show thesis using restrict AlHomOp2_def
by simp
qed

Composition of almost homomorphisms is an almost homomorphism.

theorem (in groupl) Group_ZF_3_4_T1:
assumes Al: scAH rcAH
shows Composition(G)( s,r) € AH sor € AH
proof -
from A1 have ( s,r) € (G—G)x(G—=&)
using AlmostHoms_def by simp
then have Composition(G)( s,r) : G—G
using func_ZF_5_L1 apply_funtype by blast
with A1 show Composition(G)( s,r) € AH
using Group_ZF_3_4_L5 AlmostHoms_def
by simp
with A1 show sor € AH using AlHomOp2_def restrict
by simp
qed

The set of almost homomorphisms is closed under composition. The second
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operation on almost homomorphisms is associative.

AH {is closed under} Composition(G)
AlHomOp2(G,P) {is associative on} AH
proof -
show AH {is closed under} Composition(G)
using Group_ZF_3_4_T1 IsOpClosed_def by simp
moreover have AH C G—G using AlmostHoms_def
by auto
moreover have
Composition(G) {is associative on} (G—G)
using func_ZF_5_L5 by simp
ultimately show AlHomOp2(G,P) {is associative on} AH
using func_ZF_4_L3 AlHomOp2_def by simp
qed

lemma (in groupl) Group_ZF_3_4_L6: shows

Type information related to the situation of two almost homomorphisms.

lemma (in groupl) Group_ZF_3_4_L7:
assumes Al: s€AH reAH and A2: neG
shows
sa) € G (rm) ! €@
s(m)-(r@) ! €6 sx@) €G
proof -
from A1 A2 show
s(n) € G
@)t ea
s(r(n)) € G
s)-(r() !t € G
using AlmostHoms_def apply_type
group0_2_L1 monoid0.groupO_1_L1 inverse_in_group
by auto
qed

Type information related to the situation of three almost homomorphisms.

lemma (in groupl) Group_ZF_3_4_L8:
assumes Al: scAH rcAH q€AH and A2: néeG
shows
q(n) G
s(r(n)) € G
r(n)-(qm))~! € G
s(r(m)-(qm) 1) € ¢
5(s,( q(n),r(n)-(qm)) 1)) €@
proof -
from Al A2 show
gme G s(r(m) € G r@@)-(qm))t € G
using AlmostHoms_def apply_type
group0_2_L1 monoid0.groupO_1_L1 inverse_in_group
by auto
with A1 A2 show s(r(n)-(q))~!) € G
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5(s,( q(m),r(m)-(@@m))~1)) € G
using AlmostHoms_def apply_type Group_ZF_3_2_L4A
by auto

qed

A formula useful in showing that the composition of almost homomorphisms
is congruent with respect to the quotient group relation.

lemma (in groupl) Group_ZF_3_4_L9:
assumes Al: s1 € AH r1l € AH s2 € AH r2 € AH
and A2: neG
shows (slor1) (n)-((s20r2)(n))~! =
s1(r2(m))- (s2(r2(m))) ts1i(ri(n)-(x2(m))~1)-
§(s1,({ r2(n),r1(@)-(r2(m)) 1)
proof -
from A1 A2 isAbelian have
(slor1) (n)-((s20r2) (n)) ! =
s1(r2(m)-(r1(n)-(xr2(m)) 1)) (s2(r2(n))) !
using Group_ZF_3_4_L2 Group_ZF_3_4_L7 group0_4_L6A
group_oper_assoc by simp
with A1 A2 have (slor1)(n)-((s20r2)(n)) ' = s1(r2(n))-
s1(r1(n)-(r2(n)) 1)-5(s1,({ r2(n),r1(n)-(x2(n))~1))-
(s2(x2(@))N !
using Group_ZF_3_4_L8 Group_ZF_3_4_L1 by simp
with Al A2 isAbelian show thesis using
Group_ZF_3_4_L8 group0_4_L7 by simp
qed

The next lemma shows a formula that translates an expression in terms of
the first group operation on almost homomorphisms and the group inverse
in the group of almost homomorphisms to an expression using only the
underlying group operations.

lemma (in groupl) Group_ZF_3_4_L10: assumes Al: s € AH r € AH
and A2: n € G
shows (s-(GroupInv(AH,0p1) (r)))(n) = s(n)-(r(n)) !
proof -
from A1 A2 show thesis
using isAbelian Group_ZF_3_2_L13 Group_ZF_3_2_L12 Group_ZF_3_2_L14
by simp
qed

A neccessary condition for two a. h. to be almost equal.

lemma (in groupl) Group_ZF_3_4_L11:
assumes Al: s~r
shows {s(n)-(r(n))~'. neG} € Fin(Q)
proof -
from A1 have s€AH rcAH
using QuotientGroupRel_def by auto
moreover from A1 have
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{(s+(GroupInv(AH,0p1) (r))) (n). neG} € Fin(G)
using QuotientGroupRel_def Finitel L18 by simp
ultimately show thesis
using Group_ZF_3_4_L10 by simp
qed

A sufficient condition for two a. h. to be almost equal.

lemma (in groupl) Group_ZF_3_4_L12: assumes Al: s€AH rcAH
and A2: {s(@)-(r(n))~!. n€G} € Fin(G)
shows s~r
proof -
from groupAssum isAbelian Al A2 show thesis
using Group_ZF_3_2_L15 AlmostHoms_def
Group_ZF_3_4_L10 Finitel_L19 QuotientGroupRel_def
by simp
qed

Another sufficient consdition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

lemma (in groupl) Group_ZF_3_4_L12A: assumes scAH rcAH
and s-(GroupInv(AH,Opl)(r)) € FR
shows s~r r=~s
proof -
from assms show s~r using assms QuotientGroupRel_def
by simp
then show r~s by (rule Group_ZF_3_3_L3A)
qed

Another necessary condition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

lemma (in groupl) Group_ZF_3_4_L12B: assumes s~r

shows s-(GroupInv(AH,0p1)(r)) € FR
using assms QuotientGroupRel_def by simp

The next lemma states the essential condition for the composition of a. h.
to be congruent with respect to the quotient group relation for the subgroup
of finite range functions.

lemma (in groupl) Group_ZF_3_4_L13:
assumes Al: sl~s2 rixr2
shows (slorl) =~ (s20r2)
proof -
have {s1(r2(n))- (s2(x2(n)))~!. n€G} € Fin(G)
proof -
from A1 have VneG. r2(n) € G
using QuotientGroupRel_def AlmostHoms_def apply_funtype
by auto
moreover from A1 have {si1(n)-(s2(n))~'. n€G} € Fin(G)
using Group_ZF_3_4_L11 by simp
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ultimately show thesis by (rule Finitel_L6B)
qed
moreover have {s1(r1(n)-(r2(n))"1). n € G} € Fin(G)
proof -
from A1 have VneG. si(n)eG
using QuotientGroupRel_def AlmostHoms_def apply_funtype
by auto
moreover from A1l have {ri(n)-(r2(n))~!'. n€G} € Fin(G)
using Group_ZF_3_4_L11 by simp
ultimately show thesis by (rule Finitel_L6C)
qed
ultimately have
{s1(r2(n))- (s2(r2(n))) 's1(ri(n)-(r2(n))~1).
neG} € Fin(G)
using group_oper_assocA Finitel_L15 by simp
moreover have
{6(s1,{ r2(n),r1(n)-(r2(n))"1)). neG} € Fin(G)
proof -
from A1l have VneG. ( r2(n),ri(n)-(x2(n))~!) € GxG
using QuotientGroupRel_def Group_ZF_3_4_L7 by auto
moreover from Al have {§(s1,x). x € GXG} € Fin(G)
using QuotientGroupRel_def AlmostHoms_def by simp
ultimately show thesis by (rule Finitel_L6B)
qed
ultimately have
{s1(r2(m))- (s2(r2(m))) 's1(r1(n)-(x2(n))~H-
§(s1,( r2(n),r1(n)-(r2(n)) 1)) . neG} € Fin(G)
using group_oper_assocA Finitel L15 by simp
with Al show thesis using
QuotientGroupRel_def Group_ZF_3_4_L9
Group_ZF_3_4_T1 Group_ZF_3_4_L12 by simp
qed

Composition of a. h. to is congruent with respect to the quotient group
relation for the subgroup of finite range functions. Recall that if an operation
say 7o” on X is congruent with respect to an equivalence relation R then we
can define the operation on the quotient space X/R by [s|go[r|r := [soT]r
and this definition will be correct i.e. it will not depend on the choice of

representants for the classes [z] and [y]. This is why we want it here.

lemma (in groupl) Group_ZF_3_4_L13A: shows
Congruent2(QuotientGroupRel (AH,Op1,FR) ,0p2)
proof -
show thesis using Group_ZF_3_4_L13 Congruent2_def
by simp
qed

The homomorphism difference for the identity function is equal to the neu-
tral element of the group (denoted e in the groupl context).
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lemma (in groupl) Group_ZF_3_4_L14: assumes Al: x € GXG
shows 6(id(G),x) =1
proof -
from A1 show thesis using
groupO0_2_L1 monoid0.groupO_1_L1 HomDiff_def id_conv groupO_2_L6
by simp
qed

The identity function (/(z) = z) on G is an almost homomorphism.

lemma (in groupl) Group_ZF_3_4_L15: shows id(G) € AH
proof -
have GxG # 0 using group0_2_L1 monoid0.groupO_1_L3A
by blast
then show thesis using Group_ZF_3_4_L14 group0_2_L2
id_type AlmostHoms_def by simp
qed

Almost homomorphisms form a monoid with composition. The identity
function on the group is the neutral element there.

lemma (in groupl) Group_ZF_3_4_L16:
shows
IsAmonoid (AH,0p2)
monoidO (AH,0p2)
id(G) = TheNeutralElement (AH,0p2)
proof-
let i = TheNeutralElement(G—G,Composition(G))
have
IsAmonoid (G—G,Composition(G))
monoid0(G—G,Composition(G))
using monoidO_def Group_ZF_2_5_L2 by auto
moreover have AH {is closed under} Composition(G)
using Group_ZF_3_4_L6 by simp
moreover have AH C G—G
using AlmostHoms_def by auto
moreover have i € AH
using Group_ZF_2_5_L2 Group_ZF_3_4_L15 by simp
moreover have id(G) = i
using Group_ZF_2_5_L2 by simp
ultimately show
IsAmonoid (AH,0p2)
monoidO (AH,0p2)
id(G) = TheNeutralElement (AH,0p2)
using monoid0O.group0_1_T1 groupO_1_L6 AlHomOp2_def monoidO_def
by auto
qed

We can project the monoid of almost homomorphisms with composition to
the group of almost homomorphisms divided by the subgroup of finite range
functions. The class of the identity function is the neutral element of the
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quotient (monoid).

theorem (in groupl) Group_ZF_3_4_T2:
assumes Al: R = QuotientGroupRel (AH,Op1,FR)
shows
IsAmonoid (AH//R,ProjFun2(AH,R,0p2))
R{id(G)} = TheNeutralElement (AH//R,ProjFun2(AH,R,0p2))
proof -
have group0(AH,0pl) using Group_ZF_3_2_L10A groupO_def
by simp
with Al groupAssum isAbelian show
IsAmonoid (AH//R,ProjFun2(AH,R,0p2))
R{id(G)} = TheNeutralElement (AH//R,ProjFun2(AH,R,0p2))
using Group_ZF_3_3_L2 group0.Group_ZF_2_4_L3 Group_ZF_3_4_L13A
Group_ZF_3_4_L16 monoid0.Group_ZF_2_2_T1 Group_ZF_2_2_L1
by auto
qed

30.5 Shifting almost homomorphisms

In this this section we consider what happens if we multiply an almost
homomorphism by a group element. We show that the resulting function is
also an a. h., and almost equal to the original one. This is used only for
slopes (integer a.h.) in Int_ZF_2 where we need to correct a positive slopes
by adding a constant, so that it is at least 2 on positive integers.

If s is an almost homomorphism and ¢ is some constant from the group,
then s- ¢ is an almost homomorphism.

lemma (in groupl) Group_ZF_3_5_L1:
assumes Al: s € AH and A2: ceG and
A3: r = {(x,s(x)-c). x€G}
shows
VxeG. r(x) = s(x)-c
r € AH
s ~T
proof -
from A1 A2 A3 have I: r:G—G
using AlmostHoms_def apply_funtype group_op_closed
ZF_fun_from_total by auto
with A3 show II: VxeG. r(x) = s(x)-c
using ZF_fun_from_tot_val by simp
with isAbelian Al A2 have III:
Vp € GxG. 6(r,p) = 6(s,p)c!
using group_op_closed AlmostHoms_def apply_funtype
HomDiff_def group0_4_L7 by auto
have {6(r,p). p € GXG} € Fin(G)
proof -
from A1 A2 have
{6(s,p). p € GXG} € Fin(G) c'eG
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using AlmostHoms_def inverse_in_group by auto
then have {6(s,p)-c”!. p € GxG} € Fin(G)
using group_oper_assocA Finitel L16AA
by simp
moreover from IITI have
{0(r,p). p € GxG} = {d(s,p)-c™'. p € GxG}
by (rule ZF1_1_L4B)
ultimately show thesis by simp
qed
with I show IV: r € AH using AlmostHoms_def
by simp
from isAbelian A1 A2 I II have
Vn € G. s(n)-(r(n))~ ! = ¢!
using AlmostHoms_def apply_funtype groupO_4_L6AB
by auto
then have {s(n)-(r(n))~'. n€G} = {c~'. neG}
by (rule ZF1_1_L4B)
with A1 A2 IV show s =~ r
using group0_2_L1 monoid0.groupO_1_L3A
inverse_in_group Group_ZF_3_4_L12 by simp
qed

end

31 Direct product

theory DirectProduct_ZF imports func_ZF
begin

This theory considers the direct product of binary operations. Contributed
by Seo Sanghyeon.

31.1 Definition

In group theory the notion of direct product provides a natural way of
creating a new group from two given groups.

Given (G,-) and (H,o) a new operation (G x H, x) is defined as (g, h) x
(¢\W)=(g9-9'  hol).
definition

DirectProduct(P,Q,G,H) =

{(x,(P(fst(fst(x)),fst(snd(x))) , Q(snd(fst(x)),snd(snd(x))))).
x € (GxH)x(GxH)}

We define a context called direct0 which holds an assumption that P, Q) are
binary operations on G, H, resp. and denotes R as the direct product of

(G, P) and (H,Q).
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locale direct0 =
fixes PQ G H
assumes Pfun: P : GXG—=G
assumes Qfun: Q : HxH—H
fixes R
defines Rdef [simp]: R = DirectProduct(P,Q,G,H)

The direct product of binary operations is a binary operation.

lemma (in directO) DirectProduct_ZF_1_L1:
shows R : (GxH) X (GxH)—GxH
proof -
from Pfun Qfun have Vx€(GxH) x (GxH).
(P(fst(fst(x)),fst(snd(x))),Q(snd(fst(x)),snd(snd(x)))) € GxH
by auto
then show thesis using ZF_fun_from_total DirectProduct_def
by simp
qed

And it has the intended value.

lemma (in directO) DirectProduct_ZF_1_L2:
shows Vxe(GxH). Vye(GxH).
R(x,y) = (P(fst(x),fst(y)),Q(snd(x),snd(y)))
using DirectProduct_def DirectProduct_ZF_1_L1 ZF_fun_from_tot_val
by simp

And the value belongs to the set the operation is defined on.

lemma (in directO) DirectProduct_ZF_1_L3:
shows Vxe(GxH). Vye(GxH). R(x,y) € GxH
using DirectProduct_ZF_1_L1 by simp

31.2 Associative and commutative operations

If P and Q are both associative or commutative operations, the direct prod-
uct of P and Q has the same property.

Direct product of commutative operations is commutative.

lemma (in direct0) DirectProduct_ZF_2_L1:
assumes P {is commutative on} G and Q {is commutative on} H
shows R {is commutative on} GxH
proof -
from assms have Vxe(GxH). Vye(GxH). R(x,y) = R(y,x)
using DirectProduct_ZF_1_L2 IsCommutative_def by simp
then show thesis using IsCommutative_def by simp
qed

Direct product of associative operations is associative.

lemma (in directO) DirectProduct_ZF_2_L2:
assumes P {is associative on} G and Q {is associative on} H
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shows R {is associative on} GxH
proof -
have VxeGxH. VyeGxH. VzeGxH. R(R(x,y),z) =
(P(P(fst(x),fst(y)),fst(2)),Q(Q(snd(x) ,snd(y)),snd(z)))
using DirectProduct_ZF_1_L2 DirectProduct_ZF_1_L3
by auto
moreover have VxeGxH. VyeGxH. VzeGxH. R(x,R(y,z)) =
(P(fst(x) ,P{fst(y),fst(=2))),Q(snd(x),Q(snd(y),snd(z))))
using DirectProduct_ZF_1_L2 DirectProduct_ZF_1_L3 by auto
ultimately have VxeGxH. VyeGxH. VzeGxH. R(R(x,y),z) = R(x,R(y,z))
using assms IsAssociative_def by simp
then show thesis
using DirectProduct_ZF_1_L1 IsAssociative_def by simp
qed

end

32 Ordered groups - introduction

theory OrderedGroup_ZF imports Group_ZF_1 AbelianGroup_ZF Order_ZF Finite_ZF_1
begin

This theory file defines and shows the basic properties of (partially or lin-
early) ordered groups. We define the set of nonnegative elements and the
absolute value function. We show that in linearly ordered groups finite sets
are bounded and provide a sufficient condition for bounded sets to be finite.
This allows to show in Int_ZF_IML.thy that subsets of integers are bounded
iff they are finite.

32.1 Ordered groups

This section defines ordered groups and various related notions.

An ordered group is a group equipped with a partial order that is ”transla-
tion invariant”, that isif a < bthena-g<b-gand g-a <g-b.
definition

IsAnOrdGroup(G,P,r) =

(IsAgroup(G,P) A rCGxG A IsPartOrder(G,r) A (VgeG. Va b.

(a,p) €er — (P{a,g),P(b,g) ) er A (P{g,a),P{g,b)) Eexr))

We define the set of nonnegative elements in the obvious way as GT = {z €
G:1<ux}.

definition
Nonnegative(G,P,r) = {x€G. ( TheNeutralElement(G,P),x) € r}

The PositiveSet(G,P,r) is a set similar to Nonnegative(G,P,r), but without
the unit.
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definition
PositiveSet(G,P,r) =
{x€G. ( TheNeutralElement(G,P),x) € r A TheNeutralElement(G,P)# x}

We also define the absolute value as a ZF-function that is the identity on
G™ and the group inverse on the rest of the group.

definition
AbsoluteValue(G,P,r) = id(Nonnegative(G,P,r)) U
restrict (GroupInv(G,P),G - Nonnegative(G,P,r))

The odd functions are defined as those having property f(a=') = (f(a))™!.
This looks a bit strange in the multiplicative notation, I have to admit. For
linearly oredered groups a function f defined on the set of positive elements
iniquely defines an odd function of the whole group. This function is called
an odd extension of f

definition
OddExtension(G,P,r,f) =
(f U {(a, GroupInv(G,P) (f(GroupInv(G,P)(a)))).
a € GroupInv(G,P)(PositiveSet(G,P,r))} U
{(TheNeutralElement (G,P) ,TheNeutralElement (G,P))})

We will use a similar notation for ordered groups as for the generic groups.
GT denotes the set of nonnegative elements (that satisfy 1 < a) and G, is
the set of (strictly) positive elements. -A is the set inverses of elements from
A. T hope that using additive notation for this notion is not too shocking
here. The symbol £° denotes the odd extension of f. For a function defined
on G4 this is the unique odd function on G that is equal to f on G.

locale group3 =
fixes G and P and r
assumes ordGroupAssum: IsAnOrdGroup(G,P,r)

fixes unit (1)
defines unit_def [simp]: 1 = TheNeutralElement(G,P)

fixes groper (infixl - 70)
defines groper_def [simpl: a - b = P( a,b)

fixes inv (_~! [90] 91)
defines inv_def [simpl: x~! = GroupInv(G,P) (x)

fixes lesseq (infix < 68)
defines lesseq_def [simpl: a < b = (a,b) € r

fixes sless (infix < 68)
defines sless_def [simp]l: a < b = a<b A a#b
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fixes nonnegative (GT)
defines nonnegative_def [simpl: G = Nonnegative(G,P,r)

fixes positive (Gi)
defines positive_def [simp]: G; = PositiveSet(G,P,r)

fixes setinv (- _ 72)
defines setninv_def [simp]l: -A = GroupInv(G,P) (A)

fixes abs (| _ |)
defines abs_def [simp]l: |al = AbsoluteValue(G,P,r)(a)

fixes oddext (_ °)
defines oddext_def [simp]: f° = 0ddExtension(G,P,r,f)

In group3 context we can use the theorems proven in the group0 context.

lemma (in group3) OrderedGroup_ZF_1_L1: shows groupO(G,P)
using ordGroupAssum IsAnOrdGroup_def groupO_def by simp

Ordered group (carrier) is not empty. This is a property of monoids, but it
is good to have it handy in the group3 context.

lemma (in group3) OrderedGroup_ZF_1_L1A: shows G#0
using OrderedGroup_ZF_1_L1 groupO.group0_2_L1 monoid0.groupO_1_L3A
by blast

The next lemma is just to see the definition of the nonnegative set in our
notation.

lemma (in group3) OrderedGroup_ZF_1_L2:
shows geGt +— 1<g
using ordGroupAssum IsAnOrdGroup_def Nonnegative_def
by auto

The next lemma is just to see the definition of the positive set in our notation.

lemma (in group3) OrderedGroup_ZF_1_L2A:
shows geGy +— (1<g A g#1)
using ordGroupAssum IsAnOrdGroup_def PositiveSet_def
by auto

For total order if g is not in G, then it has to be less or equal the unit.

lemma (in group3) OrderedGroup_ZF_1_L2B:
assumes Al: r {is total on} G and A2: a€G-G™
shows a<1
proof -
from A2 have acG 1 € G —(1<a)
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2 OrderedGroup_ZF_1_L2

by auto
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with A1 show thesis using IsTotal_def by auto
qed

The group order is reflexive.

lemma (in group3) OrderedGroup_ZF_1_L3: assumes gcG
shows g<g
using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def refl_def
by simp

1 is nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L3A: shows 1€G*
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L3
OrderedGroup_ZF_1_L1 groupO.group0_2_L2 by simp

In this context a < b implies that both a and b belong to G.

lemma (in group3) OrderedGroup_ZF_1_L4:
assumes a<b shows acG beG
using ordGroupAssum assms IsAnOrdGroup_def by auto

It is good to have transitivity handy.

lemma (in group3) Group_order_transitive:
assumes Al: a<b b<c shows a<c
proof -
from ordGroupAssum have trans(r)
using IsAnOrdGroup_def IsPartOrder_def
by simp
moreover from Al have ( a,b) € r A ( b,c) € r by simp
ultimately have ( a,c) € r by (rule Foll_L3)
thus thesis by simp
qed

The order in an ordered group is antisymmetric.

lemma (in group3) group_order_antisym:
assumes Al: a<b b<a shows a=b
proof -
from ordGroupAssum Al have
antisym(r) ( a,b) €r (b,a) €r
using IsAnOrdGroup_def IsPartOrder_def by auto
then show a=b by (rule Foll_L4)
qed

Transitivity for the strict order: if a < b and b < ¢, then a < c.

lemma (in group3) OrderedGroup_ZF_1_L4A:
assumes Al: a<b and A2: b<c
shows a<c
proof -
from A1 A2 have a<b b<c by auto
then have a<c by (rule Group_order_transitive)
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moreover from Al A2 have as#c using group_order_antisym by auto
ultimately show a<c by simp
qed

Another version of transitivity for the strict order: if a < b and b < ¢, then
a<c.

lemma (in group3) group_strict_ord_transit:
assumes Al: a<b and A2: b<c
shows a<c
proof -
from A1 A2 have a<b b<c by auto
then have a<c by (rule Group_order_transitive)
moreover from Al A2 have as#c using group_order_antisym by auto
ultimately show a<c by simp
qed

Strict order is preserved by translations.

lemma (in group3) group_strict_ord_transl_inv:
assumes a<b and ceG
shows
a-c < b-c
ca < cb
using ordGroupAssum assms IsAnOrdGroup_def
OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1 groupO.groupO_2_L19
by auto

If the group order is total, then the group is ordered linearly.

lemma (in group3) group_ord_total_is_lin:
assumes r {is total on} G
shows IsLinOrder(G,r)
using assms ordGroupAssum IsAnOrdGroup_def Order_ZF_1_L3
by simp

For linearly ordered groups elements in the nonnegative set are greater than
those in the complement.

lemma (in group3) OrderedGroup_ZF_1_L4B:
assumes r {is total on} G
and acG'™ and b € G-GT
shows b<a
proof -
from assms have b<1 1<a
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L2B by auto
then show thesis by (rule Group_order_transitive)
qed

Ifa<landa#1,thenaecG\GT.

lemma (in group3) OrderedGroup_ZF_1_LAC:
assumes Al: a<l and A2: a#l
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shows a € G-G*
proof -
{ assume a ¢ G-GT
with ordGroupAssum Al A2 have False
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2
OrderedGroup_ZF_1_L4 IsAnOrdGroup_def IsPartOrder_def antisym_def
by auto
} thus thesis by auto
qed

An element smaller than an element in G\ G* is in G\ G*.

lemma (in group3) OrderedGroup_ZF_1_L4D:
assumes Al: acG-GT and A2: b<a
shows beG-GT
proof -
{ assume b ¢ G - GT
with A2 have 1<b b<a
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2 by auto
then have 1<a by (rule Group_order_transitive)
with A1 have False using OrderedGroup_ZF_1_L2 by simp
} thus thesis by auto
qed

The nonnegative set is contained in the group.

lemma (in group3) OrderedGroup_ZF_1_L4E: shows GT C G
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L4 by auto

Taking the inverse on both sides reverses the inequality.

lemma (in group3) OrderedGroup_ZF_1_L5:
assumes Al: a<b shows b~ !<a~!
proof -
from A1 have T1: acG beG a~'e€G b 'eG
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto
with A1 ordGroupAssum have a-a—!<b-a~! using IsAnOrdGroup_def
by simp
with T1 ordGroupAssum have b l1<p= 1l (ba!)
using OrderedGroup_ZF_1_L1 groupO.group0_2_L6 IsAnOrdGroup_def
by simp
with T1 show thesis using
OrderedGroup_ZF_1_L1 groupO.group0_2_L2 groupO.group_oper_assoc
group0.group0_2_L6 by simp
qed

If an element is smaller that the unit, then its inverse is greater.

lemma (in group3) OrderedGroup_ZF_1_L5A:
assumes Al: a<l shows 1<a~!
proof -
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from A1 have 1 !'<a~! using OrderedGroup_ZF_1_L5
by simp
then show thesis using OrderedGroup_ZF_1_L1 groupO.group_inv_of_one

by simp
qed

If an the inverse of an element is greater that the unit, then the element is
smaller.

lemma (in group3) OrderedGroup_ZF_1_L5AA:
assumes Al: acG and A2: 1<a~!
shows a<1
proof -
from A2 have (a=!)~!'<1~! using OrderedGroup_ZF_1_L5
by simp
with A1 show a<1
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv groupO.group_inv_of_one
by simp
qed

If an element is nonnegative, then the inverse is not greater that the unit.
Also shows that nonnegative elements cannot be negative

lemma (in group3) OrderedGroup_ZF_1_L5AB:
assumes Al: 1<a shows a~!<1 and —(a<1l A a#l)
proof -
from Al have a—!<17!
using OrderedGroup_ZF_1_L5 by simp
then show a~!<1 using OrderedGroup_ZF_1_L1 group0.group_inv_of_one
by simp
{ assume a<1 and a#l
with A1 have False using group_order_antisym
by blast
} then show —(a<l A a#l) by auto
qed

If two elements are greater or equal than the unit, then the inverse of one
is not greater than the other.
lemma (in group3) OrderedGroup_ZF_1_L5AC:

assumes Al: 1<a 1<b

shows a=! < b
proof -

from Al have a—!<1 1<b

using OrderedGroup_ZF_1_L5AB by auto

then show a—! < b by (rule Group_order_transitive)

qed

32.2 Inequalities

This section developes some simple tools to deal with inequalities.
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Taking negative on both sides reverses the inequality, case with an inverse
on one side.

lemma (in group3) OrderedGroup_ZF_1_L5AD:
assumes Al: b € G and A2: a<b~!
shows b < a~!
proof -
from A2 have (b~1)~! < a~!
using OrderedGroup_ZF_1_L5 by simp
with A1 show b < a™!
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp
qed

We can cancel the same element on both sides of an inequality.

lemma (in group3) OrderedGroup_ZF_1_L5AE:
assumes Al: acG beG ceG and A2: ab < a-c
shows b<c
proof -
from ordGroupAssum A1 A2 have a—!-(ab) < a=!-(ac)
using OrderedGroup_ZF_1_L1 group0.inverse_in_group
IsAnOrdGroup_def by simp
with A1 show b<c
using OrderedGroup_ZF_1_L1 groupO.inv_cancel_two
by simp
qed

We can cancel the same element on both sides of an inequality, a version
with an inverse on both sides.

lemma (in group3) OrderedGroup_ZF_1_L5AF:
assumes Al: acG beG ceG and A2: ab ! < ac™!
shows c<b
proof -
from A1 A2 have (¢™1)~! < (»1)!
using OrderedGroup_ZF_1_L1 group0.inverse_in_group
OrderedGroup_ZF_1_L5AE OrderedGroup_ZF_1_L5 by simp
with A1 show c<b
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv by simp
qed

Taking negative on both sides reverses the inequality, another case with an
inverse on one side.

lemma (in group3) OrderedGroup_ZF_1_L5AG:
assumes Al: a € G and A2: a~!<b
shows b~! < a
proof -
from A2 have b~! < (a=1)~!
using OrderedGroup_ZF_1_L5 by si