Specification of the Exim Malil
Transfer Agent

Philip Hazel

University of Cambridge Computing Service

Specification of the Exim Mail Transfer Agent
Philip Hazel

University of Cambridge Computing Service
New Museums Site, Pembroke Street, Cambridge CB2 3QH, England

Copyright © 2007 University of Cambridge
Revision 4.66 08 January 2007 PH

Table of Contents

R 14 oo [T 1 o o SRR 1
1.1, EXimM dOCUMENTALIONeveieeeiiiiiee e eiieee et ettt e et e e et e e e e e anneeee s 1
12 FTPANdWED SItESoeeiiiieee e e 2
L3 MATTNG TISES .ottt e et e e e annr e s 2
O T 1 =11 T 2
RN =10 (o = oo £ TP 3
1.6. Where to find the EXim distribDULioNooveiiiiiiiiiiie e 3
VT o 1T SRR 4
1.8. Contributed MELErialcoviiiiiiie e 4
LS 1 ¢ 1 = o RS 4
1.10. RUN tiMe CONFIQUIBEIONeeiiiiiiieeiiieie ettt e ee s 4
0 0= 1 T To T 1 (= o PR 4
1,12, TEIMINOIOGY +eeeiutteeeeeiieete et e ettt et e e e e e s e e e e et e e e e annneee s 4

2. 1NCOrPOrated COUEuvviiiiiiie e s e e e e s e et e e e e e e e e s aanrraeeeaaeeas 6

3. How Exim receivesand deliver smailccoeeeiiiiioiiiiiee e 8
3.1 Overall PhilOSOPNYocoiiiiiieeiiiiee et 8
3.2. POlICY CONLIOl ..o 8
TG T U 1S g 11 (= PSRRI 8
3.4. Message identifiCatioNcooiiiiiiiiiiie e 8
3.5. RECEIVING MAII ..o 9
3.6. Handling an iNCOMING MESSAQEvvvreiieeeeiiiitiiiieieeeeeseesitiirreeseae e s s s snntraereeaeeseannnes 10
3.7.Lifeof ameSsageooovvviiiii 10
3.8. Processing an address for deliVEryoooiiiiiiiiiiie e 11
3.9. Processing an address for VErificationcccceeveeeei i 12
3.10. Running an individual FTOULEYcuuviiiiiiiiee it 12
3.11. DUPlICAE BOAIESSESvvviiiieeei ittt e e e e e e e e e e e eanes 13
3.12. ROULEr PreCONTITIONScoiiiiiiiiieiiiiie ettt 13
3.13. DEliVEIY INELAIceeeiiiiiie i 14
3.14. Retry MeChaniSMccocvviiiiicec e, 15
3.15. Temporary delivery fallure ... 15
3.16. Permanent delivery faillurecc.vveeeiiii i 15
3.17. Failures to deliver DOUNCE MESSAOEScovvvreeiiiiiieeiiiiee et 15

4. Building and installing EXIM ..o 17
I g 7= o (| o PR 17
4.2. Multiple machine architectures and operating SyStemscocccveeerniieeeeiniieeeeennns 17
4.3. DBM HDFBITESeiieiiiiiie ettt e e et e e s st e e e s st e e e e nnteeeeeanes 17
4.4. Pre-building CONfIQUIEEIONcouveiieiiiiiiee et 18
4.5, SUPPOIT FOIr TCONV() 1oeeeiieiiiieiee et e e e e e e st e e e e e e e et e e e eeaeeas 19
4.6. Including TLS/SSL encryption SUPPOITcvvreeeiririeeeeiireeeesaineeeessineeeessnneeeeeanes 19
4.7. USE Of TCPWIPIENS ...ttt e e ettt e e ettt e sttt e et e e et e e e s st et e e s anbn e e e e e nbaeeeeanes 20
4.8. Including SUPPOI fOr IPV6evveeiiiieieieiiieieieieeeeeeeneeenernensernrnrrrnerrnrrrrrrrernenrnnnnne 20
4.9. The DUIAING PIrOCESScoiiiiiiieiieit e 20
4.10. OUtPUL From “MaKE"eiiieieiiee e a e 21
4.11. Overriding build-time optionS for EXimMcoooiiiiiiiieceeee e 21
4.12. OS-specific header fIlES ...uvviiiiie i 22
4.13. Overriding build-time options for the MoNItorccccooeeiiiiiiee e, 23
4.14. Installing EXim binaries and SCriPLSeooviiiriiiiiiiiie it 23
4.15. Installing info dOcUMENLAtioNc..vvvieiiiii e 24
4.16. Setting up the SPO0l AITECLOTYcciiiiiiiieiiiie e 24
I I =] o PP PRPPPPRPN 24
4.18. Replacing another MTA With EXIMoooiiiiiiii e 25
4.19. UPGrading EXIMeeeiiiiiiiie et 26
4.20. Stopping the EXim daemon 0N SOI@IISuuueuererererreriereerrrrrrrrrrnermmrrmmrrre. 26

5. The EXim COmMMANd [Nciiii ittt e e e e e e e e e eneneaees 27
5.1. Setting options by Program NAMEceoviiiiiiiiiiiee e e e e e e 27

i The ExXim MTA

5.2. Trusted and AdMIN USEI'S ...cceneeeeeeeee ettt e e e e et e et e e e e e e e e e e enaeeeen 27

5.3. Command [iNE OPLIONSceieieeiiiiiiiiiee e e et e e e e et e e e e e e e s s sab e e e e e e e e e ennes 28
6. The Exim run time configuration file ... 48
6.1. Using adifferent configuration file ..o 48
6.2. Configuration fil@ fFOrMaLc.ooviiiiiii e 49
6.3. Fileinclusionsin the configuration file ..o 49
6.4. Macrosin the configuration file ... 50
6.5. MACIO SUDSLITULIONvvvieiieee e s eciiiiiee e e e e sttt e e e e s e et e e e e e e e s s snnnaeaereeeeeeeannnes 50
6.6. REEfiNING MBCIOSoviiiiiiii e e e e e r e e e e e e e eanes 50
6.7. OVErriding MACIO VAIUESccoiuiiiieiiiie ettt 51
6.8. EXample Of MBCIO USAgEeveeei ittt et e e e e e e et ae e e e e e e e e eanes 51
6.9. Conditional skipsin the configuration fileccccooiiiiii e 51
6.10. COMIMON OPLION SYMEBX ...vveeeeuiereeeiiirieeeeieeeeeestse e e e e ssbre e e s ssbe e e e e ssbne e e e s nnneeeeeeneees 51
6.11. BOOIEAN OPLIONSuviiiiiiieeeeiiciiiie e e e e s et e e e e e e e e et re e e e e e e s s s eanreaeeeeaaeesannnes 52
B.12. INTEYEN VAIUES ...ttt e e e e 52
6.13. OCtal INEGEr VAIUESvveiieei ettt e e e e e st ae e e e e e e s e ennes 52
6.14. Fixed point NUMDEN VBIUEScooiiiiiiiiiiiiee e 52
6.15. TIMEINEIVEAl VAIUEScovvieiiiiiiiieiie ettt e e a e e e s ae e e e e e e s e annes 52
6.16. SNGVEIUES ... 53
6.17. EXPANTEA SITTNGS ...vveieeiiiiiie ettt e s e e e e 53
6.18. USer and groUP NBIMEScceeeiiiiiiiiiiee e e e e e e eeiiteee e e e e e e s e ssatbee e e s e e e e s s s snntaaereeaeeseannnes 53
6.19. LiSt CONSITUCLIONeeeeiiiiiiee ettt et e e ettt e e e e e e e e e e e e e e e e snnnnaneeeeeeeeeannes 53
6.20. EMPLY ITEMS TN TISES ...uvviiiieeeei ittt e e e e e e e e e e e e e eanes 54
6.21. Format of driver configurationscccccceeeviii 54
7. Thedefault configuration file ... 56
7.1. Main configuration SELHNGScccvviiiiiiee et e e e e 56
7.2. ACL CONFIQUIBLIONeiiiiiiieieieiie ettt e e e e e e 59
7.3. ROULEr CONFIQUIALIONuvvviiieee et e e e e e e e s ae e e e e e e e e ennes 61
7.4. Transport CONFIQUIBETIONccoiuiriieiiiie et 64
7.5, DEFAUIT TELNY TUIE ...t e s 64
7.6. Rewriting configurationcoovvviiiiiii e, 65
7.7. AuthentiCators CONFIQUIALIONcccoiuiriieiiiiiee et 65
8. REGQUIAr EXPIrESSIONSuviiiiiiiiee e ettt ce e e e e s e e e e e e e e e e s et a e e e e e e e s e eaneneeees 66
8.1. Testing regular EXPreSSIONScuieiiurieeeiiieeee et ee e e e e e s e e e e 66
9. File and database |00KUPSccoiiiiiiiieiiee e ettt s e e e e e et e e e e e s e e ennneaees 68
9.1. Examples of different [00KUP SYNEBXcooiiueiiiiiiieee i 68
0.2, LOOKUPD LYPES ..eeeeiittiie ettt ettt ettt et e e e e st e e e e nnbn e e e e e nnees 68
9.3. SINGIE-KEY |00KUD tYPES ..eeveeee ettt ettt ee e e e e e e ae e e e e e e e e ennes 69
9.4. QUErY-Styl€ 100KUP TYPESeieiiiiiieeetiee ettt 71
9.5. Temporary errorsSiN IOOKUDSccuvviiiiiee it cetee e e e e e sarrae e e e e e e e e e 72
9.6. Default valuesin single-Key 100KUPSc.ueviiiiiiiieeiiee e 72
9.7. Partial matching in SINgle-Key 10OKUPSvveiiiiiiiii e 73
9.8. LOOKUP CaChING .cooeeeiiieeeeee 74
9.9. QUOLING OOKUP TEEA ...ttt 74
9.10. MOre @dout ANSTDcooviiiieiiiiiie e 74
9.11. Pseudo dnsdD reCOrd tYPESviieiiiiieee ittt 75
9.12. Multiple dNSOD TOOKUPS ...oeeeeiiiiiiieiee ettt e e e e e e e e 76
0.13. MOre @bOUL LDAP ...ttt e e e e e e e e e e 76
9.14. FOrmat Of LDAP QUENTEScooiiiiiieiiiiiie ettt 77
O.15. LDAP QUOLINGccoiiiiiiieee e ettt e e e ettt e e e e e e e e et e e e e e e s e s sannnaaneeeaaeesannes 77
9.16. LDAP CONNECLIONSvveiiireeesiiiiiieiereaeeesssiitteeeeaeeessssntteaeeeeaeessassnnaneeeeaaessannne 77
9.17. LDAP authentication and control informationccccceevvieieeiniieeeeiniieee e 78
9.18. Format of datareturned by LDAPooooiiiie e 80
9.19. MOre @aboUt NISH ... e e e e e e e e e e e e e annes 80
9.20. SQL TOOKUPS ...ceeeeeeeee et 8l
9.21. More about MySQL, PostgreSQL, Oracle, and InterBaseccccccvvveveveeeiinnns 81
9.22. Special MYSQL FEAIUMESccociiiieiee e e e e e e 81
9.23. Special POSIGreSQL fEAIUINEScoiuiiieeiiiiie e 82
9.24. More about SQLITEcceeeeeeeeeeeeeee 82
10. Domain, host, address, and local Part listSooeiviiiiiiiiiiee e 83

iv The ExXim MTA

10.1. EXPANSION OF TISES ..eiiiiiiiiieiiiiiee ettt e et 83

10.2. Negated iteMS N TISESccooiiiiiiieiec e e 83
10.3. FIlENAMES TN TISES ...eeeeiieeees it s st e e e e e e e e neeeaees 83
10.4. Anlsearch fileisnot an out-of-liNE IStccoccveeeiiiiiii i, 84
TO.5. NAMEA TISES ... e e e e s et e e e e e e e e 84
10.6. Named lists compared With MaCIOScceiiiiiiieiiiiiie e 85
10.7. Named list CaChING ...ccooeeeeeeeeee e, 85
O R C T To 0 7= 11 K £ PSR OR 86
F0.9. HOSE ISES ..t e ettt ettt e et e e et e e e et e e e e naneee s 88
10.10. Special oSt [ISt PALTEINSveeieiiiee e 88
10.11. Host list patternsthat match by IPaddresscoccvvveeviee e, 88
10.12. Host list patterns for single-key lookups by host addresscccccevveeviiiiineeen. 89
10.13. Host list patterns that match by hoSt NamMeccoocvieiiiiiiiie e 90
10.14. Behaviour when an | P address or name cannot be foundcccccovcieeeenininnnn. 90
10.15. Host list patterns for single-key lookups by host namecccceeiiiieiiiiienen, 91
10.16. Host list patterns for query-style [0OKUPScceeeeeiiiiiiiieiiee e 91
10.17. Mixing wildcarded host names and addresses in host liStSccccccevcveeeeiiienen. 92
OB S0 o[- Y 1T £ U OR 92
10.19. Case of lettersin addresSliStSoooeiiiiiiieiie e 94
10.20. LOCEI Pt HISES ...vveeeeiiiiee ittt 95
S (T [o = o F= 1 £ Lo 1 PRSPPI 96
11.1. Literal text in eXpanded StrNGSoeveiiirrieeiiiiee e 96
11.2. Character escape sequencesin expanded Stringscccvvevveeeeiiiciiiieeeee e, 96
11.3. Testing StriNg EXPANSIONSuuveeiereeesaiaiieeeeeeeeeeaaaaeaereeeaeesaaaneeeereeaaeeeaaaneneeeees 96
11.4. Forced expansion fAIUMooiiiiiiiiiiiie e 97
11.5. EXPANSION ITEIMISuvviiiiiieii it ee e s st e e e e e e ettt e e e e e e s e santbre e e e e e e e e e s nnanreeeas 97
11.6. EXPANSION OPEIGIOISeeveeiiiieieeaiitieee e ettt e e s st e et e e e s e e e s e e e s e e e e e 105
11.7. EXPansion CONAITIONScooccuuiiiiiiee e e cciiiiee e e st e e e e e s sinrrre e e e e e e s e aanes 110
11.8. Combining expansion CONAITIONSccuurieiiimrreeniiee e 115
11.9. EXPanSion VarialeScooiiiiiiiiiiiiie et 116
N 0] o= o = o I = o SRR 132
12.1. Setting up SO Perl Can beUSEAevvviiiiiiieee e 132
12.2. Calling Perl SUDIOULINESuviiiiiiee et e e e e e 132
12.3. Calling EXim functions from Perlcooeiiiiiiiiee e 132
12.4. Use of standard output and error by Perl ..o, 133
13. Starting the daemon and the use of network interfacescccceeeveeieieieeeeeeeeen, 134
13.1. Starting aliStening daBMIONccuueiiiiiiiiee e 134
13.2. Special IPlistening addreSSeSuveviveee i 135
13.3. Overriding local_interfaces and daemon_smtp_portsccccevcveeeerniieeeenninnn. 135
13.4. Support for the obsolete SSMTP (or SMTPS) protocolccocecvvvveveeeeeriinnns 135
13.5. IPVG BOUrESS SCOPESvveeeeiiieie et e e et e ettt e e e e e 136
13.6. DISADIING TPVG ...t 136
13.7. Examples of starting alistening daemon ..., 136
13.8. Recognising the 10cal NOSEcoiiiiiiiiiie e 137
13.9. Delivering to aremOotE NOSEvviiiiiieiiiiceec e 137
14. M@IN CONTIGUIALTON .eiitiieeiiiee ettt e e e e s e e s s e e e e e e e e e nres 138
141 MISCEITANEOUSeeiiiiiiiiie ettt ettt e e e s nnees 138
14.2. EXIM PAIEMELETSeeeeieiieeeeiieiiieeeeee e e e e aaeeteeeeeeeaeeesaaannetaeeeeaeeeeaaanneneneeeaeeseannes 138
14.3. Privil€ge CONMIOIScoiiieiieiiiiiie ettt ettt e e 138
I oo o] o Vo [P PRPRRRN 138
JA.5. FTOZENMESSAOEScooeieeeeeeee e 139
14.6. DAtalOOKUPSeeviiieieiie ettt e e e e e e e e e e e e e e s e aanes 139
T4.7. MESSAOE TS ..ottt ettt e e 139
14.8. Embedded Perl SLArtUDocveeieiiieie et 139
J4.9. DBEIMON ..o 139
14.20. RESOUICE CONIONvveieiieeeisiiiiiiei e e e e e s e s ettt e e e e e e e s s et e eeeeeesssnnsnrnaeeeeaeessannnes 139
I T O o [Ty Y o g1 (0] = PRPRR 140
I D O Lo | o= o PR 140
I G T T T TP P TP PRPP 140
14.14. Local user handling ...ccoooeeeeeei i 141

\Y The ExXim MTA

14.15. All incoming messages (SMTP and NON-SMTP)ccoviiiiiiiiiieeeiiieee e 141

14.16. NON-SM TP iNCOMING MESSAGES ..eeeeeeeiieiiiiieieieeeeeeieiirraeeeeeeesesesinssreeeeeesssannes 141
14.17. INCOMING SMTP MESSATESeeeiitiiieeiiiriee e st e e e e e e st e e e 141
14.18. SMTP EXEENSIONScuvviieeiiieiee et ettt et e e st e e st e e e e nnnre e e s enees 142
14.19. PrOCESSING MESSATESeeeiuerrreeaaunreeeeairereesasnreaeaassreeesaasreeeesasseeeeasnreeesannnnes 142
14.20. SYStEM FITTEY et 142
14.21. Routing and deliVENYccoooeeiee e 142
14.22. Bounce and Warning MESSAGESceeeiurrreeriiurreeeaarrreasaanteeeesasseeessanseeessnsnees 143
14.23. Alphabetical list of Main OptioNScccvviiiiiiee e 143
15. GENEriC OPLIONSTOr FOULEI'Seiiiiiiiiiie ettt e ettt 180
16. TREACCEDPL FOULEE ...iiiiiiiee e ettt e e e s e e e e e e s e e et e e e e e e e s s ssnraaereaaeeas 193
17. The dNSO0KUD FOULEToooe et e e e e e e et e e e e e e e e e enneeeeaeaee s 194
17.1. Problems With DNSIOOKUPScccoiuiiiiiiiiiiie e 194
17.2. Private options for dnSIOOKUPooeveiiiiiiiiiiiiec e 194
17.3. Effect of qualify_single and search_parentsccccueveeriieeeeiniiieeee s 196
18. TheIPlITEral FOULEN .oveeiiie et e e e e e e s e rr e e e e e e s 198
19. ThE IPIOOKUP FOULEY ...t 199
20. TheMANUAIT QULE FOULEYccceiiiiiieiee ettt e e e e e e e e s e et r e e e e e e e e ensreaees 201
20.1. Private options for manualroute ..., 201
20.2. Routing rul@SiN FOULE LIStoieeeiieiiiieiee et 202
20.3. Routing rul€Sin route _dataeeeeeeeiiiiiiiiieiee e 203
20.4. Format of the list Of NOSES ... 203
20.5. Format of ONENOSE ITEIMeoiiiiiiiie e 203
20.6. How thelist of NOSESIS USEAuveiiiiieeiiiiiee e 204
20.7. HOW the OptiONS @€ USEAevvieiiiiiiee ittt 204
20.8. Manualroute EXAMPIEScooi it 205
21. The QUENYPIrOgr @M FOULEN ...ooieeieieiiiiiee ettt ettt e s e e e s b e e e e snbreeeeanes 208
22, TRETEAITECE FOULEY ...eiiiiiiiiie ettt et e et e e e s e e e e e nnteeeeeane 210
7 S (= o (1= oi 0] o = - PR 210
22.2. Forward filesand address verifiCationcccccveeeiiiicciiiiiiie e 210
22.3. Interpreting redirection dataccooovvviiiiiiii 211
22.4. Itemsin anon-filter redireCtion listccccviiiiriie e 211
22.5. Redirecting to alocal MailboXcccooiiiiiiiiiiii e 211
22.6. Specid itemsin redireCtion lISISveviiiiiiiiieiiiee e 212
22.7. DUPIICAE BOAIESSESvvveiieeeeiiciiiiiee ettt e e e s e e e e e s et r e e e e e e e annes 214
22.8. Repeated redireCtion eXPanSiONooiccieeiiereeeeenaieeee e e e e e s eeeeeeeeeee e e e annes 214
22.9. Errorsin redireCtion lSIScooiiiiiiiieiiee st e e e e e e 214
22.10. Private options for the redireCt roUtErc.eeeeviieiiiiiiieeee e 214
23. Environment for running [ocal tranSPOrtsceeeveiiiieeeeiiiiiee e 222
23.1. CoNCUITENt AEIIVEITES ...ttt e e enen e e e anes 222
23.2.UIAS AN GIOS ..eeeiiiieiieeiie et 222
23.3. Current and homME dIrECLOMNESvvviiieeei it 223
23.4. Expansion variables derived fromtheaddressccccovvei 223
24. Generic OptioNS TOr traANSPONTS ...eviiiiiiiiee ittt e e anes 224
25. Addressbatchingin local tranSportsoccvviieiieiee e 230
26. The appendfil@ tranSPOITc.eeiiiiieie e aaee 232
26.1. Thefileand direCtory OPtioNSceeveeiiiiiiiiieiee e 232
26.2. Private options for appendfileo 233
26.3. Operational detailSfor appendingccooceeeieiiiiiieiiiiee e 242
26.4. Operational details for delivery toanew filecccooiiiei e, 243
26.5. MalAIr EIIVENY ..ot e e 244
26.6. Using tagsto reCord MESSAGE SIZESccoovvevviieiieieeeeeiciiteeee e e e e e s s satrree e e e e e e e annes 245
26.7.UsSiNg amMaildirSiZE fileccoiiiiiiiiiieee e 245
26.8. MaIISIOrE AElIVENY ...oeeeiiiiiie et 245
26.9. Non-specia new file delivery ... 246
27. The autor €DlY tranSPONTooiiiiieeeiieee ettt e e e et eee e e 247
27.1. Private options for autoreplyoeveveeeeoiiiiiieee e 247
28. THE IMEP TrANSPONT ...eeeiiiiieee ettt e e s e e e e reeeeanes 250
P4 R I a1 Y o1 o= =T 11 o Lo (P SEPR P 251
29.1. Concurrent deliVENYcoooeeieeeee 251

Vi The ExXim MTA

29.2. Returned StatuS @Nd Taaloeereeeee et e e e e 251

29.3. HOW the COMMENA ISTUN ...cooiiiiiieeiiiiie et e e 251
29.4. ENVIronmMeNt VarialleScooiiiiiiiiiiie et e e e 252
29.5. Private OptioNS fOr PIPE ..eviieeiiiiiiiiee ettt e e st re e e e e e e e e 253
29.6. Using an external 1ocal delivery agentoooiiiiieiiiiieeeeseeee e 257
30. THE SMEP tFANSPONT ..eeiieiieiiee ettt e st e e e bb e e e e e nbeeeeeane 259
30.1. Multiple messages on asingle CONNECLION ..., 259
30.2. Use of the Bhost Variablec..veieiiiiie e 259
30.3. Private OptioNS fOr SMEP ...oeeoiiiiiiiiiiee e e e e e e 259
30.4. How the limits for the number of hoststotry areusedccceeviiiieeiiiiineennns 266
G AN [0 [=Y =Y] AT o PSSR 268
31.1. Explicitly configured address rewWritingcceveeeeeiiiciieiieeee e e e 268
31.2. When does rewriting NapPEN?ocveieeiiiiiee e 268
31.3. Testing the rewriting rules that apply ONiNPULoocciiieiiee e, 269
314, REWIITING TUIES ...ttt e e e e e 269
31.5. REWTITING PALEINSvviiieiieeeei ittt e e s e e e e e s e e re e e e e e e e e ananes 270
31.6. ReWriting replaCeMENtScuuiiiiiiiiie et 271
31.7. REWIITING FlAOS ...ttt 271
31.8. Flags specifying which headers and envel ope addresses to rewrite 271
31.9. The SMTP-time rewriting flagcceveeiiiiiiieiiee e 271
31.10. Flags controlling the rewriting ProCeSSceviiieiiiiiiiiiieeie e 272
31.11. REWIITING EXAMPIESeeiiiieiiieie ettt e e e aaes 272
32. RELrY CONFIQUIALION ...uviiiiiiiee et e e e s e e e e e e e e eaees 274
32.1. Changing retry FUIESccoeeiiiiiiic e, 274
32.2. FOrmat Of TEINY TUIES ...t 274
32.3. Choosing which retry ruleto use for addreSS errorseeeveeeeiiiciiiieeeeeece e, 275
32.4. Choosing which retry rule to use for host and message errorsccccceveeeeeeeenees 275
32.5. Retry rules for SPECITIC EITOISuuviiiie e 276
32.6. Retry rulesfor Specified SENUENSovviiiiiiiieiiee e 277
32.7. RELIY PArAMELENSeeiiiieiiieeei ittt e e s e e e e e s st re e e e e e e s e aannes 277
32.8. Retry rule eXamples ..o 278
32.9. TIMEOUL OF FELIY QLAveeeeiiiiiie et 279
32.10. LONG-terM fAIUIES ...oveeeiieeecc e 279
32.11. Deliveriesthat work intermittentlycccoeeiiiiiieiiiie e 280
33. SMTP AUENENTICALIONeveeiiiiiieie et e e aaes 281
33.1. Generic options for aUthentiCatorscccuveeiiriee i 282
33.2. The AUTH parameter on MAIL COMMAENGSovveiiiiiiieeiiiiieeesiiieeeeeiieeee e 283
33.3. Authentication 0N @n EXiM SEIVENcviiiiiiiieeiiiiie e ssieee e siiee e siree e sneeeeeeanes 283
33.4. Testing Server aUtheNntiCaLIONcvvieeiiiiiie e 284
33.5. Authentication by an EXim CHENtooooiiiiiiiii e 285
34. The plaintext @aUENENTICALOrcoioiiiiiiiiii e 286
34. 1. PlainteXt OPLIONSvveeeiiieiie ettt et e e e e e nbn e e e e aae 286
34.2. Using plainteXt iIN @SEIVEScccoeiiieiieieeeeeeeeeeeee 286
34.3. The PLAIN authentication mechanismcccccceeeiiiiciiiiiiie e 286
34.4. The LOGIN authentication MeChaniSMccocuiieeiiiiiee e 287
34.5. Support for different kinds of authenticationcccveeiiiiieeiiiiec e 288
34.6. Using plaintext in aclientc.c.ovveviiiiiiiiee e 288
35. Thecram_md5 authenticatorcooovviiiiii, 290
35.1. USING Cram_MO5 @S @ SEIVEYeeieiiiiiieeiiieieeeasiiteeeesiteee e s s e e e s snseeessnneneeeeanes 290
35.2. Using cram mdS5 asaclientc.eeeeiiiiiiiiiiiiiiee e 290
36. The cyrus_sasl authentiCatorcc.eoioiiiiiie i 292
36.1. USING CYrUS SASl @S ASEIVEruiiiiieiiee e ettt e e e e e e e e 292
37. The dovecot authentiCatorc..eeiiiiieeiiieeee e 294
38. The Spa autNENTiCALOrcooiiiiiiie e 295
38.L USING SPABS ASEIVEN ..cceeieeieeeeeeeee e 295
38.2. USING SPABS ACHENT ..ot 295
39. Encrypted SMTP connectionsusing TLS/SSL ...oooooiiiiiiiiiiieeeee e 297
39.1. Support for the legacy “ssmtp” (aka“Smtps’) Protocolccceevicveeeeiiinneennns 297
39.2. 0penSSL VS GNUTLS ..o 297
39.3. GNUTLS parameter COMPULELIONooeeeiiiieiiiiieeie e eeieiie e e e e e e e e e e e 298

Vii The ExXim MTA

39.4. Requiring specific Ciphersin OPENSSLooiiiiiiiieiiiiieee e 298

39.5. Requiring specific ciphersin GNUTLS ..., 299
39.6. Configuring an EXim Server to USE TLSoiiiiiiiiiieec i 299
39.7. Requesting and verifying client certificatescccovviiieiiee i, 301
39.8. REVOKEA CEITITICALESeeeiiieeei ittt e e e e e 301
39.9. Configuring an EXim client to USE TLSoviviiiiiiiiiieiee e 301
39.10. Multiple messages on the same encrypted TCP/IP connection 302
39.11. Certificatesand all thatc.eueviieiiiii e 302
39.12. CertifiCate CNAINSc.vveeieiiiiiie e e e e e anes 303
39.13. Self-SIgNed CEIITICALEScoiiureiieeiiiee et 303
40. ACCESS CONEI Ol TISES ...uteiee ittt e s 304
0.1 TESHNG ACLS .eeiieiiiiiee et e ettt e st e e et e e e e st e e e e sne e e e e naeeeeeenneeeeeansneeeeanns 304
40.2. Specifying When ACLSar@ USEAc.evvieiiiiiiieiiiieiee ettt 304
40.3. ThE NON-SIMTP ACLS ... ieiie ettt e et e e st e e e s sntneeeeanes 304
40.4. The SMTP CONNECE ACL ..eeiiiieiei ittt ee e e e e e e e nnneeeeeeaee s 305
40.5. TRE EHLO/HELO ACL ...oviiiiiieiee ettt ettt nnae e e 305
40.6. TREDATA ACLS ...eeiiie ettt et et e e e e st e e e e enaae e e e anneneesansaeeeeanes 305
40.7. TRESMTP MIME ACL .cooeeeeieeeeeieteeeeeteeereteteveeevevetesesesesesssesesessssssssssssssssrsrnrne 306
40.8. ThE QUIT ACL oieeiee ettt ettt e e e et e e e e snae e e e e ennreeeesenseeeeeanes 306
40.9. FINAING @N ACL TO USEetiiieiiieiee ettt e s e e e e e e anes 306
40.10. ACL FELUM COUBSeveiiutiiieeiiiiieeesiiteeeeasiteeesasiteeeessteeeeeanaeeeessnteeeesantaeeeeanes 307
40.11. UNSEt ACL OPLIONS ...eoiieiiiieiiiiiee et e ettt e e e e e e e e sneneeeeane 307
40.12. Datafor MESSAgE ACLS .oeeviie e 307
40.13. Datafor NON-MESSA0E ACLSuuvuieeieieiereieieeeeeeereeeeeerrerernrernrnrrrrrrrrrrrrrrrr. 308
40.14. FOrmat Of @ ACL ... e 308
40.15. ACL VEIDS ...eeiiieiiiiiie ettt ettt e e et e e e st e e e e anraeeeeane 308
40.16. ACL VATBIIES .coeeeeieeeeeee ettt e e e e e e eaaeeas 310
40.17. Condition and modifier ProCESSINGc.ccceviiiiiiiiiiiee e 310
40.18. ACL MOGITIEIS ..oeeeeiieiieiee ettt e e e e e e ee e e e e e e e s ennnreeeeeaeeeas 311
40.19. Use of the control MOdIfierc.vvviiiiiee e 315
40.20. Adding header INESIN ACLSuvuieeeeieiereeeieeeieeeeeeereerrerrrnrermmrrr. 317
V21022 I AN @ I o0 0 111 o SRR 318
40.22. USING DINSTISES ...uvveiieeiiiiie ettt ettt nnre e e e s nnnneeeeane 322
40.23. Specifying the |P address for a DNS st |0OKUDcovvvvieiiiiiiieiiiiiccieeeee 323
40.24. DNS lists keyed on domain NAMESccoviiiiiiiiiiiiee e e e e e 323
40.25. Multiple explicit keysfor aDNS ISt ...oooooiiiiiiii e 324
40.26. Datareturned DY DNSTISEScvieiiiiiiiieiiieie e 325
40.27. Variables set from DNS SIS ...vvvviiiiiiiieiiiiiie e 325
40.28. Additional matching conditionsfor DNSHISEScceoviiiiiiiiiiiiieeiieecc e 325
40.29. Negated DNS matching conditionscoccciieiiee e, 326
40.30. Detailed information from merged DNS SISooooiiiiiiiiiiiieieceecceeeeee 326
40.31. DNSHSISANA IPVBoeveviiiiiiiiiiiiiieteiiterereteseseseseseresessrerssrrarersrrrrrrrr——... 327
40.32. Rate limiting SENAEN'Svvvviieeiieiiiiieieieeereieeeeeeeeereeeaeerrerernrrrrrerrrrrrrrrrrrrrrrrnrnrne 327
40.33. AAAress VENfICaIONuueiiieeeiiiiiiiiiii e e s e s e e e e e e e e nnnreaeeeeee s 329
40.34. CaloUt VEITICATON ...eeoiiiiiee it e e 330
40.35. Additional parametersfor CallOULScueveiiiiiieiiiiiiee e 331
40.36. Callout CAChING ... 333
40.37. Sender address verification reportingooceveeeeieeee e 333
40.38. Redirection While VETYINGcooiiiiiiiiiiiie e 334
40.39. Client SMTP authorization (CSA) ..uveieiieeiiiiiiee e 334
40.40. Bounce address tag Validationccooiuiiiiiiiieeeiieee e 335
40.41. Using an ACL t0 CONLrol rel@yingccceeeiiiiiiuiiiieiee e e 336
40.42. Checking arelay CONFIQUIBLIONovveiiiiiieiiiiiee et 337
41. Content scanning at ACL TiMEooiiiiiiie e 338
41.1. SCANNING FOF VIFUSESeeeviiieeieeeeeeeueeeeeseeeseeeseesnsennensnessnesennsnsnrnessnsnnnnssnmsssmmmnnnns 338
41.2. Scanning With SPAMASSESSINceeiiiiiiiieiiiiie et e e 341
41.3. Calling SpamAssassin froman EXIMACL ..o, 342
41.4. SCANNING MIME PAIMTS ...ttt 343
41.5. Scanning With regular EXPreSSIONSeciieeeiiiiiiiiieieee e e sesiirrrer e e e e e s ssirrrrereeeees 345
41.6. The demime CONTITIONcooieiiiiiiiieiie e e e e e eae e 346

Viii The ExXim MTA

42. Adding alocal scan function tO EXiMoocuiiiiiiiiiie e 348

42.1. Building Exim to use alocal scan functioncccccoeeiiiiiiiiiien e, 348
42.2. API FOr [OCAI_SCAN() +vreeiiueieeeeiiiiee ettt e e 348
42.3. Configuration options for ocal_SCaN()ccoovvcvriiiiiee e 349
42.4. Available EXIM Variablesoooiiiiiiiee e 350
42.5. Structure of header [INESccoii i 352
42.6. Structure Of reCiPIENt ITEMSueuiiiiiieieiereieieeeieeeeeerreerrerrrrrrrrrrrrrrrrrrrrrrrrr 352
42.7. Available EXimM fUNCHIONSccooiiiiiiiiicce ettt a e 353
42.8. More about EXim’s memory handlingccccoveveeee i, 357
43. System-wide meSSage fIlltEriNgoeeiiieiie e 358
43.1. Specifying asysStemM filteroooiiiii e 358
43.2. Testing aSySteM FIlTEY ..ooveeiiiieieeeeeeeeee e eeeeeerreerrerrrrnnne 358
43.3. Contents Of @SYSIEM FIlTerooiiiiei e 358
43.4. Additional variable for system filters ..o, 359
43.5. Defer, freeze, and fail commands for system filtersooovvieveiiiiiciiiieeees 359
43.6. Adding and removing headersin asystem filterccoocvivieiieii e, 359
43.7. Setting an errors addressin asystem filter ... 360
43.8. Per-addreSS fillteringoc.veeiiiiiiiee e 360
A4, M ESSAQE PFOCESSINQ weevevreerreeeeeneeeeenensesssessnsessesssesssesesssssssssssssssssssssssssssssnsssssssssnsnnnnnns 362
44.1. Submission mode for NON-10Cal MESSATEScceviuviieeiiiiiie e 362
A4.2. LINEENAINGS ..vvveiiieeiiiciee e s e e e e e s s e e e e e e e e e e s r e reaaeeas 363
44.3. UNQUaliTied BOMESSESoviiiiiiee et 363
44.4. The UUCP FIOM IINE ..ocoiiiii ettt 364
44.5. Resent- NEAOEr lINES e e e 364
44.6. The Auto-Submitted: header [iNecovvveeiiiiie e 364
44.7. The BCC: NEBAEN [INEcvvviieeiiiiee et 365
44.8. The Date: NEATEr [Nvviiiiee et e e e e e 365
44.9. The Delivery-date: header [iNec.ovvveeiiieiiiicee e 365
44.10. The Envelope-to: header [INE ... 365
44.11. The From: header [INEoceoi it e e 365
44.12. The Message-I1D: NEAOEr 1INEcuvviieiiiiiiieieiiieieieeeieeeeeeeeerereeeeeereeeneeeerrenrnnnnne 365
44.13. The Recaived: header liN€ooceviiiiiiiee e 366
44.14. The References: header [IN€ooovviiiiiiiiiie e 366
44.15. The Return-path: header 1INe ..o 366
44.16. The Sender: NEAdEr lINEooiiiiiiiieiii e 366
44.17. Adding and removing header linesin routers and transportsccccceeeeeeen.. 367
44.18. CONSLIUCLEd AOArESSESveviieeeiiiiiiieiie e et e e e e e e e e e reeaeae s 368
44.19. Case Of 10CAl PAIMTSuvviiiiie i e e e e ee e 368
44.20. DOLSIN [OCAl PAITSeeeiiiieieeiiiie ettt e e 369
44.21. REWIIING A0ArESSESuvviiiiie e ettt e e e e e e e 369
45, SMTP PIrOCESSING ouveeeeeiiitieeeaaiteeeeeastee e e s st e e e e assr e e e e aasbe e e e s asne e e e e annr e e e e s anbeeeeeannneeens 370
45.1. Outgoing SMTP and LMTP OVEr TCP/IPooviiiiiiieiiiiieeeeeee e 370
45.2. Errorsin OULQOING SIMTPcvieiieiiiieeieieeereeeeeeseeeeneneseesnerennsernrerrrrsserrresrrrnrnnnnne 371
45.3. Incoming SMTP messageS oVEr TCP/IPoviiiiiiiiiiiiieee e 372
45.4. Unrecognized SMTP COMMANGSoceriieieiiiiiiiiiiiiee e e e e ssinrnee e 374
45.5. Syntax and protocol errorsin SMTP commandsccceeeriiieeeniiiieeeiniieeees 374
45.6. Use of non-mail SMTP COMMENGScoeiiiiiiiiiiiiiee e e e sieeee e 374
45.7. The VRFY and EXPN COMMANGScooviiiiiiiiiiiiiiiee e e e eee e 374
45.8. The ETRN COMMANGuvviiiiieeeiiiiiiiiiiee e e e e e s ettt e e e e e e s s st e e e e e e s s s nnnnrnaeeeaaeeas 374
45.9. INCOMING 1OCAl SMTP ...ouiiiiiiee e e e 375
45.10. Outgoing batChEd SMTPc.cvivieceeeeieeeeeeeeee e en s en s 375
45.11. Incoming batChed SMTPcoiiieee e 376
46. Customizing bounce and War NiNg MESSAGESccuvvveeriiiireeriireeee e e s areeeesanneeeens 377
46.1. CuStOMIZiNg DOUNCE MESSAGESeeiivvrieeiiiiiie e et e e sttt e e st e e e e sen e e anes 377
46.2. Customizing WarNiNG MESSAJESevvrerrrererermeemsmmmmmsmmsmmmsmmmsmmmmmmmsmmmmmmmmmmmmmmmmnnne 378
47. Some common CONfigur ation SEIINGSoooivrriieiiiiiie e 379
47.1. Sending mail to asmart hOStcccovveiiiiee e 379
47.2. Using Exim to handle mailing liStSoccuviiiiiiiieiiiiee e 379
47.3. Syntax errorsin Mailing listScccvviiieiiee e 379
47.4. Re-expansion of Mailling liStScc.eueiiiiiieieie e 380

iX The ExXim MTA

47.5. Closed MailING TISES ...ceeiiiiiiieiiiiee et 380

47.6. Variable Envelope Return Paths (VERP)ccvvvevieeiiiieiee e, 381
A7.7. VIrtUal dOMEINSccoiiiiiiiii et e e e e e e st e e e e e e s e s nnnnreeeeeaaeeas 382
47.8. MUItiple USEr MAIIDOXEScveieiiiiiciiieiee et 383
47.9. SImplified Vacation PrOCESSINGccvrreeiirrreeeiirreeesaireeeesnreeessnreeeessreeeeaaaes 383
47.10. Taking COPIES Of MaIlcooiiiiiiiiiiiee e 384
47.11. Intermittently conNeCted NOSESeeeviiiiiiiiiiieiiieieiieeieeeeererereererererrrrrrrrrnn. 384
47.12. EXim 0N the upStream SErVEr NOSEcoovivieiiiiiiee e 384
47.13. Exim on the intermittently connected client hostcccoveeeiee i, 384
48. Using EXim asa non-queueing ClIENTcuviiiiiiiiieeiiiiee e 386
L oo] =PSRRI 388
49.1. Wherethe 10gS ar@ WIELENeueiiveieieiereieieeeieeeeeeneeenrnnennrernrnerrnrnnrrrerrrrrnnnnnn 388
49.2. Logging to local filesthat are periodically “cycled” ... 389
49.3. Datestamped [0g fIlESuvviiiiee e 389
49.4. LOQQING TO SYSIOQvveeeiuiiiieeiiteiee ettt e e e 390
49.5. LOGIINETIBOS .vvveiieeie i 391
49.6. L0QgQging MESSAPE MECEPLIONvveeeeiiirieeeiiiieeeeitee e e s st e e e s e e e s s e e e s e e e e e 391
49.7. LOGQING AEIIVEIIESeeiiiiiiiii ettt ettt e e e e 392
49.8. Discarded deliVEIESueiiiieeeiiie et a e e e e e 392
49.9. Deferred deliVEIESuviiiiiee e a e a e 393
49.10. DElIVENY fAIIUMES ... e 393
49.11. FAKE AElIVEITES ...oeeeieeeeeee et e e e e eaeeeas 393
LB A @e 010 =1 o o PRSP 393
49.13. Summary of FIeldSin LOg LINEScuuuieiieiiiiieiereieiieeieiernnrenenrrennnennrmnmmenn. 393
49.14. Other 100 ENIESeeiiiiiiiie ettt e et e e e s sbn e e e e e 394
49.15. Reducing or increasing what is10ggedcccovveveeeeiiiicciiieiec e, 394
49.16. MESSAPE IO -.veeenieeiieeeitie ettt 398
50. EXIM ULIHITIES ..eeiiiiiiiiie ettt et e e s e e e s e e e ennteeeeeane 399
50.1. Finding out what Exim processes are doing (eXiwhat)ccccoicveveiiiiieeennns 399
50.2. Selective queue listing (EXIQOrED)c.vveeeiiirreeeiiiie et 399
50.3. Summarising the queue (EXIGSUMIMY)cccevviiiiiieeieeeeeeeee e 400
50.4. Extracting specific information from the log (eXigrep)ccceveviiveeeiiiiineennns 401
50.5. Selecting messages by various criteria (eXipick)cccccveeveeeeiiiiiiiiieeeee e 401
50.6. Cycling 10g fileS (EXICYCIOQ)vveiiiieieeiiiiiee et 401
50.7. Malil StatistiCs (EXIMSIALS) ...cceiiiiviiieeiee e e et e e e e e e 402
50.8. Checking access policy (eXim_CheCKaCCESS)cvviieiiiiiciiiiiiiiee e ieiiiieee e 402
50.9. Making DBM files (exim_dbmbuild) ..o 403
50.10. Finding individual retry times (EXINEXL)veeveieeiiiiiiiiieeee e 404
50.11. Hints dataase MaiNteNaNCEueiereeeiiieiiieieeeeeeeeeeiiieeee e e e e e s seneeeeeeeaeeeeananes 404
50.12. eXim_dumpabooiiiiiiie e 404
50.13. €XIM_IAYAD ..eoeiiiiiiee e eeeane 405
50.24. €XIM_FIXAD ...eeiiiiie e 405
50.15. Mailbox maintenance (exim _10CK)cccovvviiiiiiii 406
51, TRE EXIM MONITOEeiiiiiiiiiee e ececiieiir e e e e sttt e e e e e e e e e e e e e e s s st an e e e e e e e e e nnsseeees 408
51.1. RUNNING thE MONITOLcciiiieiiiiiiiiiee e e s e e e e e e e e 408
51.2. TRESIIPCNAITS ..ttt e e e e e e 408
51.3. MaiN @CtionN DULTONSvviiiiiiiiiiee ittt eien e 409
51.4. Thelog diSPlayccceeeeeeeiee et e e e e e e e e e e 409
51.5. The QUEUE AISPIAY ...eeieiiieiieiiiiiie ettt e e 410
51.6. TRE QUEUE MENUouviiiiiiie ettt e e e e e e e e e s st e e e e e e e s e eanrbreeeeeeeeeananes 410
52. SECUTITY CONSIAEN BLIONSeeiiiiiiiiie ittt e ettt e e e e s b e e e nbreeeeanes 412
52.1. Building amore “hardened” EXimcccciiiiiiiieiiiiiiiiee e 412
52.2. ROOL PrIVIIEOE ..ttt e e 412
52.3. Running EXim WithOUt Privil€gecooiiiiiiiiiiiii e 413
52.4. Deliveringtolocal files ... 414
52.5. IPVA SOUIMCE FOULING ..eeeiutreeeeiiiieeeesiieeeesasiteeeesasstee e e st e e e s sntne e e e s snnneeeennnbneeeeanes 415
52.6. The VRFY, EXPN, and ETRN commandsSin SMTPcooviuoeiiiiieeeeeeeeeeeinn 415
52.7. PrIVIIEIEU USEIS ...ttt ettt e e e eeeeane 415
52.8. SPOOI FIlES .vveeeiiiee et a e 415
52.9. USE Of @rgV[0] .oeieiieiiiiiie e ettt e e e e e e e e e e e e nne 415

X The ExXim MTA

52.10. Use Of %0f FOrMEITINGeeeeiiiiiiieeiiiiie e 415

52.11. Embedded EXim Pathcocuieiiiieiiiiece e 415
52.12. USE OF SPITNET() oneeeeeeeiiiee ettt e e 416
52.13. Use of debug_printf() and [og WHte()cccvveieeeeeiiiiieeee e 416
52.14. Use of Strcat() and SEICPY() «oovveeeeeemreeeeriiireee s e et e e e e 416
53. Format Of SPOOI fIlESo.ueeieiiiieii e 417
53.1. Format of the -H fIle ... 417
54. Adding new driverSor |00KUP TYPEScooiiiiiieiiiiiie ettt 421
(@014 Lo 0 1T o [= " QUSRS 422
CONCEPT INUEX .ot e e e s e e e ekt e e e abn e e e e anrr e e e anbreeenann 428

Xi The ExXim MTA

Xii The ExXim MTA

1. Introduction

Exim isamail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems. AlX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, Dragonfly, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi),
HI-UX, HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, OpenUNIX, QNX, SCO, SCO SVR4.2
(aka UNIX-SV), Solaris (aka SunOS5), SunO$4, Tru64-Unix (formerly Digital UNIX, formerly
DEC-OSF1), Ultrix, and Unixware. Some of these operating systems are no longer current and cannot
easily be tested, so the configuration files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about
running Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the file LICENCE.

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, | could never have contemplated starting to write anew MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond theinitial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. | am grateful to them all. The
distribution now contains a file called ACKNOWLEDGMENTS, in which | have started recording the
names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.66 of Exim. Substantive changes from the
4.63 edition are marked in some renditions of the document; this paragraph is so marked if the
rendition is capable of showing a change indicator.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
the manual aims to cover every aspect of Exim in detail, including a number of rarely-used,
special-purpose features that are unlikely to be of very wide interest.

An “easier” discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitled The Exim SMTP Mail Server, published by UIT Cambridge
(http://www.uit.co.uk/exim-book/).

This book also contains a chapter that gives a genera introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note
that the earlier book about Exim, published by O'Reilly, covers Exim 3, and many things have
changed in Exim 4.)

If you are using a Debian distribution of Exim, you will find information about Debian-specific
featuresin thefile

1 Introduction (1)

http://www.uit.co.uk/exim-book/

{usr/share/doc/exim4-base/ README.Debian
The command man update-exim.conf is another source of Debian-specific information.

As the program develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. Specifications of new features that are not yet in this manua are placed in the file
doc/NewSuff in the Exim distribution.

Some features may be classified as “experimenta”. These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in the file doc/experimental .txt.

All changes to the program (whether new features, bug fixes, or other kinds of change) are noted
briefly in the file called doc/Changelog.

This specification itself is available as an ASCII file in doc/spec.txt so that it can easily be searched
with atext editor. Other filesin the doc directory are:

OptionLists.txt list of all optionsin alphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 aman page of Exim’'s command line options
experimental .txt documentation of experimental features
filter.txt specification of the filter language
pcrepattern.txt specification of PCRE regular expressions
pcretest.txt specification of the PCRE testing program
Exim3.upgrade upgrade notes from release 2 to release 3
Eximd4.upgrade upgrade notes from release 3to release 4

The main specification and the specification of the filtering language are also available in other
formats (HTML, PostScript, PDF, and Texinfo). Section 1.6 below tells you how to get hold of these.

1.2 FTP and web sites

The primary site for Exim source distributions is currently the University of Cambridge's FTP site,
whose contents are described in Where to find the Exim distribution below. In addition, thereis aweb
site and an FTP site at exim.org. These are now also hosted at the University of Cambridge. The
exim.org site was previously hosted for a number of years by Energis Squared, formerly Planet
Online Ltd, whose support | gratefully acknowledge.

As well as Exim distribution tar files, the Exim web site contains a number of differently formatted
versions of the documentation, including the FAQ in both text and HTML formats. The HTML
version comes with a keyword-in-context index. A recent addition to the online information is the
Exim wiki (http://mwww.exim.or g/eximwiki/). We hope that this will make it easier for Exim usersto
contribute examples, tips, and know-how for the benefit of others.

1.3 Mailing lists
The following are the three main Exim mailing lists:

exim-users@exim.org general discussion list
exim-dev@exim.org discussion of bugs, enhancements, etc.
exim-announce@exim.org moderated, low volume announcements list

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
viathe mailing lists link on the Exim home page. If you are using a Debian distribution of Exim, you
may wish to subscribe to the Debian-specific mailing list pkg-exim4-users@lists.alioth.debian.org via
this web page:

http://lists.alioth.debian.or g/mailman/listinfo/pkg-exim4-user s
Please ask Debian-specific questions on thislist and not on the general Exim lists.

1.4 Exim training
2 Introduction (1)

http://www.exim.org/eximwiki/
http://lists.alioth.debian.org/mailman/listinfo/pkg-exim4-users

From time to time (approximately annually at the time of writing), training courses are run by the
author of Exim in Cambridge, UK. Details of any forthcoming courses can be found on the web site
http://www-tus.csx.cam.ac.uk/cour ses/exim/.

1.5 Bug reports

Reports of obvious bugs should be emailed to bugs@exim.org. However, if you are unsure whether
some behaviour is a bug or not, the best thing to do is to post a message to the exim-dev mailing list
and have it discussed.

1.6 Where to find the Exim distribution
The master ftp site for the Exim distribution is

ftp://ftp.csx.cam.ac.uk/pub/softwar e/email/exim

Thisismirrored by

ftp://[ftp.exim.org/pub/exim

The file references that follow are relative to the exim directories at these sites. There are now quite a
number of independent mirror sites around the world. Those that | know about are listed in the file
caled Mirrors.

Within the exim directory there are subdirectories called exim3 (for previous Exim 3 distributions),
exim4 (for the latest Exim 4 distributions), and Testing for testing versions. In the exim4 subdirectory,
the current release can always be found in files called

exim-n.nn.tar.gz
exim-n.nn.tar.bz2

where n.nn is the highest such version number in the directory. The two files contain identical data;
the only differenceisthe type of compression. The .bz2 fileisusually alot smaller than the .gz file.

The distributions are currently signed with Philip Hazel’s GPG key. The corresponding public key is
available from a number of keyservers, and there is also a copy in the file Public-Key. The signatures
for thetar bundlesarein:

eximn.nn.tar.gz.sig
eximn.nn.tar.bz2.sig

For each released version, the log of changes is made separately available in a separate file in the
directory Changel.ogs so that it is possible to find out what has changed without having to download
the entire distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files inside the eximé directory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

These tar files contain only the doc directory, not the complete distribution, and are also available in
.bz2 as well as .gz forms. The FAQ is available for downloading in two different formats in these
files:

eximd/FAQ.txt.gz
exim4/FAQ.html tar.gz

The first of these is a single ASCII file that can be searched with a text editor. The second is a
directory of HTML files, normally accessed by starting at index.html. The HTML version of the FAQ
(which is also included in the HTML documentation tarbundle) includes a keyword-in-context index,

3 Introduction (1)

http://www-tus.csx.cam.ac.uk/courses/exim/

which is often the most convenient way of finding your way around.

1.7 Wish list

A wish list is maintained, containing ideas for new features that have been submitted. This used to be
asingle file that from time to time was exported to the ftp site into the file eximd/WishList. However,
it has now been imported into Exim’s Bugzilla data.

1.8 Contributed material

At the ftp site, there is a directory called Contrib that contains miscellaneous files contributed to the
Exim community by Exim users. There is also a collection of contributed configuration examples in
eximd/config.samples.tar.gz. These samples are referenced from the FAQ.

1.9 Limitations

» Eximisdesigned for use as an Internet MTA, and therefore handles addresses in RFC 2822 domain
format only. It cannot handle UUCP “bang paths’, though simple two-component bang paths can
be converted by a straightforward rewriting configuration. This restriction does not prevent Exim
from being interfaced to UUCP as a transport mechanism, provided that domain addresses are used.

» Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

* The only external transport mechanisms that are currently implemented are SMTP and LM TP over
a TCP/IP network (including support for IPv6). However, a pipe transport is available, and there
are facilities for writing messages to files and pipes, optionaly in batched SMTP format; these
facilities can be used to send messages to other transport mechanisms such as UUCP, provided they
can handle domain-style addresses. Batched SMTP input is also catered for.

» Exim is not designed for storing mail for dia-in hosts. When the volumes of such mail are large, it
is better to get the messages “delivered” into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

» Although Exim does have basic facilities for scanning incoming messages, these are not
comprehensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning extension,
straightforward interfaces to a number of common scanners are provided.

1.10 Run time configuration

Exim’s run time configuration is held in a single text file that is divided into a number of sections.
The entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A
default configuration file which is suitable for simple online installations is provided in the
distribution, and is described in chapter 7 below.

1.11 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement for /usr/lib/sendmail or /usr/shin/sendmail when sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for example, -bp, which lists
the messages on the queue) do so in Exim’'s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapter 5 documents all
Exim’'s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
aso an optional monitor program called eximon, which displays current information in an X window,
and which contains a menu interface to Exim’s command line administration options.

1.12 Terminology

4 Introduction (1)

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message, and is separated from the header (see below) by ablank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message or a “non-delivery report” (NDR). The term bounce is commonly used for this action, and
the error reports are often called bounce messages. Thisis a convenient shorthand for “ delivery failure
error report”. Such messages have an empty sender address in the message’ s envel ope (see below) to
ensure that they cannot themselves give rise to further bounce messages.

The term default appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The term defer is used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries are deferred until alater time.

The word domain is sometimes used to mean all but the first component of a host’s name. It is not
used in that sense here, where it normally refersto the part of an email address following the @ sign.

A message in transit has an associated envelope, as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the
addresses in the envelope. An MTA uses these addresses for delivery, and for returning bounce
messages, not the addresses that appear in the header lines.

The header of a message is the first part of a message’s text, consisting of a number of lines, each of
which has a name such as From:, To:, Subject:, etc. Long header lines can be split over severa text
lines by indenting the continuations. The header is separated from the body by ablank line.

The term local part, which is taken from RFC 2822, is used to refer to that part of an email address
that precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The terms local delivery and remote delivery are used to distinguish delivery to afile or a pipe on the
local host from delivery by SMTP over TCP/IP to another host. As far as Exim is concerned, all hosts
other than the host it is running on are remote.

Return path is another name that is used for the sender address in a message’ s envelope.

The term queue is used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Exim's case the redlity is more like a pool than a
gueue, because there is normally no ordering of waiting messages.

The term queue runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAS, and also relates to the
command rung, but in Exim the waiting messages are normally processed in an unpredictable order.

The term spool directory is used for a directory in which Exim keeps the messages on its queue — that
is, those that it isin the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a “spool directory” by some people. In the Exim
documentation, “spool” is aways used in the first sense.

5 Introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

* Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright © University of Cambridge. The source is distributed
in the directory src/pcre. However, this is a cut-down version of PCRE. If you want to use the
PCRE library in other programs, you should obtain and install the full version from
ftp://ftp.csx.cam.ac.uk/pub/softwar e/pr ogramming/pcre.

» Support for the cdb (Constant DataBase) 1ookup method is provided by code contributed by Nigel
Metheringham of (at the time he contributed it) Planet Online Ltd. The implementation is
completely contained within the code of Exim. It does not link against an external cdb library. The
code contains the following statements:

Copyright © 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This code implements Dan Bernstein’s Constant DataBase (cdb) spec. Information,
the spec and sample code for cdb can be obtaned from
http://www.pobox.com/~djb/cdb.html. This implementation borrows some code
from Dan Bernstein’ s implementation (which has no license restrictions applied to it).

» Client support for Microsoft’s Secure Password Authentication is provided by code contributed by
Marc Prud’ hommeaux. Server support was contributed by Tom Kistner. This includes code taken
from the Samba project, which is released under the Gnu GPL.

» Support for calling the Cyrus pwcheck and saslauthd daemons is provided by code taken from the
Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice appears
below, in accordance with the conditions expressed therein.

Copyright © 2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, thislist of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

(3) Thename “Carnegie Mellon University” must not be used to endorse or promote
products derived from this software without prior written permission. For
permission or any other legal details, please contact

Office of Technology Transfer
Carnegie Méellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer@andrew.cmu.edu

(4) Redistributions of any form whatsoever must retain the following
acknowledgment:

“This product includes software developed by Computing Services at Carnegie
Mellon University (http://www.cmu.edu/computing/.”

6 Incorporated code (2)

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre
http://www.pobox.com/~djb/cdb.html
http://www.cmu.edu/computing/

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

» The Exim Monitor program, which is an X-Window application, includes modified versions of the
Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts,
and the Massachusetts I nstitute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the names of Digital or MIT not
be used in advertising or publicity pertaining to distribution of the software without
specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

» Many people have contributed code fragments, some large, some small, that were not covered by
any specific licence requirements. It is assumed that the contributors are happy to see their code
incoporated into Exim under the GPL.

7 Incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and
are handling a general mix of mail. In such circumstances, most messages can be delivered
immediately. Consequently, Exim does not maintain independent queues of messages for specific
domains or hosts, though it does try to send severa messages in a single SMTP connection after a
host has been down, and it also maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTASs that are connected to the Internet. Perhaps their
most important job is to stop MTAS being abused as “open relays’ by misguided individuals who
send out vast amounts of unsolicited junk, and want to disguise its source. Exim provides flexible
facilities for specifying policy controls on incoming mail:

» Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by means
of Access Control Lists (ACLS). Each list is a series of statements that may either grant or deny
access. ACLs can be used at several placesin the SMTP dialogue while receiving a message from a
remote host. However, the most common places are after each RCPT command, and at the very end
of the message. The sysadmin can specify conditions for accepting or rejecting individual recipients
or the entire message, respectively, at these two points (see chapter 40). Denial of access resultsin
an SMTP error code.

* An ACL is aso available for locally generated, non-SMTP messages. In this case, the only
available actions are to accept or deny the entire message.

* When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to externa virus and/or spam scanning software. The result of
such ascan is passed back to the ACL, which can then use it to decide what to do with the message.

» When a message has been received, either from a remote host or from the local host, but before the
final acknowledgement has been sent, a locally supplied C function called local_scan() can be run
to inspect the message and decide whether to accept it or not (see chapter 42). If the message is
accepted, the list of recipients can be modified by the function.

* Using the local_scan() mechanism is another way of calling externa scanner software. The
SA-Exim add-on package works this way. It does not require Exim to be compiled with the
content-scanning extension.

» After a message has been accepted, a further checking mechanism is available in the form of the
system filter (see chapter 43). Thisruns at the start of every delivery process.
3.3 User filters

In a conventional Exim configuration, users are able to run private filters by setting up appropriate
forward files in their home directories. See chapter 22 (about the redirect router) for the
configuration needed to support this, and the separate document entitled Exim’s interfaces to mail
filtering for user details. Two different kinds of filtering are available:

» Sievefilters are written in the standard filtering language that is defined by RFC 3028.

» Exim filters are written in a syntax that is unique to Exim, but which is more powerful than Sieve,
which it pre-dates.

User filters are run as part of the routing process, described below.

3.4 Message identification

Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens, for example 16VDhn- 0001bo- D3. Each part is a sequence
of letters and digits, normally encoding numbersin base 62. However, in the Darwin operating system

8 Receiving and delivering mail (3)

(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct file names, and the names of
filesin those systems are not aways case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

» Thefirst six characters of the message id are the time at which the message started to be received,
to a granularity of one second. That is, this field contains the number of seconds since the start of
the epoch (the normal Unix way of representing the date and time of day).

» After thefirst hyphen, the next six characters are the id of the process that received the message.
» There aretwo different possibilities for the final two characters:

(1) If localhost_number is not set, this value is the fractional part of the time of reception,
normally in units of 1/2000 of a second, but for systems that must use base 36 instead of base
62 (because of case-insensitive file systems), the units are 1/1000 of a second.

(2) If localhost_number is set, it is multiplied by 200 (100) and added to the fractional part of the
time, which in this caseisin units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

3.5 Receiving mail

The only way Exim can receive mail from another host isusing SMTP over TCP/IP, in which case the
sender and recipient addresses are transferred using SMTP commands. However, from a locally
running process (such asauser’s MUA), there are several possibilities:

« |f the process runs Exim with the -bm option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the messageif -t isalso
used.

« If the process runs Exim with the -bS option, the message is also read non-interactively, but in this
case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. Thisis so-called “batch SMTP” format, but it isn’t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

« If the process runs Exim with the -bs option, the message is read interactively, using the SMTP
protocol. A two-way pipe is normally used for passing data between the local process and the Exim
process. Thisis“rea” SMTP and is handled in the same way as SMTP over TCP/IP. For example,
the ACLs for SMTP commands are used for this form of submission.

* A loca process may also make a TCP/IP call to the host’s loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specialy. It treats all such connectionsin the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set by the qualify_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP
MAIL command is ignored. However, the system administrator may allow certain users (“trusted
users’) to specify a different sender address unconditionally, or al users to specify certain forms of
different sender address. The -f option or the SMTP MAIL command is used to specify these different
addresses. See section 5.2 for details of trusted users, and the untrusted_set_sender option for away
of allowing untrusted users to change sender addresses.

9 Receiving and delivering mail (3)

Messages received by either of the non-interactive mechanisms are subject to checking by the
non-SMTP ACL, if oneis defined. Messages received using SMTP (either over TCP/IP, or interacting
with alocal process) can be checked by a number of ACLs that operate at different times during the
SMTP session. Either individual recipients, or the entire message, can be rejected if local policy
requirements are not met. The local_scan() function (see chapter 42) isrun for al incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, hew messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the
envel ope information, the current status of the message, and the header lines, and the second contains
the body of the message. The names of the two spool files consist of the message id, followed by - H
for the file containing the envelope and header, and - Dfor the datafile.

By default al these message files are held in a single directory called input inside the general Exim
spool directory. Some operating systems do not perform very well if the number of filesin a directory
gets large; to improve performance in such cases, the split_spool_directory option can be used. This
causes Exim to split up the input files into 62 sub-directories whose names are single letters or digits.
When thisis done, the queue is processed one sub-directory at atime instead of al at once, which can
improve overall performance even when there are not enough files in each directory to affect file
system performance.

The envelope information consists of the address of the message’s sender and the addresses of the
recipients. Thisinformation is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter 53.

Address rewriting that is specified in the rewrite section of the configuration (see chapter 31) is done
once and for al on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
viaaliasing), these new addresses are rewritten as soon as they are generated. At the time amessageis
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters 15 and 24).

3.7 Life of a message

A message remainsin the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed — for example, when a message can neither be delivered to its recipients
nor returned to its sender, the message is marked “frozen” on the spool, and no more deliveries are
attempted.

An administrator can “thaw” such messages when the problem has been corrected, and can also freeze
individual messages by hand if necessary. In addition, an administrator can force a delivery error,
causing a bounce message to be sent.

There are options called ignore_bounce_errors_after and timeout_frozen after, which discard
frozen messages after a certain time. The first applies only to frozen bounces, the second to any frozen

messages.

While Exim is working on a message, it writes information about each delivery attempt to its main log
file. Thisincludes successful, unsuccessful, and delayed deliveries for each recipient (see chapter 49).
The log lines are also written to a separate message log file for each message. These logs are solely
for the benefit of the administrator, and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message logs; this might give an improvement in performance on very busy systems.

10 Receiving and delivering mail (3)

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal file, whose name is the message id followed by - J. At the end of a delivery run, if there are
some addresses | eft to be tried again later, the first spool file (the - Hfile) is updated to indicate which
these are, and the journal file is then deleted. Updating the spoal file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journa is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are called routers and transports, and collectively
these are known as drivers. Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Run time options specify which
ones are actually used for delivering messages.

Each driver that is specified in the run time configuration is an instance of that particular driver type.
Multiple instances are allowed; for example, you can set up several different smtp transports, each
with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’ s featuresin general.

A router isadriver that operates on an address, either determining how its delivery should happen, by
assigning it to a specific transport, or converting the address into one or more new addresses (for
example, via an dlias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transport is a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the loca
host, whereas for a remote transport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be
passed to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. First, as a simple example, we consider how each
recipient address in amessage is processed in asmall configuration of three routers.

To make this a more concrete example, it is described in terms of some actual routers, but remember,
thisis only an example. You can configure Exim'’s routers in many different ways, and there may be
any number of routersin a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specialy by the local host. These are typically addresses for arbitrary domains on
the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that do not match. Typically, this
isarouter that looks up domains in the DNS in order to find the hosts to which this address routes. If
it succeeds, the address is assigned to a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

The second router is reached only when the domain is recognized as one that “belongs’ to the local
host. This router does redirection — also known as aiasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,
the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The fina router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of alogin account,

11 Receiving and delivering mail (3)

or it may look up the local part in afile or a database. If its preconditions are not met, or if the router
declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

Aswell as being used to decide how to deliver to an address, Exim’s routers are also used for address
verification. Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested using the -bv and
-bvs command line options.

When an address is being verified, the routers are run in “verify mode”. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program, unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
the no_verify option would be set for such arouter, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running arouter. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a router are met, the router is run. What happens next depends on the outcome,
which is one of the following:

 accept: The router accepts the address, and either assigns it to a transport, or generates one or more
“child” addresses. Processing the original address ceases, unless the unseen option is set on the
router. This option can be used to set up multiple deliveries with different routing (for example, for
keeping archive copies of messages). When unseen is set, the address is passed to the next router.
Normally, however, an accept return marks the end of routing.

Any child addresses generated by the router are processed independently, starting with the first
router by default. It is possible to change this by setting the redirect_router option to specify
which router to start at for child addresses. Unlike pass_router (see below) the router specified by
redirect_router may be anywhere in the router configuration.

» pass. The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default the address is passed to the next router, but this can be changed
by setting the pass_router option. However, (unlike redirect_router) the named router must be
below the current router (to avoid loops).

 decline: The router declines to accept the address because it does not recognize it at al. By defaullt,
the address is passed to the next router, but this can be prevented by setting the no_more option.
When no_more is set, all the remaining routers are skipped. In effect, no_more converts decline
into fail.

« fail: The router determines that the address should fail, and queues it for the generation of a bounce
message. Thereis no further processing of the original address unless unseen is set on the router.

 defer: The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It istried again next time the message is considered for delivery.

» error: Thereis some error in the router (for example, a syntax error in its configuration). The action
isasfor defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is “unrouteable address’, but you
can set your own message by making use of the cannot_route message option. This can be set for
any router; the value from the last router that “saw” the addressis used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. Y ou can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. The redirect router has a “fail”

12 Receiving and delivering mail (3)

facility for this purpose.

3.11 Duplicate addresses

Once routing is complete, Exim scans the addresses that are assigned to local and remote transports,
and discards any duplicates that it finds. During this check, local parts are treated as case-sensitive.
This happens only when actually delivering a message; when testing routers with -bt, all the routed
addresses are shown.

3.12 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
Theindividual configuration options are described in more detail in chapter 15.

» The local_part_prefix and local_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or suffix)
is not present, the router is skipped. These conditions are tested first. When an affix is present, it is
removed from the local part before further processing, including the evauation of any other
conditions.

* Routers can be designated for use only when not verifying an address, that is, only when routing it
for delivery (or testing its delivery routing). If the verify option is set false, the router is skipped
when Exim is verifying an address. Setting the verify option actually sets two options, verify
sender and verify_recipient, which independently control the use of the router for sender and
recipient verification. Y ou can set these options directly if you want arouter to be used for only one
type of verification.

» If the address _test option is set false, the router is skipped when Exim is run with the -bt option to
test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to use -bt to test subsequent delivery routing without
having to simulate the effect of the scanner.

» Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. The verify_only option controls this.

* Individual routers can be explicitly skipped when running the routers to check an address given in
the SMTP EXPN command (see the expn option).

« If the domains option is set, the domain of the address must be in the set of domains that it defines.

 If thelocal_parts option is set, the local part of the address must be in the set of local parts that it
defines. If local_part_prefix or local_part_suffix isin use, the prefix or suffix is removed from
the local part before this check. If you want to do precondition tests on local parts that include
affixes, you can do so by using a condition option (see below) that uses the variables $local _part,
$local_part_prefix, and $local_part_suffix as necessary.

* If the check_local_user option is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are placed in $local _user uid and
$local_user_gid and the user’'s home directory is placed in $home; these values can be used in the
remaining preconditions.

 If the router _home_directory option is set, it is expanded at this point, because it overrides the
value of $home. If this expansion were left till later, the value of $home as set by check_local _user
would be used in subsequent tests. Having two different values of $home in the same router could
lead to confusion.

 If the senders option is set, the envelope sender address must be in the set of addresses that it
defines.

 If therequire filesoptionis set, the existence or non-existence of specified filesistested.

« If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chapter 11.

Note that require_files comes near the end of the list, so you cannot use it to check for the existence

13 Receiving and delivering mail (3)

of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use the exists expansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for example, .procmailrc).

3.13 Delivery in detail
When a message is to be delivered, the sequence of eventsis as follows:

If a system-wide filter file is specified, the message is passed to it. The filter may add recipients to
the message, replace the recipients, discard the message, cause a new message to be generated, or
cause the message delivery to fail. The format of the system filter file is the same as for Exim user
filter files, described in the separate document entitled Exim’s interfaces to mail filtering. (Note:
Sieve cannot be used for system filter files.)

Some additional features are available in system filters — see chapter 43 for details. Note that a
message is passed to the system filter only once per delivery attempt, however many recipients it
has. However, if there are severa delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter condition first_delivery can be
used to detect the first run of the system filter.

Each recipient address is offered to each configured router in turn, subject to its preconditions, until
oneis ableto handleit. If no router can handle the address, that is, if they all decline, the addressis
failed. Because routers can be targeted at particular domains, several locally handled domains can
be processed entirely independently of each other.

A router that accepts an address may assign it to a local or a remote transport. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular transport,
which will be run later. Alternatively, the router may generate one or more new addresses (typically
from alias, forward, or filter files). New addresses are fed back into this process from the top, but in
order to avoid loops, arouter ignores any address which has an identically-named ancestor that was
processed by itself.

When al the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only one
address at atime, but if alocal transport is being used as a pseudo-remote transport (for example, to
collect batched SMTP messages for transmission by some other means) multiple addresses can be
handled. Remote transports can aways handle more than one address at a time, but can be
configured not to do so, or to restrict multiple addresses to the same domain.

Each local delivery to a file or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (“the Exim user”), but in this case, several remote deliveries can
be run in parallel. The maximum number of simultaneous remote deliveries for any one message is
set by the remote_max_parallel option. The order in which deliveries are done is not defined,
except that al local deliveries happen before any remote deliveries.

When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry time
for the address is reached. However, this happens only for delivery attempts that are part of a queue
run. Local deliveries are aways attempted when delivery immediately follows message reception,
even if retry times are set for them. This makes for better behaviour if one particular message is
causing problems (for example, causing quota overflow, or provoking an error in afilter file).

Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
gueue run or not. See chapter 32 for details of retry strategies.

If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

14 Receiving and delivering mail (3)

* If one or more addresses suffered a temporary failure, the message is left on the queue, to be tried
again later. Delivery of these addressesis said to be deferred.

» When al the recipient addresses have either been delivered or bounced, handling of the message is
complete. The spool files and message log are deleted, though the message log can optionaly be
preserved if required.

3.14 Retry mechanism

Exim’'s mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that uses the -q option with a time interval to
start queue runners at regular intervals, or use some other means (such as cron) to start them. If you
do not arrange for queue runners to be run, messages that fail temporarily at the first attempt will
remain on your queue for ever. A queue runner process works its way through the queue, one message
a atime, trying each dedlivery that has passed its retry time. You can run several queue runners at
once.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
32). These rules aso specify when Exim should give up trying to deliver to the address, at which
point it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.15 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If ahost is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
aremote host is deferred,

Exim makes a note in its hints database, and whenever a successful SMTP delivery has happened, it
looks to see if any other messages are waiting for the same host. If any are found, they are sent over
the same SMTP connection, subject to a configuration limit as to the maximum number in any one
connection.

3.16 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter 46 for details.

Bounce messages contain an X-Failed-Recipients: header line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’' s envelope. For incoming SM TP messages, this is the address given in the MAIL command.
However, when an address is expanded via a forward or dlias file, an alternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
47.2) it is common to direct bounce messages to the manager of thelist.

3.17 Failures to deliver bounce messages

If a bounce message (either locally generated or received from a remote host) itself suffers a
permanent delivery failure, the message is left on the queue, but it is frozen, awaiting the attention of
an administrator. There are options that can be used to make Exim discard such failed messages, or to

15 Receiving and delivering mail (3)

keep them for only a short time (see timeout_frozen_after andignore _bounce errors_after).

16 Receiving and delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when upacked, creates a directory with the
name of the current release (for example, exim-4.66) into which the following files are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU Genera Public Licence

Makefile top-level makefile

NOTICE conditions for the use of Exim

README list of files, directories and smple build instructions

Other files whose names begin with README may aso be present. The following subdirectories are
Created:

Local an empty directory for local configuration files
(O] OS-specific files

doc documentation files

exim_monitor source files for the Exim monitor

scripts scripts used in the build process

src remaining source files

util independent utilities

The main utility programs are contained in the src directory, and are built with the Exim binary. The
util directory contains afew optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symboalic links to the sources are installed in this directory, which is where the actual building takes
place. In most cases, Exim can discover the machine architecture and operating system for itself, but
the defaults can be overridden if necessary.

4.3 DBM libraries

Even if you do not use any DBM filesin your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different onesinstalled.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating via the ndbm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they
contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent rel eases seem to have standardised on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens afile called dbmfile, there are several possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris, operates on two files
called dbmfile.dir and dbmfile.pag.

(2) The GNU library, gdbm, operates on a single file. If used via its ndom compatibility interface it
makes two different hard links to it with names dbmfile.dir and dbmfile.pag, but if used via its

17 Building and installing Exim (4)

native interface, the file name is used unmodified.

(3) The Berkeley DB package, if called viaits ndbm compatibility interface, operates on asingle file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbnifile; the
programmer’ sinterface is somewhat different to the traditional ndom interface.

(5) To complicate things further, there are severa very different versions of the Berkeley DB
package. Version 1.85 was stable for a very long time, releases 2.x and 3.x were current for a
while, but the latest versions are now numbered 4.x. Maintenance of some of the earlier releases
has ceased. All versions of Berkeley DB can be obtained from http://www.sleepycat.com/.

(6) Yet another DBM library, called tdb, is available from http://download.sour cefor ge.net/tdb. It
hasits own interface, and also operates on asinglefile.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set USE DB in an appropriate configuration file
(typically Local/Makefile). For example:

USE_DB=yes

Similarly, for gdbm you set USE_GDBM, and for tdb you set USE_TDB. An error is diagnosed if
you set more than one of these.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting USE_DB as their default, and the
configuration files for Cygwin set USE_GDBM. Anything you set in Local/Makefile, however,
overrides these system defaullts.

Aswell as setting USE_DB, USE_ GDBM, or USE_TDB, it may aso be necessary to set DBMLIB, to
cause inclusion of the appropriate library, asin one of these lines:

DBMLIB = -1db
DBMLIB = -1tdb

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library’ s header file may also not be in the default path. You may need to set INCLUDE to
specify where the header file is, and to specify the path to the library more fully in DBMLIB, as in
this example:

| NCLUDE=-1/usr/local/include/db-4.1
DBMLI B=/usr/local /1ib/db-4.1/1i bdb. a

There is further detailed discussion about the various DBM libraries in the file doc/dbm.discuss.txt in
the Exim distribution.

4.4 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name Local/Makefile. A template for this file is supplied as the file
sr¢/EDITME, and it contains full descriptions of all the option settings therein. These descriptions are
therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copy src/EDITME to Local/Makefile, then read it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the run time configuration file (CONFIGURE_FILE), the directory in which Exim binaries
will be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe
EXIM_GROUP aswell). The value of CONFIGURE_FILE can in fact be a colon-separated list of file
names; Exim uses the first of them that exists.

There are afew other parameters that can be specified either at build time or at run time, to enable the

18 Building and installing Exim (4)

http://www.sleepycat.com/
http://download.sourceforge.net/tdb

same binary to be used on a number of different machines. However, if the locations of Exim’s spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that
you specify them in Local/Makefile instead of at run time, so that errors detected early in Exim's
execution (such as amalformed configuration file) can be logged.

Exim’s interfaces for calling virus and spam scanning software directly from access control lists are
not compiled by default. If you want to include these facilities, you need to set

W TH_CONTENT_SCAN=yes
in your Local/Makefile. For details of the facilities themselves, see chapter 41.

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
Local/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
Local/eximon.conf can be empty, but it must exist.

This is al the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults to gcc. See section 4.11 below for details of how to do this.

4.5 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means of the $h_
mechanism, it decodes them, and trandates them into a specified character set (default 1SO-8859-1).
Thetrandation is possible only if the operating system supports the iconv() function.

However, some of the operating systems that supply iconv() do not support very many conversions.
The GNU libiconv library (available from http://www.gnu.or g/softwar &/libiconv/) can be installed
on such systems to remedy this deficiency, as well as on systems that do not supply iconv() at all.
After installing libiconv, you should add

HAVE_| CONV=yes
to your Local/Makefile and rebuild Exim.

4.6 Including TLS/SSL encryption support

Exim can be built to support encrypted SMTP connections, using the STARTTLS command as per
RFC 2487. It can aso support legacy clients that expect to start a TLS session immediately on
connection to a non-standard port (see the tls_on_ connect_ ports runtime option and the
-tls-on-connect command line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. Thereis no cryptographic codein Exim itself for implementing SSL.

If OpenSSL isinstalled, you should set

SUPPORT_TLS=yes
TLS LIBS=-1ssl -lcrypto

in Local/Makefile. You may also need to specify the locations of the OpenSSL library and include
files. For example:

SUPPORT_TLS=yes

TLS LIBS=-L/usr/local/openssl/lib -lIssl -lcrypto
TLS_ | NCLUDE=-1/usr /1 ocal / openssl /i ncl ude/

If GnuTLSisinstalled, you should set
SUPPORT_TLS=yes

19 Building and installing Exim (4)

http://www.gnu.org/software/libiconv/

USE_GNUTLS=yes
TLS LIBS=-Ignutls -lItasnl -Ilgcrypt

in Local/Makefile, and again you may need to specify the locations of the library and include files. For
example:

SUPPORT_TLS=yes

USE_GNUTLS=yes

TLS LIBS=-L/usr/gnu/lib -lgnutls -ltasnl -1gcrypt
TLS | NCLUDE=- | / usr/ gnu/i ncl ude

You do not need to set TLS INCLUDE if the relevant directory is already specified in INCLUDE.
Details of how to configure Exim to make use of TLS are given in chapter 39.

4.7 Use of tcpwrappers

Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE TCP_WRAPPERS in Local/Makefile, arrange for the file tcpd.h to be available at compile time,
and also ensure that the library libwrap.a is available at link time, typically by including -lwrap in
EXTRALIBS _EXIM. For example, if tcpwrappersisinstalled in /usr/local, you might have

USE TCP_WRAPPERS=yes
CFLAGS=-0O -1l /usr/local/include
EXTRALI BS_EXI M=-L/usr/local/lib -Iwap

in Local/Makefile. The name to use in the tcpwrappers control filesis“exim”. For example, the line

exim: LOCAL 192.168.1. .friendly.domin.exanple

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts in friendly.domain.example. All other connections are denied. Consult the
tcpwrappers documentation for further details.

4.8 Including support for IPv6

Exim contains code for use on systems that have |IPv6 support. Setting HAVE | PV6=YES in
Local/Makefile causes the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE
and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and
library files.

Two different types of DNS record for handling IPv6 addresses have been defined. AAAA records
(analagous to A records for IPv4) arein use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was
felt to be over-complex, and its status was reduced to “experimental”. It is not known if anyone is
actually using A6 records. Exim has support for A6 records, but this is included only if you set
SUPPORT_A6=YES in Local/Makefile. The support has not been tested for some time.

4.9 The building process

Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the directory build-SunOS5-5.8-sparc
is created. Symbolic links to relevant source files are installed in the build directory.

Warning: The -j (paralldl) flag must not be used with make; the building process fails if it is set.

If this is the first time make has been run, it calls a script that builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make. This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finally Exim itself. The command make nakefi | e can be used to force arebuild of the make
filein the build directory, should this ever be necessary.

20 Building and installing Exim (4)

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems
are covered.

4.10 Output from “make”

The output produced by the make process for compile lines is often very unreadable, because these
lines can be very long. For this reason, the normal output is suppressed by default, and instead output
similar to that which appears when compiling the 2.6 Linux kernel is generated: just a short line for
each module that is being compiled or linked. However, it is till possible to get the full output, by
calling make like this:

FULLECHO='" nmake -e

The value of FULLECHO defaults to “@”, the flag character that suppresses command reflection in
make. When you ask for the full output, it is given in addition to the short output.

4.11 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the
concatenation of a number of files which set configuration values, followed by a fixed set of make
instructions. If a value is set more than once, the last setting overrides any previous ones. This
provides a convenient way of overriding defaults. The files that are concatenated are, in order:

OSMakefile-Default
OS'Makefile-<ostype>
Local/Makefile
Local/Makefile-<ostype>
Local/Makefile-<archtype>
Local/Makefile-<ostype>-<archtype>
OSMakefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. Local/Makefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scriptg/arch-type respectively. If either of the environment variables EXIM_OSTYPE or EXIM _
ARCHTYPE is set, their values are used, thereby providing a means of forcing particular settings.
Otherwise, the scripts try to get values from the uname command. If this fails, the shell variables
OSTYPE and ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to
produce the standard names that Exim expects. You can run these scripts directly from the shell in
order to find out what values are being used on your system.

OSMakefile-Default contains comments about the variables that are set therein. Some (but not all) are
mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/Makefile-<ostype>) to see what the default
values are.

If you need to change any of the values that are set in OSMakefile-Default or in
OS/Makefile-<ostype>, or to add any new definitions, you do not need to change the origina files.
Instead, you should make the changes by putting the new values in an appropriate Local file. For
example, when building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly
DEC-OSF1) operating system, it is necessary to specify that the C compiler is called cc rather than
gcc. Also, the compiler must be called with the option -std1, to make it recognize some of the features
of Standard C that Exim uses. (Most other compilers recognize Standard C by default.) To do this,
you should create afile called Local/Makefile-OSF1 containing the lines

CC=cc
CFLAGS=-std1l

If you are compiling for just one operating system, it may be easier to put these lines directly into

21 Building and installing Exim (4)

Local/Makefile.

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents of the Local directory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All
the different kinds of file and database |ookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for Local/Makefile are:

LOOKUP_LDAP=yes
LOOKUP_NI S=yes
LOOKUP_NI SPLUS=yes

and similar settings apply to the other lookup types. They are al listed in src/EDITME. In many cases
the relevant include files and interface libraries need to be installed before compiling Exim. However,
there are some optional lookup types (such as cdb) for which the code is entirely contained within
Exim, and no external include files or libraries are required. When alookup type is not included in the
binary, attempts to configure Exim to use it cause run time configuration errors.

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXI M PERL=perl .o
must be defined in Local/Makefile. Details of thisfacility are given in chapter 12.

The location of the X11 libraries is something that varies a lot between operating systems, and there
may be different versions of X11 to cope with. Exim itself makes no use of X11, but if you are
compiling the Exim monitor, the X11 libraries must be available. The following three variables are set
in OYMakefile-Default:

X11=/usr/ X11R6
XI NCLUDE=- | $(X11) /i ncl ude
XLFLAGS=-L$(X11)/1ib

These are overridden in some of the operating-system configuration files. For example, in
OSMakefile-SunOSH thereis

X11=/usr/ openw n
XI NCLUDE=- 1 $(X11) /i ncl ude
XLFLAGS=-L$(X11)/lib -R$(X11)/1ib

If you need to override the default setting for your operating system, place a definition of al three of
these variables into your Local/Makefile-<ostype> file.

If you need to add any extra libraries to the link steps, these can be put in a variable caled
EXTRALIBS, which appears in all the link commands, but by default is not defined. In contrast,
EXTRALIBS EXIM is used only on the command for linking the main Exim binary, and not for any
associated utilities.

Thereis aso DBMLIB, which appears in the link commands for binaries that use DBM functions (see
aso section 4.3). Finally, thereis EXTRALIBS EXIMON, which appears only in the link step for the
Exim monitor binary, and which can be used, for example, to include additional X11 libraries.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated
non-optional file (that is, Local/Makefile or Local/eximon.conf) before rebuilding.

4.12 OS-specific header files

The OS directory contains a number of files with names of the form os.h-<ostype>. These are
system-specific C header files that should not normally need to be changed. There is a list of macro
settings that are recognized in the file OSos.configuring, which should be consulted if you are porting

22 Building and installing Exim (4)

Exim to a new operating system.

4.13 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
areinvolved are

OSeximon.conf-Default
OSeximon.conf-<ostype>
Local/eximon.conf
Local/eximon.conf-<ostype>
Local/eximon.conf-<ar chtype>
Local/eximon.conf-<ostype>-<ar chtype>

As with Exim itself, the final three files need not exist, and in this case the OSeximon.conf-< ostype>
file is also optional. The default values in OS'eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_ . For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at run time.

4.14 Installing Exim binaries and scripts

The command make i nstall runsthe exim_install script with no arguments. The script copies
binaries and utility scripts into the directory whose name is specified by the BIN_DIRECTORY
setting in Local/Makefile. The install script copies files only if they are newer than the files they are
going to replace. The Exim binary is required to be owned by root and have the setuid bit set, for
normal configurations. Therefore, you must run make i nstall asroot so that it can set up the
Exim binary in this way. However, in some special situations (for example, if a host is doing no local
deliveries) it may be possible to run Exim without making the binary setuid root (see chapter 52 for
details).

Exim’s run time configuration file is named by the CONFIGURE_FILE setting in Local/Makefile. If
this names a single file, and the file does not exist, the default configuration file src/configure.default
is copied there by the installation script. If arun time configuration file already exists, it is left alone.
If CONFIGURE_FILE is a colon-separated list, naming several aternative files, no default is
installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by SYSTEM_ALIASES FILE in Local/Makefile (/etc/aliases by default). If the system aliases file
does not exist, the installation script createsit, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been kept in /etc/aliases. However, some operating
systems are now using /etc/mail/aliases. You should check if yours is one of these, and change
Exim'’s configuration if necessary.

The default configuration uses the local host’s name as the only local domain, and is set up to do local
deliveries into the shared directory /var/mail, running as the local user. System aliases and .forward
files in users’ home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. Y ou can do this by a command such as

make DESTDI R=/ sonme/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name
is modified.) For backwards compatibility, ROOT is used if DESTDIR is not set, but this usage is
deprecated.

Running make install does not copy the Exim 4 conversion script convert4r4, or the pcretest test
program. You will probably run the first of these only once (if you are upgrading from Exim 3), and

23 Building and installing Exim (4)

the second isn't really part of Exim. None of the documentation files in the doc directory are copied,
except for the info files when you have set INFO_DIRECTORY, as described in section 4.15 below.

For the utility programs, old versions are renamed by adding the suffix .O to their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for example exim-4.66-1. The script then arranges for a symbolic
link called exim to point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the name eximis never absent from the directory (as seen by other processes).

If you want to see what the make install will do before running it for real, you can pass the -n option
to the installation script by this command:

make | NSTALL_ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. Y ou do not need to
be root to run this test. Alternatively, you can run the installation script directly, but this must be from
within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-SunGs5-5.5.1-sparc; ../scripts/eximinstall -n)
There are two other options that can be supplied to the installation script.

» -no_chown bypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

» -no_symlink bypasses the setting up of the symbolic link eximto the installed binary.
INSTALL_ARG can be used to pass these options to the script. For example:

make | NSTALL_ARG=-no_symink install

The ingtallation script can aso be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make | NSTALL_ARG='-no_symink exim install

4.15 Installing info documentation

Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source
of Exim’s documentation is not included in the main distribution. Instead it is available separately
from the ftp site (see section 1.6).

If you have defined INFO_DIRECTORY in Local/Makefile and the Texinfo source of the
documentation is found in the source tree, running make i nstal | automatically builds the info
filesand installs them.

4.16 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

4.17 Testing

Having installed Exim, you can check that the run time configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your PATH
environment variable:

exi m - bV

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be

24 Building and installing Exim (4)

done by using the address testing option. For example,

exi m - bt <local username>

should verify that it recognizes alocal mailbox, and

exi m - bt <remote address>

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exi m-v postnaster @our. domai n. exanpl e
From user @our. domai n. exanpl e

To: postmast er @our. donmai n. exanpl e
Subj ect: Testing Exim

This is a test nmessage.
"D

The -v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message’'s arrival, one for its delivery, and one containing
“Completed”.

If you encounter problems, look at Exim’s log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. If a message is stuck on Exim's spool, you can force a delivery with
debugging turned on by a command of the form

exim-d - M<eximmessage-id>

Y ou must be root or an *admin user” in order to do this. The -d option produces rather alot of output,
but you can cut this down to specific areas. For example, if you use -d-all+route only the debugging
information relevant to routing isincluded. (See the -d option in chapter 5 for more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the “sticky bit” set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the “sticky bit” on the directory, or by setting a
specific group for local deliveries and alowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach isto
configure Exim not to use lock files, but just to rely on fentl() locking instead. However, you should
do this only if al user agents also use fentl() locking. For further discussion of locking issues, see
chapter 26.

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -0X option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option and the
exim_checkaccess utility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the run time configuration, all other
file and directory names that Exim uses can be altered, in order to keep it entirely clear of the
production version.

4.18 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’'s MTA is called by mail user agents is either /usr/shin/sendmail, or
/usr/lib/sendmail (depending on the operating system), and it is necessary to make this name point to
the exim binary in order to get the user agents to pass messages to Exim. This is hormally done by
renaming any existing file and making /usr/shin/sendmail or /usr/lib/sendmail a symbolic link to the
eximbinary. It isagood idea to remove any setuid privilege and executable status from the old MTA.
It isthen necessary to stop and restart the mailer daemon, if oneis running.

25 Building and installing Exim (4)

Some operating systems have introduced aternative ways of switching MTAs. For example, if you
are running FreeBSD, you need to edit the file /etc/mail/mailer.conf instead of setting up a symbolic
link as just described. A typical example of the contents of thisfile for running Exim is as follows:

sendmai | [usr/eximbin/exim
send- nmai | fusr/exin bin/exim

mai | g /usr/eximbin/exim-bp
newal i ases fusr/bin/true

Once you have set up the symbolic link, or edited /etc/mail/mailer.conf, your Exim instalation is
“live”. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document entitled Exim's interface
to mail filtering available to them.

4.19 Upgrading Exim

If you are aready running Exim on your host, building and installing a new version automatically
makes it available to MUAS, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-execute itself, and
thereby pick up the new binary. You do not need to stop processing mail in order to install a new
version of Exim. The install script does not modify an existing runtime configuration file.

4.20 Stopping the Exim daemon on Solaris

The standard command for stopping the mailer daemon on Solarisis

/etc/init.d/ sendmail stop

If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text “sendmail”; thisis not present because the actua
program name (that is, “exim”) is given by the ps command with these options. A solution is to
replace the line that finds the process id with something like

pi d="cat /var/spool/exi nl exi m daenon. pi d
to obtain the daemon'’s pid directly from the file that Exim savesit in.

Note, however, that stopping the daemon does not “stop Exim”. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

26 Building and installing Exim (4)

5. The Exim command line

Exim’'s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the name mailq, it behaves as if the option -bp were present before any other
options. The -bp option requests a listing of the contents of the mail queue on the standard output.
Thisfeatureisfor compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolically linked to /usr/shin/sendmail or /usr/lib/sendmail.

If Exim is called under the name rsmtp it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name rung it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue runner process to be
started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias
file. Exim does not have the concept of a single dlias file, but can be configured to run a given
command if called with the -bi option.

5.2 Trusted and admin users

Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases “ Exim user” and “Exim group” mean the user and group defined by
EXIM_USER and EXIM_GROUP in Local/Makefile or set by the exim_user and exim_group
options. These do not necessarily have to use the name “exim”.

» Thetrusted users are root, the Exim user, any user listed in the trusted_user s configuration option,
and any user whase current group or any supplementary group is one of those listed in the trusted_
groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use the -f option or a leading “From " line to specify the
envel ope sender of a message that is passed to Exim through the local interface (see the -bm and -f
options below). See the untrusted_set_sender option for away of permitting non-trusted users to
set envel ope senders.

For atrusted user, there is never any check on the contents of the From: header line, and a Sender:
line is never added. Furthermore, any existing Sender: line in incoming local (non-TCF/IP)
messages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol name, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’'s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstances use -f, but can never set the other values
that are available to trusted users.

» The admin users are root, the Exim user, and any user that is a member of the Exim group or of any
group listed in the admin_groups configuration option. The current group does not have to be one
of these groups.

Admin users are permitted to list the queue, and to carry out certain operations on messages, for

27 The Exim command line (5)

example, to force ddlivery failures. It is also necessary to be an admin user in order to see the full
information provided by the Exim monitor, and full debugging output.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the
prod_requires admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin users
unless queue list_requires admin is set false.

Warning: If you configure your system so that admin users are able to edit Exim's configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter 6.

5.3 Command line options

Exim’'s command line options are described in alphabetical order below. If none of the options that
specifies a specific action (such as starting the daemon or a queue runner, or testing an address, or
receiving a message in a specific format, or listing the queue) are present, and there is at least one
argument on the command line, -bm (accept a local message on the standard input, with the
arguments specifying the recipients) is assumed. Otherwise, Exim outputs a brief message about itself
and exits.

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they begin
with hyphens.

--help
This option causes Exim to output a few sentences stating what it is. The same output is generated
if the Exim binary is called with no options and no arguments.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores this
option.

-bd
This option runs Exim as a daemon, awaiting incoming SMTP connections. Usually the -bd
option is combined with the -q<time> option, to specify that the daemon should also initiate
periodic queue runs.

The -bd option can be used only by an admin user. If either of the -d (debugging) or -v (verifying)
options are set, the daemon does not disconnect from the controlling terminal. When running this
way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on al the host’s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only on
specific interfaces. Chapter 13 contains a description of the options that control this.

When alistening daemon is started without the use of -oX (that is, without overriding the normal
configuration), it writes its process id to afile called exim-daemon.pid in Exim’s spool directory.
This location can be overridden by setting PID_FILE_PATH in Local/Makefile. The fileiswritten
while Exim is till running as root.

When -0X is used on the command line to start alistening daemon, the processid is not written to
the normal pid file path. However, -oP can be used to specify a path on the command line if a pid
fileisrequired.

The SIGHUP signal can be used to cause the daemon to re-execute itself. This should be done
whenever Exim's configuration file, or any file that is incorporated into it by means of the
.include facility, is changed, and also whenever a new version of Exim is installed. It is not
necessary to do this when other files that are referenced from the configuration (for example, aias

28 The Exim command line (5)

files) are changed, because these are reread each time they are used.

-bdf
This option has the same effect as -bd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

-be
Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary users
from using this mode to read otherwise inaccessible files. If no arguments are given, Exim runs
interactively, prompting for lines of data. Otherwise, it processes each argument in turn.

If Exim was built with USE_READLINE=yes in Local/Makefile, it tries to load the libreadline
library dynamically whenever the -be option is used without command line arguments. If
successful, it uses the readling() function, which provides extensive line-editing facilities, for
reading the test data. A line history is supported.

Long expansion expressions can be split over several lines by using backslash continuations. As
in Exim’s run time configuration, white space at the start of continuation lines is ignored. Each
argument or data line is passed through the string expansion mechanism, and the result is output.
Variable values from the configuration file (for example, $qualify_domain) are available, but no
message-specific values (such as $sender_domain) are set, because no message is being processed
(but see -bem and -M set).

Note: If you use this mechanism to test lookups, and you change the data files or databases you
are using, you must exit and restart Exim before trying the same lookup again. Otherwise, because
each Exim process caches the results of lookups, you will just get the same result as before.

-bem <filename>
This option operates like -be except that it must be followed by the name of afile. For example:

exi m-bem /tnp/testnessage

Thefile is read as a message (as if receiving a locally-submitted non-SMTP message) before any
of the test expansions are done. Thus, message-specific variables such as $message size and
$header_from: are available. However, no Received: header is added to the message. If the -t
option is set, recipients are read from the headers in the normal way, and are shown in the
$recipients variable. Note that recipients cannot be given on the command line, because further
arguments are taken as strings to expand (just like -be).

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system filter.
The additional commands that are available only in system filters are recognized.

-bf <filename>
This option runs Exim in user filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in the
filter, an empty file can be supplied.

If you want to test a system filter file, use -bF instead of -bf. Y ou can use both -bF and -bf on the
same command, in order to test a system filter and a user filter in the same run. For example:

exim-bF /system filter -bf /user/filter </test/nessage

Thisis helpful when the system filter adds header lines or sets filter variables that are used by the
user filter.

If the test filter file does not begin with one of the special lines

Eximfilter
Sieve filter

it is taken to be a normal .forward file, and is tested for validity under that interpretation. See
sections 22.4 to 22.6 for a description of the possible contents of non-filter redirection lists.

The result of an Exim command that uses -bf, provided no errors are detected, is a list of the

29 The Exim command line (5)

actions that Exim would try to take if presented with the message for real. More details of filter
testing are given in the separate document entitled Exim' s interfaces to mail filtering.

When testing afilter file, the envelope sender can be set by the -f option, or by a“From ” line at
the start of the test message. Various parameters that would normally be taken from the envelope
recipient address of the message can be set by means of additional command line options (see the
next four options).

-bfd <domain>
This sets the domain of the recipient address when afilter file is being tested by means of the -bf
option. The default is the value of $qualify_domain.

-bfl <local part>
This sets the local part of the recipient address when afilter file is being tested by means of the
-bf option. The default is the username of the process that calls Exim. A local part should be
specified with any prefix or suffix stripped, because that is how it appears to the filter when a
message is actually being delivered.

-bfp <prefix>
This sets the prefix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty prefix.

-bfs <suffix>
This sets the suffix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty suffix.

-bh <IP address>
This option runs a fake SMTP session as if from the given IP address, using the standard input
and output. The IP address may include a port number at the end, after afull stop. For example:

exim-bh 10.9.8.7.1234
exim-bh fe80::a00: 20ff: fe86: a061. 5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value of $sender_host_address after conversion to the canonical form is
f e80: 0000: 0000: 0a00: 20ff: f e86: a061. 5678.

Comments as to what is going on are written to the standard error file. These include lines
beginning with “LOG” for anything that would have been logged. This facility is provided for
testing configuration options for incoming messages, to make sure they implement the required
policy. For example, you can test your relay controls using -bh.

Warning 1: You can test features of the configuration that rely on ident (RFC 1413) information
by using the -oMt option. However, Exim cannot actually perform an ident callout when testing
using -bh because there is no incoming SMTP connection.

Warning 2: Address verification callouts (see section 40.34) are aso skipped when testing using
-bh. If you want these callouts to occur, use -bhc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of the
rea log files. There may be pauses when DNS (and other) lookups are taking place, and of course
these may time out. The -oMi option can be used to specify a specific IP interface and port if this
is important, and -oMaa and -oMai can be used to set parameters as if the SMTP session were
authenticated.

The exim_checkaccess utility is a “packaged” version of -bh whose output just states whether a
given recipient address from a given host is acceptable or not. See section 50.8.

Features such as authentication and encryption, where the client input is not plain text, are most
easily tested using specidized SMTP test programs such as swaks
[http://jetmor e.or g/john/code/#swaks].

-bhc <IP address>
This option operates in the same way as -bh, except that address verification callouts are

30 The Exim command line (5)

http://jetmore.org/john/code/#swaks
http://jetmore.org/john/code/#swaks

-bi

performed if required. Thisincludes consulting and updating the callout cache database.

Sendmail interprets the -bi option as a request to rebuild its alias file. Exim does not have the
concept of a single aias file, and so it cannot mimic this behaviour. However, cals to
Jusr/lib/sendmail with the -bi option tend to appear in various scripts such as NIS make files, so
the option must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -0A option is used, its value is passed to the
command as an argument. The command set by bi_command may not contain arguments. The
command can use the exim_dbmbuild utility, or some other means, to rebuild aias files if thisis
required. If the bi_command option is not set, calling Exim with -bi is a no-op.

-bm

This option runs an Exim receiving process that accepts an incoming, locally-generated message
on the current input. The recipients are given as the command arguments (except when -t is also
present — see below). Each argument can be a comma-separated list of RFC 2822 addresses. This
is the default option for selecting the overall action of an Exim call; it is assumed if no other
conflicting option is present.

If any addresses in the message are unqualified (have no domain), they are qualified by the values
of the qualify_domain or qualify_recipient options, as appropriate. The -bnq option (see below)
provides away of suppressing thisfor special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP
ACL. See chapter 40 for details.

Thereturn codeis zero if the message is successfully accepted. Otherwise, the action is controlled
by the -oex option setting — see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility with
Sendmail and Smail, alinein one of the forms

From sender Fri Jan 5 12:55 GVI 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to appear
at the start of the message. There appears to be no authoritative specification of the format of this
line. Exim recognizes it by matching against the regular expression defined by the uucp_from_
patter n option, which can be changed if necessary.

The specified sender is treated as if it were given as the argument to the -f option, but if a -f
option is aso present, its argument is used in preference to the address taken from the message.
The caller of Exim must be a trusted user for the sender of a message to be set in thisway.

-bng

-bP

By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification applies
both to addresses in envelopes, and addresses in header lines. Sender addresses are qualified using
qualify_domain, and recipient addresses using qualify_recipient (which defaults to the value of
qualify_domain).

Sometimes, qualification is not wanted. For example, if -bS (batch SMTP) is being used to
re-submit messages that originally came from remote hosts after content scanning, you probably
do not want to qualify unqualified addresses in header lines. (Such lines will be present only if
you have not enabled a header syntax check in the appropriate ACL.)

The -bng option suppresses all qualification of unqualified addresses in messages that originate
on the local host. When this is used, unqualified addresses in the envelope provoke errors
(causing message rejection) and unqualified addresses in header lines are | ft alone.

If this option is given with no arguments, it causes the values of all Exim’s main configuration

31 The Exim command line (5)

options to be written to the standard output. The values of one or more specific options can be
requested by giving their names as arguments, for example:

exim -bP qualify_donain hol d_donai ns

However, any option setting that is preceded by the word “hide” in the configuration file is not
shown in full, except to an admin user. For other users, the output is asin this example:

mysqgl _servers = <val ue not di spl ayabl e>

If configure_fileis given as an argument, the name of the run time configuration file is output. If
alist of configuration files was supplied, the value that is output here is the name of the file that
was actually used.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are written
in a sub-directory of the spool directory called log, and the pid file is written directly into the
spool directory.

If -bP isfollowed by a name preceded by +, for example,

exi m -bP +l ocal domai ns

it searches for a matching named list of any type (domain, host, address, or local part) and outputs
what it finds.

If one of the words router, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim-bP transport |ocal _delivery

The generic driver options are output first, followed by the driver’s private options. A list of the
names of drivers of a particular type can be obtained by using one of the words router_list,
transport_list, or authenticator_list, and a complete list of all drivers with their option settings
can be obtained by using routers, transports, or authenticators.

_bp
This option requests a listing of the contents of the mail queue on the standard output. If the -bp
option is followed by alist of message ids, just those messages are listed. By default, this option
can be used only by an admin user. However, the queue list_requires_admin option can be set
false to allow any user to see the queue.

Each message on the queue is displayed asin the following example:

25m 2. 9K 0t 5C6f - 0000c8- 00 <al i ce@wonderl and. fict. exanpl e>
red. ki ng@ ooki ng-gl ass. fict.exanple
<ot her addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is empty,
and appears as “<>". If the message was submitted locally by an untrusted user who overrode the
default sender address, the user’ s login name is shown in parentheses before the sender address.

If the message is frozen (attempts to deliver it are suspended) then the text “*** frozen ***” is
displayed at the end of thisline.

The recipients of the message (taken from the envelope, not the headers) are displayed on
subsequent lines. Those addresses to which the message has aready been delivered are marked
with the letter D. If an original address gets expanded into several addresses via an dlias or
forward file, the original is displayed with a D only when deliveries for all of its child addresses
are complete.

-bpa
This option operates like -bp, but in addition it shows delivered addresses that were generated

32 The Exim command line (5)

from the original top level address(es) in each message by alias or forwarding operations. These
addresses are flagged with “+D” instead of just “D”.

-bpc
This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue _list_requires admin is set false.

-bpr
This option operates like -bp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in away that doesn’t need the sorting.

-bpra
This option is a combination of -bpr and -bpa.

-bpru
This option is a combination of -bpr and -bpu.

-bpu
This option operates like -bp but shows only undelivered top-level addresses for each message
displayed. Addresses generated by aliasing or forwarding are not shown, unless the message was
deferred after processing by arouter with the one_time option set.

-brt
This option is for testing retry rules, and it must be followed by up to three arguments. It causes
Exim to look for aretry rule that matches the values and to write it to the standard output. For
example:

exim-brt bach. conp. nus. exanpl e
Retry rule: *.conp.nus.exanple F,2h,15m F, 4d, 30m

See chapter 32 for a description of Exim’s retry rules. The first argument, which is required, can
be a complete address in the form local_part@domain, or it can be just a domain name. If the
second argument contains a dat, it is interpreted as an optional second domain name; if no retry
rule is found for the first argument, the second is tried. This ties in with Exim’s behaviour when
looking for retry rules for remote hosts — if no rule is found that matches the host, one that
matches the mail domain is sought. Finaly, an argument that is the name of a specific delivery
error, as used in setting up retry rules, can be given. For example:

exi m-brt haydn. conp. nus. exanpl e quot a_3d
Retry rule: *@aydn.conp. nus. exanpl e quota_3d F, 1h, 15m

-brw
This option is for testing address rewriting rules, and it must be followed by a single argument,
consisting of either a local part without a domain, or a complete address with a fully qualified
domain. Exim outputs how this address would be rewritten for each possible place it might
appear. See chapter 31 for further details.

-bS
This option is used for batched SMTP input, which is an alternative interface for non-interactive
local message submission. A number of messages can be submitted in a single run. However,
despite its name, thisis not really SMTP input. Exim reads each message’ s envelope from SMTP
commands on the standard input, but generates no responses. If the caller is trusted, or
untrusted_set_sender is set, the senders in the SMTP MAIL commands are believed; otherwise
the sender is always the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can be
checked using the non-SMTP ACL (see chapter 40). Unqualified addresses are automatically
qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

33 The Exim command line (5)

-bs

-bt

-bVv

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QUIT quits, ignoring the rest of the standard input.

If any error is encountered, reports are written to the standard output and error streams, and Exim
gives up immediately. The return code is O if no error was detected; it is 1 if one or more
messages were accepted before the error was detected; otherwiseit is 2.

More details of input using batched SMTP are given in section 45.11.

This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chapter 40) are applied. Some user agents use this interface as a way of
passing locally-generated messagesto the MTA.

In this usage, if the caller of Exim is trusted, or untrusted_set_sender is set, the senders of
messages are taken from the SMTP MAIL commands. Otherwise the content of these commands
is ignored and the sender is set up as the calling user. Unqualified addresses are automatically
gualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

The -bs option is also used to run Exim from inetd, as an alternative to using a listening daemon.
Exim can distinguish the two cases by checking whether the standard input is a TCP/IP socket.
When Exim is caled from inetd, the source of the mail is assumed to be remote, and the
comments above concerning senders and qualification do not apply. In this situation, Exim
behaves in exactly the same way as it does when receiving a message via the listening daemon.

This option runs Exim in address testing mode, in which each argument is taken as an address to
be tested for deliverability. The results are written to the standard output. If a test fails, and the
caler is not an admin user, no details of the failure are output, because these might contain
sensitive information such as usernames and passwords for database |ookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it
isrunning as root and there are security iSsues.

Each addressis handled as if it were the recipient address of a message (compare the -bv option).
It is passed to the routers and the result is written to the standard output. However, any router that
has no_address test set is bypassed. This can make -bt easier to use for genuine routing tests if
your first router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code O is given only when all addresses
succeed.

Note: When actually delivering a message, Exim removes duplicate recipient addresses after
routing is complete, so that only one delivery takes place. This does not happen when testing with
-bt; the full results of routing are always shown.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration
makes any tests on the sender address of a message, you can use the -f option to set an appropriate
sender when running -bt tests. Without it, the sender is assumed to be the calling user at the
default qualifying domain. However, if you have set up (for example) routers whose behaviour
depends on the contents of an incoming message, you cannot test those conditions using -bt. The
-N option provides a possible way of doing such tests.

This option causes Exim to write the current version number, compilation number, and
compilation date of the exim binary to the standard output. It also lists the DBM library this is
being used, the optional modules (such as specific lookup types), the drivers that are included in

34 The Exim command line (5)

the binary, and the name of the run time configuration file that isin use.

As part of its operation, -bV causes Exim to read and syntax check its configuration file.
However, thisis a static check only. It cannot check values that are to be expanded. For example,
although amisspelt ACL verb is detected, an error in the verb’s argumentsis not. Y ou cannot rely
on -bV aone to discover (for example) all the typos in the configuration; some realistic testing is
needed. The -bh and -N options provide more dynamic testing facilities.

-bv
This option runs Exim in address verification mode, in which each argument is taken as an
address to be verified by the routers. (This does not involve any verification callouts). During
normal operation, verification happens mostly as a consegquence processing a verify condition in
an ACL (see chapter 40). If you want to test an entire ACL, possibly including calouts, see the
-bh and -bhc options.

If verification fails, and the caler is not an admin user, no details of the failure are output,
because these might contain sensitive information such as usernames and passwords for database
lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified.

Unlike the -be test option, you cannot arrange for Exim to use the readling() function, because it
isrunning as exim and there are security issues.

Verification differs from address testing (the -bt option) in that routers that have no_verify set are
skipped, and if the address is accepted by a router that has fail_verify set, verification fails. The
address is verified as a recipient if -bv is used; to test verification for a sender address, -bvs
should be used.

If the -v option is not set, the output consists of a single line for each address, stating whether it
was verified or not, and giving a reason in the latter case. Without -v, generating more than one
address by redirection causes verification to end successfully, without considering the generated
addresses. However, if just one address is generated, processing continues, and the generated
address must verify successfully for the overall verification to succeed.

When -v is set, more details are given of how the address has been handled, and in the case of
address redirection, all the generated addresses are also considered. Verification may succeed for
some and fail for others.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

If any of the routers in the configuration makes any tests on the sender address of a message, you
should use the -f option to set an appropriate sender when running -bv tests. Without it, the sender
is assumed to be the calling user at the default qualifying domain.

-bvs
This option acts like -bv, but verifies the address as a sender rather than a recipient address. This
affects any rewriting and qualification that might happen.

-C <filelist>
This option causes Exim to find the run time configuration file from the given list instead of from
the list specified by the CONFIGURE_FILE compile-time setting. Usualy, the list will consist of
just asingle file name, but it can be a colon-separated list of names. In this case, the first file that
exists is used. Failure to open an existing file stops Exim from proceeding any further along the
list, and an error is generated.

When this option is used by a caller other than root or the Exim user, and the list is different from
the compiled-in list, Exim gives up its root privilege immediately, and runs with the real and
effective uid and gid set to those of the caller. However, if ALT_CONFIG_ROOT_ONLY is
defined in Local/Makefile, root privilege is retained for -C only if the caller of Exim isroot.

35 The Exim command line (5)

That is, the Exim user is no longer privileged in this regard. This build-time option is not set by
default in the Exim source distribution tarbundle. However, if you are using a “ packaged” version
of Exim (source or binary), the packagers might have enabled it.

Setting ALT_CONFIG_ROOT_ONLY locks out the possibility of testing a configuration using
-C right through message reception and delivery, even if the caller is root. The reception works,
but by that time, Exim is running as the Exim user, so when it re-executes to regain privilege for
the delivery, the use of -C causes privilege to be lost. However, root can test reception and
delivery using two separate commands (one to put a message on the queue, using -odq, and
another to do the delivery, using -M).

If ALT_CONFIG_PREFIX is defined in Local/Makefile, it specifies a prefix string with which
any file named in a-C command line option must start. In addition, the file name must not contain
the sequence /.. /. However, if the value of the -C option is identical to the value of
CONFIGURE_FILE in Local/Makefile, Exim ignores -C and proceeds as usual. There is no
default setting for ALT_CONFIG_PREFIX; when it isunset, any file name can be used with -C.

ALT_CONFIG_PREFIX can be used to confine alternative configuration files to a directory to
which only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The -C facility is useful for ensuring that configuration files are syntactically correct, but cannot
be used for test deliveries, unless the caler is privileged, or unless it is an exotic configuration
that does not require privilege. No check is made on the owner or group of the files specified by
this option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section 6.4).
However, like -C, if it is used by an unprivileged caler, it causes Exim to give up its root
privilege. If DISABLE_D_OPTION is defined in Local/Makefile, the use of -D is completely
disabled, and its use causes an immediate error exit.

The entire option (including equals sign if present) must all be within one command line item. -D
can be used to set the value of a macro to the empty string, in which case the equals sign is
optional. These two commands are synonymous:

exim-DABC ...
exim-DABC= ...

To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces are
permitted around the macro name and the equals sign. For example:

exim'-D ABC = sonet hi ng'
-D may be repeated up to 10 times on a command line.

-d<debug options>
This option causes debugging information to be written to the standard error stream. It is
restricted to admin users because debugging output may show database queries that contain
password information. Also, the details of users filter files should be protected. If a non-admin
user uses -d, Exim writes an error message to the standard error stream and exits with a non-zero
return code.

When -d is used, -v is assumed. If -d is given on its own, a lot of standard debugging data is
output. This can be reduced, or increased to include some more rarely needed information, by
directly following -d with a string made up of names preceded by plus or minus characters. These
add or remove sets of debugging data, respectively. For example, -d+filter adds filter debugging,
whereas -d-all+filter selects only filter debugging. Note that no spaces are allowed in the debug
setting. The available debugging categories are:

acl ACL interpretation
aut h authenticators
del i ver general delivery logic

36 The Exim command line (5)

dns DNS lookups (see also resolver)

dnsbl DNS black list (aka RBL) code

exec arguments for execv() cals

expand detailed debugging for string expansions
filter filter handling

hi nt s_I ookup hints data |ookups

host | ookup al types of name-to-IP address handling

i dent ident lookup

interface lists of local interfaces

lists matching thingsin lists

| oad system load checks

| ocal _scan can be used by local_scan() (see chapter 42)
| ookup general lookup code and all lookups
menory memory handling

pid add pid to debug output lines
process_info setting info for the process log
gueue_run queue runs

receive general message reception logic

resol ver turn on the DNS resolver’ s debugging output
retry retry handling

rewite address rewriting

route address routing

ti mestanp add timestamp to debug output lines

tls TLSlogic

transport transports

uid changes of uid/gid and looking up uid/gid
verify address verification logic

al | almost al of the above (see below), and also -v

Theal | option excludes menory when used as +al | , but includes it for - al | . The reason for
this is that +al | is something that people tend to use when generating debug output for Exim
maintainers. If +nenory is included, an awful lot of output that is very rarely of interest is
generated, so it now hasto be explicitly requested. However, - al | doesturn everything off.

The r esol ver option produces output only if the DNS resolver was compiled with DEBUG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging output
from the DNS resolver is written to stdout rather than stderr.

The default (-d with no argument) omits expand, filter, i nterface, | oad, nenory,
pi d, resol ver, and ti mest anp. However, the pi d selector is forced when debugging is
turned on for a daemon, which then passes it on to any re-executed Exims. Exim also
automatically adds the pid to debug lines when severa remote deliveriesare run in parallel.

Theti mest anp selector causes the current time to be inserted at the start of all debug output
lines. This can be useful when trying to track down delays in processing.

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or if -v isused.

-dd<debug options>
This option behaves exactly like -d except when used on a command that starts a daemon process.
In that case, debugging is turned off for the subprocesses that the daemon creates. Thus, it is
useful for monitoring the behaviour of the daemon without creating as much output as full
debugging does.

-dropcr
Thisis an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described in section 44.2.

-E
This option specifies that an incoming message is a locally-generated delivery failure report. It is
used internally by Exim when handling delivery failures and is not intended for external use. Its

37 The Exim command line (5)

-ex

only effect is to stop Exim generating certain messages to the postmaster, as otherwise message
cascades could occur in some situations. As part of the same option, a message id may follow the
characters -E. If it does, the log entry for the receipt of the new message contains the id, following
“R=", as across-reference.

There are a number of Sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -eq. Exim
treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>

This option sets the sender’s full name for use when a locally-generated message is being
accepted. In the absence of this option, the user’s gecos entry from the password datais used. As
users are generally permitted to alter their gecos entries, no security considerations are involved.
White space between -F and the <string> is optional.

-f <address>

-G

This option sets the address of the envelope sender of alocally-generated message (also known as
the return path). The option can normally be used only by a trusted user, but untrusted set
sender can be set to alow untrusted usersto useiit.

Processes running as root or the Exim user are always trusted. Other trusted users are defined by
the trusted_users or trusted_groups options. In the absence of -f, or if the caller is not trusted,
the sender of alocal message is set to the caller’ slogin name at the default qualify domain.

There is one exception to the restriction on the use of -f: an empty sender can be specified by any
user, trusted or nat, to create a message that can never provoke a bounce. An empty sender can be
specified either as an empty string, or as a pair of angle brackets with nothing between them, asin
these examples of shell commands:

exim-f '<>' user @omain
exim-f "" user @omain

In addition, the use of -f is not restricted when testing a filter file with -bf or when testing or
verifying addresses using the -bt or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to send
anonymous mail. Exim gtill checks that the From: header refers to the local user, and if it does
not, it adds a Sender: header, though this can be overridden by setting no_local_from_check.

White space between -f and the <address> is optional (that is, they can be given as two arguments
or one combined argument). The sender of a locally-generated message can aso be set (when
permitted) by an initial “From ” line in the message — see the description of -bm above — but if -f
isalso present, it overrides“From”.

Thisis a Sendmail option which isignored by Exim.

-h <number>

This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it
overrides the “hop count” obtained by counting Received: headers.)

This option, which has the same effect as -0i, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. | can find no documentation for this option in Solaris
2.4 Sendmail, but the mailx command in Solaris 2.4 usesit. See also -ti.

-M <message id> <messageid> ...

This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings of
gueue_domains, queue_smtp_domains, and hold_domains are ignored.

Retry hints for any of the addresses are overridden — Exim tries to deliver even if the normal retry
time has not yet been reached. This option requires the caller to be an admin user. However, there

38 The Exim command line (5)

is an option called prod_requires_admin which can be set false to relax this restriction (and also
the same requirement for the -q, -R, and -S options).

The deliveries happen synchronously, that is, the original Exim process does not terminate until
al the delivery attempts have finished. No output is produced unless there is a serious error. If
you want to see what is happening, use the -v option as well, or inspect Exim’s main log.

-Mar <message id> <address> <address> ...
This option requests Exim to add the addresses to the list of recipients of the message (“ar” for
“add recipients’). The first argument must be a message id, and the remaining ones must be email
addresses. However, if the message is active (in the middle of a delivery attempt), it is not altered.
This option can be used only by an admin user.

-MC <transport> <hostname> <sequence number> <message id>
This option is not intended for use by externa callers. It is used internally by Exim to invoke
another instance of itself to deliver awaiting message using an existing SM TP connection, which
is passed as the standard input. Details are given in chapter 45. This must be the final option, and
the caller must be root or the Exim user in order to useiit.

-MCA
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option. It signifies that the connection to the remote host has been authenticated.

-MCP
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option. It signifies that the server to which Exim is connected supports pipelining.

-M CQ <processid> <pipe fd>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option when the original delivery was started by a queue runner. It passes on the
process id of the queue runner, together with the file descriptor number of an open pipe. Closure
of the pipe signals the final completion of the sequence of processes that are passing messages
through the same SM TP connection.

-MCS
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the SMTP SIZE option should be used on
messages delivered down the existing connection.

-MCT
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option, and passes on the fact that the host to which Exim is connected supports
TLS encryption.

-Mc <message id> <messageid> ...

This option requests Exim to run a delivery attempt on each message in turn, but unlike the -M
option, it does check for retry hints, and respects any that are found. This option is not very useful
to external callers. It is provided mainly for internal use by Exim when it needs to re-invoke itself
in order to regain root privilege for adelivery (see chapter 52). However, -M ¢ can be useful when
testing, in order to run a delivery that respects retry times and other options such as hold_
domains that are overridden when -M is used. Such a delivery does not count as a queue run. If
you want to run a specific delivery as if in a queue run, you should use -q with a message id
argument. A distinction between queue run deliveries and other deliveries is made in one or two
places.

-Mes <message id> <address>
This option requests Exim to change the sender address in the message to the given address,
which must be a fully qualified address or “<>" (“es’ for “edit sender”). There must be exactly
two arguments. The first argument must be a message id, and the second one an email address.
However, if the message is active (in the middie of a delivery attempt), its status is not altered.
This option can be used only by an admin user.

-Mf <message id> <messageid> ...

39 The Exim command line (5)

This option requests Exim to mark each listed message as “frozen”. This prevents any delivery
attempts taking place until the message is “thawed”, either manually or as a result of the auto
thaw configuration option. However, if any of the messages are active (in the middle of adelivery
attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message id> <messageid> ...

This option requests Exim to give up trying to deliver the listed messages, including any that are
frozen. However, if any of the messages are active, their status is not atered. For non-bounce
messages, a delivery error message is sent to the sender, containing the text “cancelled by
administrator”. Bounce messages are just discarded. This option can be used only by an admin
user.

-Mmad <message id> <messageid> ...

This option requests Exim to mark all the recipient addresses in the messages as already delivered
(“mad” for “mark all delivered”). However, if any message is active (in the middle of a delivery
attempt), its statusis not altered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...

This option requests Exim to mark the given addresses as aready delivered (“md” for “mark
delivered”). The first argument must be a message id, and the remaining ones must be email
addresses. These are matched to recipient addresses in the message in a case-sensitive manner. If
the message is active (in the middle of a delivery attempt), its statusis not atered. This option can
be used only by an admin user.

-Mrm <message id> <messageid> ...

This option requests Exim to remove the given messages from the queue. No bounce messages
are sent; each message is simply forgotten. However, if any of the messages are active, their
status is not altered. This option can be used only by an admin user or by the user who originally
caused the message to be placed on the queue.

-Mset <message id>

This option is useful only in conjunction with -be (that is, when testing string expansions). Exim
loads the given message from its spool before doing the test expansions, thus setting
message-specific variables such as $message_size and the header variables. The $recipients
variable is made available. This feature is provided to make it easier to test expansions that make
use of these variables. However, this option can be used only by an admin user. See aso -bem.

-Mt <message id> <messageid> ...

This option requests Exim to “thaw” any of the listed messages that are “frozen”, so that delivery
attempts can resume. However, if any of the messages are active, their status is not altered. This
option can be used only by an admin user.

-Mvb <message id>

This option causes the contents of the message body (-D) spoal file to be written to the standard
output. This option can be used only by an admin user.

-Mvh <message id>

This option causes the contents of the message headers (-H) spool file to be written to the
standard output. This option can be used only by an admin user.

-Mvl <message id>

This option causes the contents of the message log spool file to be written to the standard output.
This option can be used only by an admin user.

Thisis apparently a synonym for -om that is accepted by Sendmail, so Exim treatsit that way too.

Thisis a debugging option that inhibits delivery of a message at the transport level. It implies -v.
Exim goes through many of the motions of delivery — it just doesn’t actually transport the
message, but instead behaves as if it had successfully done so. However, it does not make any
updates to the retry database, and the log entries for deliveries are flagged with “*>" rather than
13 :>l1.

40 The Exim command line (5)

Because -N discards any message to which it applies, only root or the Exim user are allowed to
use it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when supplying an
incoming message to which it will apply. Although transportation never fails when -N is set, an
address may be deferred because of a configuration problem on a transport, or a routing problem.
Once -N has been used for a delivery attempt, it sticks to the message, and applies to any
subsequent delivery attempts that may happen for that message.

This option isinterpreted by Sendmail to mean “no aliasing”. It isignored by Exim.

-O <data>
This option isinterpreted by Sendmail to meanset opti on. Itisignored by Exim.

-0A <file name>
This option is used by Sendmail in conjunction with -bi to specify an alternative alias file name.
Exim handles -bi differently; see the description above.

-0B <n>
This is a debugging option which limits the maximum number of messages that can be delivered
down one SMTP connection, overriding the value set in any smtp transport. If <n> is omitted, the
limitissetto 1.

-odb
This option applies to al modes in which Exim accepts incoming messages, including the
listening daemon. It requests “background” delivery of such messages, which means that the
accepting process automatically starts a delivery process for each message received, but does not
wait for the delivery processes to finish.

When al the messages have been received, the reception process exits, leaving the delivery
processes to finish in their own time. The standard output and error streams are closed at the start
of each delivery process. Thisisthe default action if none of the -od options are present.

If one of the queueing options in the configuration file (queue_only or queue_only_file, for
example) isin effect, -odb overrides it if queue _only override is set true, which is the default
setting. If queue_only_overrideis set false, -odb has no effect.

-odf
This option requests “foreground” (synchronous) delivery when Exim has accepted a
locally-generated message. (For the daemon it is exactly the same as -odb.) A delivery processis
automatically started to deliver the message, and Exim waits for it to complete before proceeding.

The original Exim reception process does not finish until the delivery process for the final
message has ended. The standard error stream is |eft open during deliveries.

However, like -odb, this option has no effect if queue _only override is false and one of the
gueueing options in the configuration fileisin effect.

If there is atemporary delivery error during foreground delivery, the message is left on the queue
for later delivery, and the original reception process exits. See chapter 48 for away of setting up a
restricted configuration that never queues messages.

-odi
This option is synonymous with -odf. It is provided for compatibility with Sendmail.

-odqg
This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It specifies that the accepting process should not automatically start a delivery
process for each message received. Messages are placed on the queue, and remain there until a
subsequent queue runner process encounters them. There are several configuration options (such
as queue_only) that can be used to queue incoming messages under certain conditions. This
option overrides al of them and also -odgs. It aways forces queueing.

-odgs

41 The Exim command line (5)

This option is a hybrid between -odb/-odi and -odg. However, like -odb and -odi, this option has
no effect if queue_only_override is false and one of the queueing options in the configuration
fileisin effect.

When -odgs does operate, a delivery process is started for each incoming message, in the
background by default, but in the foreground if -odi is also present. The recipient addresses are
routed, and local deliveries are done in the normal way. However, if any SMTP deliveries are
required, they are not done at this time, so the message remains on the queue until a subsequent
gueue runner process encounters it. Because routing was done, Exim knows which messages are
waiting for which hosts, and so a number of messages for the same host can be sent in a single
SMTP connection. The queue_smtp_domains configuration option has the same effect for
specific domains. See also the -qq option.

-oee
If an error is detected while a non-SMTP message is being received (for example, a malformed
address), the error isreported to the sender in amail message.

Provided this error message is successfully sent, the Exim receiving process exits with a return
code of zero. If not, the return code is 2 if the problem is that the original message has no
recipients, or 1 any other error. Thisisthe default -oex option if Eximis called asrmail.

-oem
This is the same as -oee, except that Exim always exits with a non-zero return code, whether or
not the error message was successfully sent. This is the default -oex option, unless Exim is called
asrmail.

_Oep
If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). Thereturn codeis 1 for al errors.

_Ow
This option is supported for compatibility with Sendmail, but has the same effect as -oep.

-oew
This option is supported for compatibility with Sendmail, but has the same effect as -oem.

-Oi
This option, which has the same effect as -i, specifies that a dot on a line by itself should not
terminate an incoming, non-SM TP message. Otherwise, a single dot does terminate, though Exim
does no special processing for other lines that start with adot. This option is set by default if Exim
iscalled asrmail. See also -ti.

-oitrue
This option is treated as synonymous with -oi.

-oMa <host address>

A number of options starting with -oM can be used to set values associated with remote hosts on
locally-submitted messages (that is, messages not received over TCP/IP). These options can be
used by any caller in conjunction with the -bh, -be, -bf, -bF, -bt, or -bv testing options. In other
circumstances, they are ignored unless the caller is trusted.

The -oM a option sets the sender host address. This may include a port number at the end, after a
full stop (period). For example:

exim-bs -oMa 10.9.8.7.1234

An alternative syntax is to enclose the | P address in square brackets, followed by a colon and the
port number:

exim-bs -oMva [10.9.8.7]:1234

The IP address is placed in the $sender_host_address variable, and the port, if present, in
$sender_host_port. If both -oMa and -bh are present on the command line, the sender host IP
address is taken from whichever oneislast.

42 The Exim command line (5)

-oM aa <name>
See -oM a above for general remarks about the -oM options. The -oM aa option sets the value of
$sender_host_authenticated (the authenticator name). See chapter 33 for a discussion of SMTP
authentication. This option can be used with -bh and -bs to set up an authenticated SMTP session
without actually using the SMTP AUTH command.

-oMai <string>
See -oM a above for general remarks about the -oM options. The -oMai option sets the value of
$authenticated _id (the id that was authenticated). This overrides the default value (the caler's
login id, except with -bh, where there is no default) for messages from local sources. See chapter
33 for adiscussion of authenticated ids.

-oM as <address>
See -oMa above for general remarks about the -oM options. The -oMas option sets the
authenticated sender value in $authenticated_ sender. It overrides the sender address that is
created from the caller’s login id for messages from local sources, except when -bh is used, when
there is no default. For both -bh and -bs, an authenticated sender that is specified on a MAIL
command overrides this value. See chapter 33 for a discussion of authenticated senders.

-oMi <interface address>

See -oM a above for general remarks about the -oM options. The -oMi option sets the IP interface
address value. A port number may be included, using the same syntax as for -oMa. The interface
addressis placed in $received_ip_address and the port number, if present, in $received_port.

-oMr <protocol name>
See -oM a above for general remarks about the -oM options. The -oMr option sets the received
protocol value that is stored in $received_protocol. However, it does not apply (and is ignored)
when -bh or -bs is used. For -bh, the protocol is forced to one of the standard SMTP protocol
names (see the description of $received protocol in section 11.9). For -bs, the protocol is always
“local-" followed by one of those same names. For -bS (batched SMTP) however, the protocol
can be set by -oMr.

-0M s <host name>
See -oM a above for general remarks about the -oM options. The -oM s option sets the sender host
name in $sender_host_name. When this option is present, Exim does not attempt to look up a host
name from an | P address; it uses the nameit is given.

-oMt <ident string>
See -oMa above for genera remarks about the -oM options. The -oMt option sets the sender
ident value in $sender_ident. The default setting for local callers is the login id of the calling
process, except when -bh is used, when there is no default.

-om
In Sendmail, this option means “me too”, indicating that the sender of a message should receive a
copy of the message if the sender appears in an alias expansion. Exim aways does this, so the
option does nothing.

-00
Thisoption isignored. In Sendmail it specifies “old style headers’, whatever that means.

-oP <path>
This option is useful only in conjunction with -bd or -q with a time value. The option specifies
the file to which the process id of the daemon is written. When -oX is used with -bd, or when -q
with a time is used without -bd, this is the only way of causing Exim to write a pid file, because
in those cases, the normal pid file is not used.

-or <time>
This option sets atimeout value for incoming non-SMTP messages. If it is not set, Exim will wait
forever for the standard input. The value can also be set by the receive_timeout option. The
format used for specifying times is described in section 6.15.

-0s <time>

43 The Exim command line (5)

This option sets a timeout value for incoming SMTP messages. The timeout applies to each
SMTP command and block of data. The value can aso be set by the smtp_receive timeout
option; it defaults to 5 minutes. The format used for specifying timesis described in section 6.15.

-ov
This option has exactly the same effect as -v.

-0X <number or string>
This option is relevant only when the -bd (start listening daemon) option is also given. It controls
which ports and interfaces the daemon uses. Details of the syntax, and how it interacts with
configuration file options, are given in chapter 13. When -0X is used to start a daemon, no pid file
iswritten unless -oP is also present to specify a pid file name.

-pd
This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12). It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

_ps
This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12). It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to occur as
soon as Exim is started.

-p<rval>:<sval>
For compatibility with Sendmail, this option is equivalent to

- oM <rval> - oMs <sval>

It sets the incoming protocol and host name (for trusted callers). The host name and its colon can
be omitted when only the protocol isto be set. Note the Exim aready has two private options, -pd
and -ps, that refer to embedded Perl. It is therefore impossible to set a protocol value of p or s
using this option (but that does not seem areal limitation).

This option is normally restricted to admin users. However, there is a configuration option called
prod_requires_admin which can be set fase to relax this restriction (and also the same
requirement for the -M, -R, and -S options).

The -q option starts one queue runner process. This scans the queue of waiting messages, and runs
adelivery process for each one in turn. It waits for each delivery process to finish before starting
the next one. A delivery process may not actually do any deliveries if the retry times for the
addresses have not been reached. Use -qf (see below) if you want to override this.

If the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue runner process
terminates. In other words, a single pass is made over the waiting mail, one message at a time.
Use -q with atime (see below) if you want thisto be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn’'t very random, but it is
likely to be different each time, which is al that matters. If one particular message screws up a
remote MTA, other messages to the same MTA have a chance of getting through if they get tried
first.

It is possible to cause the messages to be processed in lexical message id order, which is
essentially the order in which they arrived, by setting the queue run_in_order option, but thisis
not recommended for normal use.

-g<gflags>
The -q option may be followed by one or more flag letters that change its behaviour. They are all
optional, but if more than one is present, they must appear in the correct order. Each flag is
described in a separate item below.

44 The Exim command line (5)

-qQ...
An option starting with -qg requests a two-stage queue run. In the first stage, the queue is scanned
as if the queue_smtp_domains option matched every domain. Addresses are routed, local
deliveries happen, but no remote transports are run.

The hints database that remembers which messages are waiting for specific hosts is updated, as if
delivery to those hosts had been deferred. After this is complete, a second, normal queue scan
happens, with routing and delivery taking place as normal. Messages that are routed to the same
host should mostly be delivered down a single SMTP connection because of the hints that were
set up during the first queue scan. This option may be useful for hosts that are connected to the
Internet intermittently.

-q[qli...
If the i flag is present, the queue runner runs delivery processes only for those messages that
haven't previoudly been tried. (i stands for “initial delivery”.) This can be helpful if you are
putting messages on the queue using -odg and want a queue runner just to process the new

Mmessages.

-q[a][i]f...
If onef flag is present, a delivery attempt is forced for each non-frozen message, whereas without

f only those non-frozen addresses that have passed their retry times are tried.

-q[q][i]ff...
If ff is present, adelivery attempt is forced for every message, whether frozen or not.

-q[al [T
Thel (the letter “ell”) flag specifies that only local deliveries are to be done. If a message requires
any remote deliveries, it remains on the queue for later delivery.

-g<gflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexicaly less
than a given value by following the -q option with a starting message id. For example:

exim-q 0t5C6f-0000c8-00

Messages that arrived earlier than 0t 5C6f - 0000c 8- 00 are not inspected. If a second message
id is given, messages whose ids are lexically greater than it are also skipped. If the same id is
given twice, for example,

exi m-qg Ot 5C6f-0000c8-00 Ot 5C6f-0000c8-00

just one delivery process is started, for that message. This differs from -M in that retry data is
respected, and it also differs from -Mc in that it counts as a delivery from a queue run. Note that
the selection mechanism does not affect the order in which the messages are scanned. There are
also other ways of selecting specific sets of messages for delivery in aqueue run — see-R and -S.

-g<gflags><time>
When a time value is present, the -q option causes Exim to run as a daemon, starting a queue
runner process at intervals specified by the given time value (whose format is described in section
6.15). This form of the -q option is commonly combined with the -bd option, in which case a
single daemon process handles both functions. A common way of starting up a combined daemon
at system boot time isto use acommand such as

/usr/eximbin/exim-bd -g30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every 30
minutes.

When a daemon is started by -q with atime value, but without -bd, no pid file is written unless
oneisexplicitly requested by the -oP option.

-qR<rsflags> <string>
This option is synonymous with -R. It is provided for Sendmail compatibility.

45 The Exim command line (5)

-qS<rsflags> <string>

This option is synonymous with -S.

-R<rsflags> <string>

The <rsflags> may be empty, in which case the white space before the string is optional, unless
the string isf, ff, r, rf, or rff, which are the possible values for <rsflags>. White spaceisrequired if
<rsflags> is not empty.

This option is similar to -q with no time value, that is, it causes Exim to perform a single queue
run, except that, when scanning the messages on the queue, Exim processes only those that have
at least one unddivered recipient address containing the given string, which is checked in a
case-independent way. If the <rsflags> start with r, <string> isinterpreted as aregular expression;
otherwiseit isalitera string.

If you want to do periodic queue runs for messages with specific recipients, you can combine -R
with -q and atime value. For example:

exi m-9g25m - R @peci al . domai n. exanpl e

This example does a queue run for messages with recipients in the given domain every 25
minutes. Any additional flags that are specified with -q are applied to each queue run.

Once amessage is selected for delivery by this mechanism, all its addresses are processed. For the
first selected message, Exim overrides any retry information and forces a delivery attempt for
each undelivered address. This means that if delivery of any address in the first message is
successful, any existing retry information is deleted, and so delivery attempts for that address in
subsequently selected messages (which are processed without forcing) will run. However, if
delivery of any address does not succeed, the retry information is updated, and in subsequently
sel ected messages, the failing address will be skipped.

If the <rsflags> contain f or ff, the delivery forcing applies to all selected messages, not just the
first; frozen messages are included when ff is present.

The -R option makes it straightforward to initiate delivery of all messages to a given domain after
a host has been down for some time. When the SMTP command ETRN is accepted by its ACL
(see chapter 40), its default effect is to run Exim with the -R option, but it can be configured to
run an arbitrary command instead.

Thisisadocumented (for Sendmail) obsolete aternative name for -f.

-S<rsflags> <string>

This option acts like -R except that it checks the string against each message’s sender instead of
against the recipients. If -R is also set, both conditions must be met for a message to be selected.
If either of the options hasf or ff in its flags, the associated action is taken.

-Tqt <times>

This an option that is exclusively for use by the Exim testing suite. It is not recognized when
Exim is run normaly. It alows for the setting up of explicit “queue times’ so that various
warning/retry features can be tested.

When Exim is receiving a locally-generated, non-SMTP message on its standard input, the -t
option causes the recipients of the message to be obtained from the To:, Cc:, and Bcc: header
lines in the message instead of from the command arguments. The addresses are extracted before
any rewriting takes place and the Bcc: header line, if present, is then removed.

If the command has any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from the
headers. This is compatible with Smail 3 and in accordance with the documented behaviour of
several versions of Sendmail, as described in man pages on a number of operating systems (e.g.
Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendmail add argument addresses to
those obtained from the headers, and the O’ Reilly Sendmail book documents it that way. Exim

46 The Exim command line (5)

-ti

can be made to add argument addresses instead of subtracting them by setting the option extract_
addresses remove _argumentsfalse.

If there are any Resent- header lines in the message, Exim extracts recipients from all Resent-To:,
Resent-Cc:, and Resent-Bcc: header lines instead of from To:, Cc:, and Bcc:. This is for
compatibility with Sendmail and other MTAS. (Prior to release 4.20, Exim gave an error if -t was
used in conjunction with Resent- header lines.)

RFC 2822 talks about different sets of Resent- header lines (for when a message is resent several
times). The RFC also specifies that they should be added at the front of the message, and
separated by Received: lines. It isnot at all clear how -t should operate in the present of multiple
sets, nor indeed exactly what constitutes a“set”. In practice, it seems that MUASs do not follow the
RFC. The Resent- lines are often added at the end of the header, and if a message is resent more
than once, it is common for the original set of Resent- headers to be renamed as X-Resent- when
anew set is added. Thisremoves any possible ambiguity.

Thisoption is exactly equivalent to -t -i. It is provided for compatibility with Sendmail.

-tls-on-connect

This option is available when Exim is compiled with TLS support. It forces all incoming SMTP
connections to behave as if the incoming port is listed in the tIs_on_connect_ports option. See
section 13.4 and chapter 39 for further details.

Sendmail uses this option for “initial message submission”, and its documentation states that in
future releases, it may complain about syntactically invalid messages rather than fixing them
when this flag is not set. Exim ignores this option.

This option causes Exim to write information to the standard error stream, describing what it is
doing. In particular, it shows the log lines for receiving and delivering a message, and if an SMTP
connection is made, the SMTP dialogue is shown. Some of the log lines shown may not actually
be written to the log if the setting of log_selector discards them. Any relevant selectors are shown
with each log line. If none are shown, the logging is unconditional.

AlX uses -x for a private purpose (“mail from a loca mail program has National Language
Support extended characters in the body of the mail item”). It sets -x when calling the MTA from
its mail command. Exim ignores this option.

47 The Exim command line (5)

6. The Exim run time configuration file

Exim uses a single run time configuration file that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

If a syntax error is detected while reading the configuration file, Exim writes a message on the
standard error, and exits with a non-zero return code. The message is also written to the panic log.
Note: Only smple syntax errors can be detected at this time. The values of any expanded options are
not checked until the expansion happens, even when the expansion does not actually alter the string.

The name of the configuration file is compiled into the binary for security reasons, and is specified by
the CONFIGURE_FILE compilation option. In most configurations, this specifies a single file.
However, it is permitted to give a colon-separated list of file names, in which case Exim uses the first
existing filein thelist.

The run time configuration file must be owned by root or by the user that is specified at compile time
by the EXIM_USER option, or by the user that is specified at compile time by the CONFIGURE _
OWNER option (if set). The configuration file must not be world-writeable or group-writeable, unless
its group is the one specified at compile time by the EXIM_GROUP option or by the CONFIGURE _
GROUP option.

Warning: In a conventional configuration, where the Exim binary is setuid to root, anybody who is
ableto edit the run time configuration file has an easy way to run commands as root. If you make your
mail administrators members of the Exim group, but do not trust them with root, make sure that the
run time configuration is not group writeable.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.default. If CONFIGURE _FILE defines just one file name, the installation process
copies the default configuration to a new file of that name if it did not previoudy exist. If
CONFIGURE_FILE is a list, no default is automatically installed. Chapter 7 is a “walk-through”
discussion of the default configuration.

6.1 Using a different configuration file

A one-off alternate configuration can be specified by the -C command line option, which may specify
asinglefile or alist of files. However, when -C is used, Exim gives up its root privilege, unless called
by root or the Exim user (or unless the argument for -C is identical to the built-in value from
CONFIGURE_FILE). -C is useful mainly for checking the syntax of configuration files before
installing them. No owner or group checks are done on a configuration file specified by -C.

The privileged use of -C by the Exim user can be locked out by setting ALT_CONFIG_ROOT _
ONLY in Local/Makefile when building Exim. However, if you do this, you also lock out the
possibility of testing a configuration using -C right through message reception and delivery, even if
the caller is root. The reception works, but by that time, Exim is running as the Exim user, so when it
re-execs to regain privilege for the delivery, the use of -C causes privilege to be lost. However, root
can test reception and delivery using two separate commands (one to put a message on the queue,
using -odq, and another to do the delivery, using -M).

If ALT_CONFIG_PREFIX is defined in Local/Makefile, it specifies a prefix string with which any
file named in a -C command line option must start. In addition, the file name must not contain the
sequence “/ . . / ”. Thereis no default setting for ALT_CONFIG_PREFIX; when it is unset, any file
name can be used with -C.

One-off changes to a configuration can be specified by the -D command line option, which defines
and overrides values for macros used inside the configuration file. However, like -C, the use of this
option by a non-privileged user causes Exim to discard its root privilege. If DISABLE D_OPTION is
defined in Local/Makefile, the use of -D is completely disabled, and its use causes an immediate error
exit.

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE _USE NODE is defined

48 The runtime configuration file (6)

in Local/Makefile, Exim first looks for a file whose name is the configuration file name followed by a
dot and the machine’'s node name, as obtained from the uname() function. If this file does not exist,
the standard name is tried. This processing occurs for each file name in the list given by
CONFIGURE_FILE or -C.

In some esoteric situations different versions of Exim may be run under different effective uids and
the CONFIGURE_FILE _USE_EUID is defined to help with this. See the comments in sr¢/EDITME
for details.

6.2 Configuration file format

Exim's configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are al optional, and may appear in any order.
Each part other than the first is introduced by the word “begin” followed by the name of the part. The
optional parts are:

e ACL: Access control listsfor controlling incoming SMTP mail.

 authenticators: Configuration settings for the authenticator drivers. These are concerned with the
SMTP AUTH command (see chapter 33).

 routers: Configuration settings for the router drivers. Routers process addresses and determine how
the message is to be delivered.

 transports. Configuration settings for the transport drivers. Transports define mechanisms for
copying messages to destinations.

* retry: Retry rules, for use when a message cannot be immediately delivered.

» rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery.

 local_scan: Private options for the local_scan() function. If you want to use this feature, you must
set

LOCAL_SCAN_HAS_OPTI ONS=yes

in Local/Makefile before building Exim. Full details of the local_scan() facility are given in chapter
42,

Leading and trailing white space in configuration linesis always ignored.

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignored. Note: A # character other than at the beginning of alineis not treated
specialy, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Note that the general rule for
white space means that trailing white space after the backslash and |eading white space at the start of
continuation lines isignored. Comment lines beginning with # (but not empty lines) may appear in the
middle of a sequence of continuation lines.

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.default, and add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in chapters 40,
32, and 31, respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from section 6.10 onwards. Before that, the inclusion, macro,
and conditional facilities are described.

6.3 File inclusions in the configuration file
Y ou can include other filesinside Exim’s run time configuration file by using this syntax:

. i ncl ude <file name>

49 The runtime configuration file (6)

.include_if_exists <filename>

on a line by itself. Double quotes round the file name are optional. If you use the first form, a
configuration error occurs if the file does not exist; the second form does nothing for non-existent
files. In all cases, an absolute file name is required.

Includes may be nested to any depth, but remember that Exim reads its configuration file often, so it is
agood idea to keep them to a minimum. If you change the contents of an included file, you must HUP
the daemon, because an included file is read only when the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_| ookup = a.b.c \
.include /some/file

Include processing happens after macro processing (see below). Its effect is to process the lines of the
included file asif they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If aline in the main part of the configuration (that is, before the first “begin” line) begins with an
upper case letter, it is taken as a macro definition, and must be of the form

<pame> = <rest of line>

The name must consist of letters, digits, and underscores, and need not al be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and
has leading and trailing white space removed. Quotes are not removed. The replacement text can
never end with a backslash character, but this doesn’t seem to be a serious limitation.

Macros may also be defined between router, transport, authenticator, or ACL definitions. They may
not, however, be defined within an individual driver or ACL, or in the local_scan, retry, or rewrite
sections of the configuration.

6.5 Macro substitution

Once a macro is defined, al subsequent lines in the file (and any included files) are scanned for the
macro name; if there are severa macros, the line is scanned for each in turn, in the order in which the
macros are defined. The replacement text is not re-scanned for the current macro, though it is scanned
for subsequently defined macros. For this reason, a macro name may not contain the name of a
previously defined macro as a substring. Y ou could, for example, define

ABCD_XYZ = <something>
ABCD = <something else>

but putting the definitions in the opposite order would provoke a configuration error. Macro
expansion is applied to individual physical lines from the file, before checking for line continuation or
fileinclusion (see above). If aline consists solely of a macro name, and the expansion of the macro is
empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
. i ncl ude line

6.6 Redefining macros

Once defined, the value of a macro can be redefined later in the configuration (or in an included file).
Redefinition is specified by using == instead of =. For example:

MAC = initial value
MAC == updat ed val ue

Redefinition does not alter the order in which the macros are applied to the subsequent lines of the
configuration file. It is still the same order in which the macros were originaly defined. All that
changesisthe macro’s value. Redefinition makes it possible to accumulate values. For example:

50 The runtime configuration file (6)

MAC = initial value
MAC == MAC and sonet hi ng added

This can be helpful in situations where the configuration file is built from a number of other files.

6.7 Overriding macro values

The values set for macros in the configuration file can be overridden by the -D command line option,
but Exim gives up its root privilege when -D is used, unless called by root or the Exim user. A
definition on the command line using the -D option causes all definitions and redefinitions within the
file to beignored.

6.8 Example of macro usage

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
separately as macros, for example:

ALI AS QUERY = sel ect mail box from user where \
| ogi n=%{ quot e_nysql : $l ocal part};

This can then be used in aredirect router setting like this:
data = ${I ookup nysql { ALI AS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists — see section 10.5.

6.9 Conditional skips in the configuration file

You can use thedirectives. i fdef,.ifndef,.elifdef,.elifndef,.else,and. endif to
dynamically include or exclude portions of the configuration file. The processing happens whenever
thefileisread (that is, when an Exim binary startsto run).

The implementation is very simple. Instances of the first four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

.ifdef AAA

message_size |limt = 50M
.el se

nessage_size linmt = 100M
.endif

sets a message size limit of 50M if the macro AAA is defined, and 100M otherwise. If there is more
than one macro named on the line, the condition istrueif any of them are defined. That is, itisan “or”
condition. To obtain an “and” condition, you needtousenested . i f def s.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition “there was a macro substitution in thisline” will always be true.

Text following . el se and . endi f isignored, and can be used as comment to clarify complicated
nestings.

6.10 Common option syntax

For the main set of options, driver options, and local_scan() options, each setting ison aline by itself,
and starts with a name consisting of lower-case letters and underscores. Many options require a data
value, and in these cases the name must be followed by an equals sign (with optional white space) and
then the value. For example:

qual i fy_domai n = nmydomnai n. exanpl e. com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To

51 The runtime configuration file (6)

stop non-admin users from using the -bP command line option to read these values, you can precede
the option settings with the word “hide” . For example:

hi de nysql _servers = | ocal host/user s/ adm n/secret-password

For non-admin users, such options are displayed like this:

mysql _servers = <val ue not di spl ayabl e>
If “hide” is used on adriver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.11 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of
specifying such options: with and without a data value. If the option name is specified on its own
without data, the switch is turned on; if it is preceded by “no " or “not_” the switch is turned off.
However, boolean options may be followed by an egquals sign and one of the words “true”, “false”,
“yes’, or “no”, as an aternative syntax. For example, the following two settings have exactly the
same effect:

gueue_only
gueue_only = true

The following two lines also have the same (opposite) effect:

no_queue_only
gueue_only = fal se

Y ou can use whichever syntax you prefer.

6.12 Integer values

If an integer data item starts with the characters “0x”, the remainder of it is interpreted as a
hexadecimal number. Otherwise, it is treated as octal if it starts with the digit 0, and decimal if not. If
an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M, it
ismultiplied by 1024x1024.

When the values of integer option settings are output, values which are an exact multiple of 1024 or
1024x1024 are sometimes, but not always, printed using the letters K and M. The printing style is
independent of the actual input format that was used.

6.13 Octal integer values

The value of an option specified as an octal integer is always interpreted in octal, whether or not it
starts with the digit zero. Such options are always output in octal.

6.14 Fixed point number values

A fixed point number consists of a decimal integer, optionally followed by a decimal point and up to
three further digits.

6.15 Time interval values

A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

S seconds
m minutes
h hours

d days

w weeks

52 The runtime configuration file (6)

For example, “3h50m” specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
“90m” instead of “1h30m”.

6.16 String values

If a string data item does not start with a double-quote character, it is taken as consisting of the
remainder of the line plus any continuation lines, starting at the first character after any leading white
space, with trailing white space removed, and with no interpretation of the characters in the string.
Because Exim removes comment lines (those beginning with #) at an early stage, they can appear in
the middle of amulti-line string. The following settings are therefore equivalent:

trusted _users = uucp: mai l

trusted_users uucp:\

This conment line is ignored

mai |

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

\\ single backslash

\n newline

\'r carriage return

\'t tab

\ <octal digits> up to 3 octal digits specify one character

\ x<hex digits> up to 2 hexadecimal digits specify one character

If abackdash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backdash escapes to insert specia
characters, or if you need to specify a value with leading or trailing spaces. These cases are rare, SO
quoting is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting
was required in order to continue lines, so you may come across older configuration files and
examples that apparently quote unnecessarily.

6.17 Expanded strings

Some strings in the configuration file are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances (see chapter 11). The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as
part of the input process, before expansion takes place. However, backslash is aso an escape
character for the expander, so any backslashes that are required for that reason must be doubled if
they are within a quoted configuration string.

6.18 User and group names

User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that can
be looked up using the getpwnam() or getgrnam() function, as appropriate.

6.19 List construction

The data for some configuration optionsis alist of items, with colon as the default separator. Many of
these options are shown with type “string list” in the descriptions later in this document. Others are
listed as “domain list”, “host list”, “address list”, or “local part list”. Syntactically, they are all the
same; however, those other than “string list” are subject to particular kinds of interpretation, as
described in chapter 10.

In al these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_users setting in section 6.16 above is an example. If acolonis actualy needed in anitemin a
list, it must be entered as two colons. Leading and trailing white space on each item in a list is

53 The runtime configuration file (6)

ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of 1Pv6 address. For example, the list

| ocal interfaces = 127.0.0.1 : ::::1
contains two | P addresses, the I1Pv4 address 127.0.0.1 and the IPv6 address ::1.

Note: Although leading and trailing white space is ignored in individua list items, it is not ignored
when parsing the list. The space after the first colon in the example above is necessary. If it were not
there, the list would be interpreted as the two items 127.0.0.1:: and 1.

Doubling colons in IPv6 addresses is an unwelcome chore, so a mechanism was introduced to allow
the separator character to be changed. If a list begins with a left angle bracket, followed by any
punctuation character, that character is used instead of colon asthe list separator. For example, the list
above can be rewritten to use a semicolon separator like this:

| ocal interfaces = <; 127.0.0.1 ; ::1

This facility appliesto all lists, with the exception of thelist in log_file_path. It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.
6.20 Empty items in lists

An empty item at the end of alist is aways ignored. In other words, trailing separator characters are
ignored. Thus, thelist in

senders = user @omain :

contains only asingle item. If you want to include an empty string as one item in alist, it must not be
the last item. For example, this list contains three items, the second of which is empty:

senders = userl@onmain : : user2@omnmain

Note: There must be white space between the two colons, as otherwise they are interpreted as
representing a single colon data character (and the list would then contain just one item). If you want
to specify alist that contains just one, empty item, you can do it asin this example:

senders = :

In this case, thefirst item is empty, and the second is discarded because it is at the end of thelist.

6.21 Format of driver configurations

There are separate parts in the configuration for defining routers, transports, and authenticators. In
each part, you are defining a number of driver instances, each with its own set of options. Each driver
instance is defined by a sequence of lineslike this:

<instance name>:
<option>

<option>
In the following example, the instance nameislocaluser, and it is followed by three options settings:

| ocal user:
driver = accept
check_I ocal _user
transport = | ocal delivery

For each driver instance, you specify which Exim code module it uses — by the setting of the driver
option — and (optionally) some configuration settings. For example, in the case of transports, if you
want atransport to deliver with SMTP you would use the smtp driver; if you want to deliver to alocal
file you would use the appendfile driver. Each of the driversis described in detail in its own separate
chapter later in this manual.

54 The runtime configuration file (6)

You can have severa routers, transports, or authenticators that are based on the same underlying
driver (each must have a different instance name).

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at al. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
that matches an authentication mechanism offered by the server.

Within a driver instance definition, there are two kinds of option: generic and private. The generic
options are those that apply to all drivers of the same type (that is, all routers, al transports or all
authenticators). The driver option is a generic option that must appear in every definition. The private
options are specia for each driver, and none need appear, because they all have default values.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver aways be
the first option.

Driver instance names, which are used for reference in log entries and elsewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the
same type. A router and a transport (for example) can each have the same name, but no two router
instances can have the same name. The name of a driver instance should not be confused with the
name of the underlying driver module. For example, the configuration lines:

renot e_snt p:
driver = sntp

create an instance of the smtp transport driver whose name is remote_smtp. The same driver code
can be used more than once, with different instance names and different option settings each time. A
second instance of the smtp transport, with different options, might be defined thus:

speci al _snt p:
driver = sntp
port = 1234
command_timeout = 10s

The names remote_smtp and special_smtp would be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings
for any particular driver instance, including all the defaulted values, can be extracted by making use
of the -bP command line option.

55 The runtime configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim as src/configure.default is sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter “walks
through” the default configuration, giving brief explanations of the settings. Detailed descriptions of
the options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at all in the default configuration.

7.1 Main configuration settings

The main (global) configuration option settings must aways come first in the file. The first thing
you'll seeinthefile, after some initial comments, istheline

primary_host name =

This is a commented-out setting of the primary_hostname option. Exim needs to know the official,
fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim uses the uname() system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domai nlist | ocal _donains = @
domai nlist relay_to_domains =
host | i st relay fromhosts = 127.0.0.1

These are nat, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give names to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see section 10.5).

The first line defines a domain list called local_domains; this is used later in the configuration to
identify domains that are to be delivered on the local host.

There is just one item in this list, the string “@”. This is a specia form of entry which means “the
name of the loca host”. Thus, if the loca host is caled ahost.example, mail to
any.user @a.host.example is expected to be delivered locally. Because the local host's name is
referenced indirectly, the same configuration file can be used on different hosts.

The second line defines adomain list called relay_to_domains, but the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domainsin this list. By default, therefore, no relaying on the basis of amail domainis
permitted.

The third line defines a host list called relay_from hosts. Thislist is used later in the configuration to
permit relaying from any host or |P address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to
submit mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to
submit messages for relaying.

Just to be sure there's no misunderstanding: at this point in the configuration we aren’t actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next two configuration lines are genuine option settings:

acl _smp_rcpt
acl _smp_data

acl _check_rcpt
acl _check _data

These options specify Access Control Lists (ACLS) that are to be used during an incoming SMTP
session for every recipient of a message (every RCPT command), and after the contents of the
message have been received, respectively. The names of the lists are acl_check rcpt and
acl_check data, and we will come to their definitions below, in the ACL section of the configuration.

56 The default configuration file (7)

The RCPT ACL controls which recipients are accepted for an incoming message — if a configuration
does not provide an ACL to check recipients, no SMTP mail can be accepted. The DATA ACL allows
the contents of a message to be checked.

Two commented-out option settings are next:

av_scanner = cland:/tnp/cland
spand_address = 127.0.0.1 783

These are example settings that can be used when Exim is compiled with the content-scanning
extension. The first specifies the interface to the virus scanner, and the second specifies the interface
to SpamAssassin. Further details are given in chapter 41.

Three more commented-out option settings follow:

tls_advertise hosts = *
tls certificate = /etc/ssl/eximecrt
tls_privatekey = /etc/ssl/exi mpem

These are exampl e settings that can be used when Exim is compiled with support for TLS (aka SSL)
as described in section 4.6. The first one specifies the list of clients that are allowed to use TLS when
connecting to this server; in this case the wildcard means all clients. The other options specify where
Exim should find its TL S certificate and private key, which together prove the server’s identity to any
clients that connect. More details are given in chapter 39.

Another two commented-out option settings follow:

daenmon_smp_ports = 25 : 465 : 587
tls_on _connect _ports = 465

These options provide better support for roaming users who wish to use this server for message
submission. They are not much use unless you have turned on TLS (as described in the previous
paragraph) and authentication (about which more in section 7.7). The usual SMTP port 25 is often
blocked on end-user networks, so RFC 4409 specifies that message submission should use port 587
instead. However some software (notably Microsoft Outlook) cannot be configured to use port 587
correctly, so these settings also enable the non-standard “smtps’ (aka “ssmtp”) port 465 (see section
13.4).

Two more commented-out options settings follow:

qualify domain =
qualify_recipient =

Thefirst of these specifies a domain that Exim uses when it constructs a complete email address from
alocal login name. This is often needed when Exim receives a message from alocal process. If you
do not set qualify_domain, the value of primary_hostname is used. If you set both of these options,
you can have different qualification domains for sender and recipient addresses. If you set only the
first one, its value is used in both cases.

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13] that is, with a“domain literal” (an |P address within sgquare brackets) instead of a
named domain.

allow domain_literals

The RFCs still require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to specific hosts by quoting their 1P addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addressed to postmaster) where
domain literals are still useful.

The next configuration lineisakind of trigger guard:

never _users = root

57 The default configuration file (7)

It specifies that no delivery must ever be run as the root user. The normal convention is to set up root
as an dlias for the system administrator. This setting is a guard against dlips in the configuration. The
list of users specified by never _usersis not, however, the complete list; the build-time configuration
in Local/Makefile has an option called FIXED_NEVER _USERS specifying a list that cannot be
overridden. The contents of never _users are added to this list. By default FIXED_NEVER_USERS
also specifiesroot.

When aremote host connects to Exim in order to send mail, the only information Exim has about the
host’ sidentity isits |P address. The next configuration line,

host | ookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you fedl it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on “nearby” networks. Note that it is not
always possible to find a host name from an IP address, because not all DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned with ident callbacks, as defined by RFC 1413 (hence their names):

rfcldal3 hosts = *
rfcl4a13 _query_tinmeout = 5s

These settings cause Exim to make ident callbacks for al incoming SMTP cals. You can limit the
hosts to which these calls are made, or change the timeout that is used. If you set the timeout to zero,
al ident calls are disabled. Although they are cheap and can provide useful information for tracing
problem messages, some hosts and firewalls have problems with ident calls. This can result in a
timeout instead of an immediate refused connection, leading to delays on starting up an incoming
SMTP session.

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two
commented-out options:

sender _unqual i fi ed_hosts =
recipient_unqualified_hosts =

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

The per cent_hack_domains option is also commented oult:

percent _hack_domai ns =

It provides a list of domains for which the “percent hack” is to operate. This is an almost obsolete
form of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The last two settings in the main part of the default configuration are concerned with messages that
have been “frozen” on Exim’s queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the original message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

i gnore_bounce_errors_after = 2d
ti meout _frozen_after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days on the
gueue. The second specifies that any frozen message (whether a bounce message or not) isto be timed
out (and discarded) after a week. In this configuration, the first setting ensures that no failing bounce
message ever |lasts aweek.

58 The default configuration file (7)

7.2 ACL configuration
In the default configuration, the ACL section follows the main configuration. It starts with the line

begi n acl

and it contains the definitions of two ACLSs, called acl_check rcpt and acl_check data, that were
referenced in the settings of acl_smtp_rcpt and acl_smtp_data above.

The first ACL is used for every RCPT command in an incoming SMTP message. Each RCPT
command specifies one of the message’ s recipients. The ACL statements are considered in order, until
the recipient address is either accepted or rejected. The RCPT command is then accepted or rejected,
according to the result of the ACL processing.

acl _check_rcpt:

Thisline, consisting of a name terminated by a colon, marks the start of the ACL, and namesit.

accept hosts =:

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn't actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message did not come
from a remote host, because in that case, the remote hostname is empty. The colon is important.
Without it, the list itself is empty, and can never match anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAS operate in this manner.

Restricted characters in address
+l ocal donmi ns

ML [@sl]

Restricted characters i n address
! +| ocal donmi ns

ALTIT T A5 [@8] ¢ A %AV AL

These statements are concerned with local parts that contain any of the characters“@", “%", “!”, “/”,
“I”, or dots in unusual places. Although these characters are entirely legal in local parts (in the case of
“@" and leading dots, only if correctly quoted), they do not commonly occur in Internet mail
addresses.

deny nmessage
domai ns
| ocal parts

deny nmessage
domai ns
| ocal _parts

The first three have in the past been associated with explicitly routed addresses (percent is till
sometimes used — see the per cent_hack_domains option). Addresses containing these characters are
regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. Thisis a deliberate policy of being as safe as possible.

The first rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. This is implemented by the first condition, which restricts it to domains
that are listed in the local_domains domain list. The “+” character is used to indicate areference to a
named list. In this configuration, there is just one domain in local_domains, but in general there may
be many.

The second condition on the first statement uses two regular expressions to block local parts that
begin with a dot or contain “@", “%", “!”, “/”, or “|". If you have local accounts that include these
characters, you will have to modify thisrule.

Empty components (two dots in arow) are not valid in RFC 2822, but Exim allows them because they
have been encountered in practice. (Consider the common convention of local parts constructed as
“first-initial.second-initial .family-name” when applied to someone like the author of Exim, who has
no second initial.) However, a local part starting with a dot or containing “/../” can cause trouble if it
is used as part of a file name (for example, for a mailing list). This is aso true for local parts that

59 The default configuration file (7)

contain slashes. A pipe symbol can aso be troublesome if the local part is incorporated unthinkingly
into a shell command line.

The second rule above applies to al other domains, and is less strict. This allows your own users to
send outgoing messages to sites that use slashes and vertical bars in their local parts. It blocks local
parts that begin with a dot, slash, or vertical bar, but allows these characters within the local part.
However, the sequence “/../” is barred. The use of “@”, “%”, and “!” is blocked, as before. The
motivation hereisto prevent your users (or your users' viruses) from mounting certain kinds of attack
on remote sites.

accept |ocal _parts = postmaster
domai ns = +l ocal _domai ns

This statement, which has two conditions, accepts an incoming address if the local part is postmaster
and the domain is one of those listed in the local_domains domain list. The “+” character is used to
indicate a reference to a named list. In this configuration, there is just one domain in local_domains,
but in general there may be many.

The presence of this statement means that mail to postmaster is never blocked by any of the
subsequent tests. This can be helpful while sorting out problems in cases where the subsequent tests
are incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic verification checks only the domain, but callouts can be used for more verification if required.
Section 40.33 discusses the details of address verification.

accept hosts
control

+relay_from hosts
submi ssi on

This statement accepts the address if the message is coming from one of the hosts that are defined as
being alowed to relay through this host. Recipient verification is omitted here, because in many cases
the clients are dumb MUAS that do not cope well with SMTP error responses. For the same reason,
the second line specifies “submission mode” for messages that are accepted. This is described in
detail in section 44.1; it causes Exim to fix messages that are deficient in some way, for example,
because they lack a Date: header line. If you are actually relaying out from MTAS, you should
probably add recipient verification here, and disable submission mode.

*

subm ssi on

accept authenticated
control

This statement accepts the address if the client host has authenticated itself. Submission mode is again
specified, on the grounds that such messages are most likely to come from MUAS. The default
configuration does not define any authenticators, though it does include some nearly complete
commented-out examples described in 7.7. This means that no client can in fact authenticate until you
complete the authenticator definitions.

require nessage
donai ns

relay not permtted _
+l ocal _domains : +relay_domai ns

This statement rejects the address if its domain is neither a local domain nor one of the domains for
which thishost isarelay.

require verify = recipient

This statement requires the recipient address to be verified; if verification fails, the addressis regjected.

deny nmessage = rejected because $sender _host _address \
is in a black list at $dnslist_domai n\ n\
$dnsl i st _text

dnslists = bl ack.list.exanple

60 The default configuration file (7)

war n dnslists
add_header

bl ack. | i st.exanple

X-War ni ng: $sender _host _address is in \
a black list at $dnslist_donmain

| og_message = found in $dnslist_domain

HHHHH

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second just inserts awarning header line.

require verify = csa

This commented-out line is an example of how you could turn on client SMTP authorization (CSA)
checking. Such checks do DNS lookups for special SRV records.

accept

The final statement in the first ACL unconditionally accepts any recipient address that has
successfully passed all the previous tests.

acl _check_dat a:

This line marks the start of the second ACL, and names it. Most of the contents of this ACL are
commented out;

deny mal war e *
nmessage Thi s nmessage contains a virus \
($nal war e_nane) .

These lines are examples of how to arrange for messages to be scanned for viruses when Exim has
been compiled with the content-scanning extension, and a suitable virus scanner is installed. If the
message is found to contain avirus, it is rejected with the given custom error message.

warn spam = nobody

nessage = X- Spam score: $spam score\n\

X- Spam score_int: $spam score_int\n\
X- Spam bar: $spam bar\ n\

X- Spam report: $spamreport

These lines are an example of how to arrange for messages to be scanned by SpamAssassin when
Exim has been compiled with the content-scanning extension, and SpamAssassin has been installed.
The SpamAssassin check is run with nobody as its user parameter, and the results are added to the
message as a series of extra header line. In this case, the message is not rejected, whatever the spam
score.

accept

Thisfinal linein the DATA ACL accepts the message unconditionally.

7.3 Router configuration
The router configuration comes next in the default configuration, introduced by the line

begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router in turn, until it is either accepted, or failed. This means that the order in which
you define the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_literal:

driver = ipliteral

domai ns = ! +|l ocal _domai ns
transport = renote_sntp

This router is commented out because the majority of sites do not want to support domain literal

61 The default configuration file (7)

addresses (those of the form user@[10.9.8.7]). If you uncomment this router, you also need to
uncomment the setting of allow_domain_literalsin the main part of the configuration.

dnsl ookup:
driver = dnsl ookup
domai ns = ! +l ocal _donai ns

transport = renote_sntp
ignore target _hosts = 0.0.0.0 : 127.0.0.0/8
no_nor e

The first uncommented router handles addresses that do not involve any local domains. This is
specified by the line

domai ns = ! +l ocal _domai ns

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domains indicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver is dnslookup, and is specified by the driver option. Do not be confused
by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in the driver option must be one of the driver modules that is in
the Exim binary.

The dnslookup router routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smtp transport, as specified by the transport option. If the router does not find the domain in
the DNS, no further routers are tried because of the no_more setting, so the address fails and is
bounced.

The ignore_target _hosts option specifies a list of 1P addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS
point to host names whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these IP addresses causes Exim to fail to route the email address, so it bounces.
Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed ouit.

system al i ases:
driver = redirect

all ow fail
al | ow defer
data = ${| ookup{$l ocal _part}lsearch{/etc/aliases}}

user exim
file_transport
pi pe_transport

= address file

= address_pi pe

Control reaches this and subsequent routers only for addresses in the local domains. This router
checks to see whether the local part is defined as an alias in the /etc/aliases file, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
the data option is empty, causing the address to be passed to the next router.

/etc/aliases is a conventional name for the system aliases file that is often used. That is why it is
referenced by from the default configuration file. However, you can change this by setting SYSTEM _
ALIASES FILE in Local/Makefile before building Exim.

userforward:
driver = redirect
check_| ocal _user
local _part _suffix = +* ; -*
local part_suffix_optional
file = $hone/.forward
allow filter
no_verify

62 The default configuration file (7)

no_expn

check_ancest or

file_transport address_file
pi pe_transport addr ess_pi pe
reply transport = address reply

This is the most complicated router in the default configuration. It is another redirection router, but
this time it is looking for forwarding data set up by individual users. The check_local _user setting
specifies a check that the local part of the address is the login name of a local user. If it is not, the
router is skipped. The two commented options that follow check_local _user, namely:

local _part_suffix = +* ; -*
local part_suffix_optional

show how you can specify the recognition of local part suffixes. If the first is uncommented, a suffix
beginning with either a plus or aminus sign, followed by any sequence of characters, is removed from
the local part and placed in the variable $local_part_suffix. The second suffix option specifies that the
presence of a suffix in the local part is optional. When a suffix is present, the check for alocal login
uses the local part with the suffix removed.

When alocal user account is found, the file called .forward in the user’s home directory is consulted.
If it does not exist, or is empty, the router declines. Otherwise, the contents of .forward are interpreted
as redirection data (see chapter 22 for more details).

Traditional .forward files contain just alist of addresses, pipes, or files. Exim supports this by default.
However, if allow_filter isset (it is commented out by default), the contents of the file are interpreted
as aset of Exim or Sieve filtering instructions, provided the file begins with “#Exim filter” or “#Sieve
filter”, respectively. User filtering is discussed in the separate document entitled Exim's interfaces to
mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP EXPN command. There are two reasons for doing this:

(1) Whether or not alocal user has a.forward fileis not really relevant when checking an address for
validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an EXPN command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read users .forward
filesat thistime.

The setting of check _ancestor prevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding — see section 22.5).

The fina three option settings specify the transports that are to be used when forwarding generates a
direct delivery to afile, or to apipe, or sets up an auto-reply, respectively. For example, if a .forward
file contains

a. not her @l sewher e. exanpl e, /hone/spqr/archive
the delivery to /home/spgr/archive is done by running the address file transport.
| ocal user:

driver = accept
check_| ocal _user

local _part_suffix = +* ; -*
local part_suffix_optional
transport = | ocal _delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and assigning it to the local_delivery transport. Otherwise, we
have reached the end of the routers, so the address is bounced. The commented suffix settings fulfil
the same purpose as they do for the userforward router.

63 The default configuration file (7)

7.4 Transport configuration

Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

begin transports

One remote transport and four local transports are defined.

renote_snt p:
driver = smp

This transport is used for delivering messages over SMTP connections. All its options are defaulted.
The list of remote hosts comes from the router.

| ocal _delivery:
driver = appendfile
file = /var/mil/$l ocal _part
delivery_date_add
envel ope_to_add
return_path_add

group = nai

node = 0660

This appendfile transport is used for local delivery to user mailboxes in traditional BSD mailbox
format. By default it runs under the uid and gid of the local user, which requires the sticky bit to be set
on the /var/mail directory. Some systems use the alternative approach of running mail deliveries under
aparticular group instead of using the sticky bit. The commented options show how this can be done.

Exim adds three headers to the message as it delivers it: Delivery-date:, Envelope-to: and
Return-path:. This action is requested by the three similarly-named options above.

addr ess_pi pe:
driver = pipe
return_out put

This transport is used for handling deliveries to pipes that are generated by redirection (aliasing or
users .forward files). The return_output option specifies that any output generated by the pipeisto
be returned to the sender.

address_file:
driver = appendfile
delivery_date_add
envel ope_to_add
return_path_add

This transport is used for handling deliveries to files that are generated by redirection. The name of
thefileis not specified in thisinstance of appendfile, because it comes from the redirect router.

address_reply:
driver = autoreply

This transport is used for handling automatic replies generated by users' filter files.

7.5 Default retry rule

The retry section of the configuration file contains rules which affect the way Exim retries deliveries
that cannot be completed at the first attempt. It isintroduced by the line

begin retry
In the default configuration, thereis just one rule, which appliesto al errors:
* * F, 2h, 15m G 16h, 1h,1.5; F, 4d, 6h
This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at

64 The default configuration file (7)

intervals starting at one hour and increasing by afactor of 1.5 until 16 hours have passed, then every 6
hours up to 4 days. If an addressis not delivered after 4 days of temporary failure, it is bounced.

7.6 Rewriting configuration
The rewriting section of the configuration, introduced by
begin rewite
contains rules for rewriting addresses in messages as they arrive. There are no rewriting rules in the
default configuration file.

7.7 Authenticators configuration
The authenticators section of the configuration, introduced by

begi n aut henticators

defines mechanisms for the use of the SMTP AUTH command. The default configuration file
contains two commented-out example authenticators which support plaintext username/password
authentication using the standard PLAIN mechanism and the traditional but non-standard LOGIN
mechanism, with Exim acting as the server. PLAIN and LOGIN are enough to support most MUA
software.

The example PLAIN authenticator looks like this:

#PLAI N:
driver pl ai nt ext
server _set _id $aut h2

server_pronpts
server_condition o
server_advertise_condition

Aut hentication is not yet configured
${if def:tls_cipher }

And the example LOGIN authenticator looks like this:

server_condition o
server_advertise_condition

Aut hentication is not yet configured
${if def:tls_cipher }

#LOA N:

driver = pl ai nt ext

server_set id = $authl

server_pronpts = <| Usernane: | Password:

The server_set_id option makes Exim remember the authenticated username in $authenticated id,
which can be used later in ACLs or routers. The server _prompts option configures the plaintext
authenticator so that it implements the details of the specific authentication mechanism, i.e. PLAIN or
LOGIN. The server_advertise condition setting controls when Exim offers authentication to clients;
in the examples, thisis only when TLS or SSL has been started, so to enable the authenticators you
also need to add support for TLS as described in 7.1.

The server_condition setting defines how to verify that the username and password are correct. In the
examples it just produces an error message. To make the authenticators work, you can use a string
expansion expression like one of the examplesin 34.

65 The default configuration file (7)

8. Regular expressions

Exim supports the use of regular expressions in many of its options. It uses the PCRE regular
expression library; this provides regular expression matching that is compatible with Perl 5. The
syntax and semantics of regular expressions is discussed in many Perl reference books, and also in
Jeffrey Friedl’s Mastering Regular Expressions, which is published by O'Reilly (see
http://www.or eilly.com/catal og/r egex2/).

The documentation for the syntax and semantics of the regular expressions that are supported by
PCRE isincluded in plain text in the file doc/pcrepattern.txt in the Exim distribution, and also in the
HTML tarbundle of Exim documentation. It describes in detail the features of the regular expressions
that PCRE supports, so no further description is included here. The PCRE functions are called from
Exim using the default option settings (that is, with no PCRE options set), except that the PCRE_
CASELESS option is set when the matching is required to be case-insensitive.

In most cases, when a regular expression is required in an Exim configuration, it has to start with a
circumflex, in order to distinguish it from plain text or an “ends with” wildcard. In this example of a
configuration setting, the second item in the colon-separated list is aregular expression.

domains = a.b.c : M\d{3} : *.y.z :

The doubling of the backslash is required because of string expansion that precedes interpretation —
see section 11.1 for more discussion of this issue, and a way of avoiding the need for doubling
backslashes. The regular expression that is eventually used in this example contains just one
backslash. The circumflex is included in the regular expression, and has the norma effect of
“anchoring” it to the start of the string that is being matched.

There are, however, two cases where a circumflex is not required for the recognition of a regular
expression: these are the match condition in a string expansion, and the matches condition in an
Exim filter file. In these cases, the relevant string is always treated as a regular expression; if it does
not start with a circumflex, the expression is not anchored, and can match anywhere in the subject
string.

In al cases, if you want a regular expression to match at the end of a string, you must code the $
metacharacter to indicate this. For example:

domai ns = M\ d{3}\\. exanpl e

matches the domain 123.example, but it aso matches 123.example.com. Y ou need to use:

domai ns = M\ d{3}\\.exanple\$

if you want example to be the top-level domain. The backslash before the $ is needed because string
expansion also interprets dollar characters.

8.1 Testing regular expressions

A program called pcretest forms part of the PCRE distribution and is built with PCRE during the
process of building Exim. It is primarily intended for testing PCRE itself, but it can also be used for
experimenting with regular expressions. After building Exim, the binary can be found in the build
directory (it is not installed anywhere automatically). There is documentation of various options in
doc/pcretest.txt, but for simple testing, none are needed. Thisis the output of a sample run of pcretest:

re> /IMN[@+)@+\. (ac|edu)\. (?'kr)[a-z] {2} %/
data> x@. ac. uk
0: X@. ac. uk
1. X
2: ac
data> x@. ac. kr
No match
data> x@. edu. com
No match

66 Regular expressions (8)

http://www.oreilly.com/catalog/regex2/

data> x@. edu. co
0: xX@. edu.co
1. x
2: edu

Input typed by the user is shown in bold face. After the “re>" prompt, aregular expression enclosed in
delimiters is expected. If this compiles without error, “data>" prompts are given for strings against
which the expression is matched. An empty data line causes a hew regular expression to be read. If
the match is successful, the captured substring values (that is, what would be in the variables $0, $1,
$2, etc.) are shown. The above example tests for an email address whose domain ends with either “ac”
or “edu” followed by a two-character top-level domain that is not “kr”. The local part is captured in
$1 and the “ac” or “edu” in $2.

67 Regular expressions (8)

9. File and database lookups

Exim can be configured to look up data in files or databases as it processes messages. Two different
kinds of syntax are used:

(1) A string that is to be expanded may contain explicit lookup requests. These cause parts of the
string to be replaced by data that is obtained from the lookup. Lookups of this type are
conditional expansion items. Different results can be defined for the cases of lookup success and
failure. See chapter 11, where string expansions are described in detail.

(2) Lists of domains, hosts, and email addresses can contain lookup requests as a way of avoiding
excessively long linear lists. In this case, the data that is returned by the lookup is often (but not
always) discarded; whether the lookup succeeds or fails is what really counts. These kinds of list
are described in chapter 10.

String expansions, lists, and lookups interact with each other in such a way that there is no order in
which to describe any one of them that does not involve references to the others. Each of these three
chapters makes more sense if you have read the other two first. If you are reading this for the first
time, be aware that some of it will make alot more sense after you have read chapters 10 and 11.

9.1 Examples of different lookup syntax

It is easy to confuse the two different kinds of lookup, especially as the lists that may contain the
second kind are always expanded before being processed as lists. Therefore, they may also contain
lookups of thefirst kind. Be careful to distinguish between the following two examples:

domai ns
donmai ns

${| ookup{ $sender _host _address}| search{/sone/file}}
| search; /sone/file

The first uses a string expansion, the result of which must be a domain list. No strings have been
specified for a successful or a failing lookup; the defaults in this case are the looked-up data and an
empty string, respectively. The expansion takes place before the string is processed as a list, and the
filethat is searched could contain lines like this:

192. 168. 3. 4: donmai nl: donmi n2: ...
192.168.1.9: donmi n3: donmi n4: ...

When the lookup succeeds, the result of the expansion is alist of domains (and possibly other types of
item that are allowed in domain lists).

In the second example, the lookup is a single item in adomain list. It causes Exim to use a lookup to
see if the domain that is being processed can be found in the file. The file could contains lines like
this:

domai nl:
donai n2:

Any datathat follows the keysis not relevant when checking that the domain matches the list item.

It is possible, though no doubt confusing, to use both kinds of lookup at once. Consider a file
containing lines like this:

192. 168.5.6: |search;/another/file

If the value of $sender_host_address is 192.168.5.6, expansion of the first domains setting above
generates the second setting, which therefore causes a second lookup to occur.

The rest of this chapter describes the different lookup types that are available. Any of them can be
used in any part of the configuration where alookup is permitted.

9.2 Lookup types
Two different types of datalookup are implemented:

68 File and database |ookups (9)

The single-key type requires the specification of a file in which to look, and a single key to search
for. The key must be a non-empty string for the lookup to succeed. The lookup type determines
how thefileis searched.

The query-style type accepts a generalized database query. No particular key value is assumed by
Exim for query-style lookups. You can use whichever Exim variables you need to construct the
database query.

The code for each lookup type isin a separate source file that isincluded in the binary of Exim only if
the corresponding compile-time option is set. The default settingsin sr¢/EDITME are:

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default. For some types of
lookup (e.g. SQL databases), you heed to install appropriate libraries and header files before building
Exim.

9.3 Single-key lookup types

The following single-key lookup types are implemented:

cdb: The given file is searched as a Constant DataBase file, using the key string without a
terminating binary zero. The cdb format is designed for indexed files that are read frequently and
never updated, except by total re-creation. As such, it is particulary suitable for large files
containing aliases or other indexed data referenced by an MTA. Information about cdb can be
found in several places:

http://www.pobox.com/~djb/cdb.html
ftp://ftp.cor pit.ru/pub/tinycdb/
http://packages.debian.or g/stable/utils/freecdb.html

A cdb distribution is not needed in order to build Exim with cdb support, because the code for
reading cdb files is included directly in Exim itself. However, no means of building or testing cdb
filesis provided with Exim, so you need to obtain a cdb distribution in order to do this.

dbm: Callsto DBM library functions are used to extract data from the given DBM file by looking
up the record with the given key. A terminating binary zero is included in the key that is passed to
the DBM library. See section 4.3 for adiscussion of DBM libraries.

For all versions of Berkeley DB, Exim uses the DB_HASH style of database when building DBM
files using the exim_dbmbuild utility. However, when using Berkeley DB versions 3 or 4, it opens
existing databases for reading with the DB_UNKNOWN option. This enables it to handle any of
the types of database that the library supports, and can be useful for accessing DBM files created by
other applications. (For earlier DB versions, DB_ HASH is always used.)

dbmnz: This is the same as dbm, except that a terminating binary zero is not included in the key
that is passed to the DBM library. You may need this if you want to look up data in files that are
created by or shared with some other application that does not use terminating zeros. For example,
you need to use dbmnz rather than dbm if you want to authenticate incoming SMTP calls using the
passwords from Courier’s /etc/userdbshadow.dat file. Exim's utility program for creating DBM
files (exim_dbmbuild) includes the zeros by default, but has an option to omit them (see section
50.9).

dsearch: The given file must be a directory; this is searched for a file whose name is the key. The
key may not contain any forward slash characters. The result of a successful lookup is the name of
the file. An example of how this lookup can be used to support virtual domains is given in section
47.7.

iplsearch: The given file is a text file containing keys and data. A key is terminated by a colon or
white space or the end of the line. The keys in the file must be IP addresses, or |P addresses with
CIDR masks. Keys that involve IPv6 addresses must be enclosed in quotes to prevent the first
internal colon being interpreted as a key terminator. For example:

69 File and database |ookups (9)

http://www.pobox.com/~djb/cdb.html
ftp://ftp.corpit.ru/pub/tinycdb/
http://packages.debian.org/stable/utils/freecdb.html

1.2.3.4: data for 1.2.3.4

192. 168. 0. 0/ 16 data for 192.168.0.0/ 16
"abcd: : cdab": data for abcd::cdab
"abcd: abcd: : / 32" data for abcd: abcd::/32

The key for an iplsearch lookup must be an IP address (without a mask). The file is searched
linearly, using the CIDR masks where present, until a matching key is found. The first key that
matches is used; there is no attempt to find a “best” match. Apart from the way the keys are
matched, the processing for iplsear ch isthe same as for Isear ch.

Warning 1: Unlike most other single-key lookup types, a file of data for iplsearch can not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

Warning 2: In ahost list, you must always use net-iplsear ch so that the implicit key is the host’s
| P address rather than its name (see section 10.12).

Isearch: The given file is a text file that is searched linearly for a line beginning with the search
key, terminated by a colon or white space or the end of the line. The search is case-insensitive; that
is, upper and lower case |etters are treated as the same. The first occurrence of the key that is found
inthefileisused.

White space between the key and the colon is permitted. The remainder of the line, with leading
and trailing white space removed, is the data. This can be continued onto subsequent lines by
starting them with any amount of white space, but only a single space character is included in the
data at such ajunction. If the data begins with a colon, the key must be terminated by a colon, for
example:

baduser: :fail:

Empty lines and lines beginning with # are ignored, even if they occur in the middie of an item.
This is the traditional textual format of alias files. Note that the keys in an Isearch file are litera
strings. There is no wildcarding of any kind.

In most Isearch files, keys are not required to contain colons or # characters, or white space.
However, if you need this feature, it is available. If a key begins with a doublequote character, it is
terminated only by a matching quote (or end of line), and the normal escaping rules apply to its
contents (see section 6.16). An optional colon is permitted after quoted keys (exactly as for
unquoted keys). There is no special handling of quotes for the data part of an Isear ch line.

nis: The given file is the name of a NIS map, and a NIS lookup is done with the given key, without
aterminating binary zero. There is a variant called nisO which does include the terminating binary
zero in the key. This is reportedly needed for Sun-style alias files. Exim does not recognize NIS
aliases; the full map names must be used.

wildlsearch or nwildlsearch: These search a file linearly, like Isearch, but instead of being
interpreted as a literal string, each key in the file may be wildcarded. The difference between these
two lookup types is that for wildlsear ch, each key in the file is string-expanded before being used,
whereas for nwildlsear ch, no expansion takes place.

Like Isearch, the testing is done case-insensitively. However, keys in the file that are regular
expressions can be made case-sensitive by theuse of (- i) within the pattern. The following forms
of wildcard are recogni zed:

(1) The string may begin with an asterisk to mean “ends with”. For example:

*.a.b.c data for anything.a.b.c
*fish data for anythingfish

(2) The string may begin with a circumflex to indicate a regular expression. For example, for
wildlsearch:

M Nd+\.a\.b\N data for <digits>. a.b

70 File and database |ookups (9)

Note the use of \ N to disable expansion of the contents of the regular expression. If you are
using nwildlsear ch, where the keys are not string-expanded, the equivalent entry is:

Md+\.a\.b data for <digits>. a.b

The case-insensitive flag is set at the start of compiling the regular expression, but it can be
turned off by using (-i) at an appropriate point. For example, to make the entire pattern
case-sengitive:

A(?-i)\d+\.a\.b data for <digits> a.b

If the regular expression contains white space or colon characters, you must either quote it (see
Isear ch above), or represent these characters in other ways. For example, \ s can be used for
white space and \ x3A for a colon. This may be easier than quoting, because if you quote, you
have to escape al the backsashes inside the quotes.

Note: It is not possible to capture substrings in a regular expression match for later use,
because the results of all lookups are cached. If alookup is repeated, the result is taken from
the cache, and no actual pattern matching takes place. The values of al the numeric variables
are unset after a (n)wildlsear ch match.

(3) Although I cannot see it being of much use, the general matching function that is used to
implement (n)wildlsear ch means that the string may begin with alookup name terminated by
asemicolon, and followed by lookup data. For example:

cdb;/sonme/file data for keys that match the file
The data that is obtained from the nested lookup is discarded.

Keys that do not match any of these patterns are interpreted literally. The continuation rules for the
data are the same as for |sear ch, and keys may be followed by optional colons.

Warning: Unlike most other single-key lookup types, a file of data for (n)wildlsearch can not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

9.4 Query-style lookup types

The supported query-style lookup types are listed below. Further details about many of them are given
in later sections.

dnsdb: This does a DNS search for one or more records whose domain names are given in the
supplied query. The resulting data is the contents of the records. See section 9.10.

ibase: This does alookup in an InterBase database.

Idap: This does an LDAP lookup using a query in the form of a URL, and returns attributes from a
single entry. There is a variant called ldapm that permits values from multiple entries to be
returned. A third variant called Idapdn returns the Distinguished Name of a single entry instead of
any attribute values. See section 9.13.

mysgl: The format of the query is an SQL statement that is passed to a MySQL database. See
section 9.20.

nisplus: This does a NIS+ lookup using a query that can specify the name of the field to be
returned. See section 9.19.

oracle: The format of the query is an SQL statement that is passed to an Oracle database. See
section 9.20.

passwd is a query-style lookup with queries that are just user names. The lookup calls getpwnam()
to interrogate the system password data, and on success, the result string is the same as you would
get from an Isearch lookup on atraditional /etc/passwd file, though with * for the password value.
For example:

71 File and database |ookups (9)

*:42: 42: King Rat:/hone/kr:/bin/bash

* pgsgl: The format of the query is an SQL statement that is passed to a PostgreSQL database. See
section 9.20.

» gglite: The format of the query is a file name followed by an SQL statement that is passed to an
SQL ite database. See section 9.24.

 testdb: Thisis alookup type that is used for testing Exim. It is not likely to be useful in normal
operation.

» whoson: Whoson (http://whoson.sour ceforge.net) is a proposed Internet protocol that allows
Internet server programs to check whether a particular (dynamically allocated) IP address is
currently allocated to a known (trusted) user and, optionally, to obtain the identity of the said user.
In Exim, this can be used to implement “POP before SMTP” checking using ACL statements such
as

require condition =\
${| ookup whoson {$sender _host _address}{yes}{no}}

The query consists of a single |P address. The value returned is the name of the authenticated user,
which is stored in the variable $value. However, in this example, the data in $value is not used; the
result of the lookup is one of the fixed strings “yes” or “no”.

9.5 Temporary errors in lookups

L ookup functions can return temporary error codes if the lookup cannot be completed. For example,
an SQL or LDAP database might be unavailable. For this reason, it is not advisable to use a lookup
that might do thisfor critical options such as alist of local domains.

When a lookup cannot be completed in a router or transport, delivery of the message (to the relevant
address) is deferred, as for any other temporary error. In other circumstances Exim may assume the
lookup has failed, or may give up atogether.

9.6 Default values in single-key lookups

In this context, a“default value” is a value specified by the administrator that is to be used if alookup
fails.

Note: This section applies only to single-key lookups. For query-style lookups, the facilities of the
guery language must be used. An attempt to specify a default for a query-style lookup provokes an
error.

If “*” is added to a single-key lookup type (for example, Isear ch*) and the initial lookup fails, the key
“*" jslooked up in the file to provide a default value. See also the section on partial matching below.

Alternatively, if “*@” is added to a single-key lookup type (for example dbm* @) then, if the initial
lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in alias files that include
the domains in the keys. If the second lookup fails (or doesn’t take place because thereisno @ in the
key), “*" islooked up. For example, aredirect router might contain:

data = ${I ookup{$l ocal part @donai n}| search*@/etc/ m x-al i ases}}

Suppose the address that is being processed is jane@eyre.example. Exim looks up these keys, in this
order:

j ane@yre. exanpl e
*@yre. exanpl e

The data is taken from whichever key it finds first. Note: In an Isearch file, this does not mean the
first of these keys in the file. A complete scan is done for each key, and only if it is not found at all

72 File and database |ookups (9)

http://whoson.sourceforge.net

does Exim move on to try the next key.

9.7 Partial matching in single-key lookups

The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partia matching. In this case, information in the file that has a key starting with “*.” is matched by
any domain that ends with the components that follow the full stop. For example, if akey in a DBM
fileis

*.dates.fict.exanple

then when partial matching is enabled this is matched by (amongst others) 2001.dates.fict.example
and 1984.datesfict.example. It is aso matched by datesfict.example, if that does not appear as a
separate key in thefile.

Note: Partial matching is not available for query-style lookups. It is also not available for any lookup
itemsin address lists (see section 10.18).

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that partial matching keys beginning with a specia prefix (default “*.”) are included
in the data file. Keys in the file that do not begin with the prefix are matched only by unmodified
subject keys when partial matching isin use.

Partial matching is requested by adding the string “partial-" to the front of the name of a single-key
lookup type, for example, partial-dbom. When this is done, the subject key is first looked up
unmodified; if that fails, “*.” is added at the start of the subject key, and it is looked up again. If that
fails, further lookups are tried with dot-separated components removed from the start of the subject
key, one-by-one, and “*.” added on the front of what remains.

A minimum number of two non-* components are required. This can be adjusted by including a
number before the hyphen in the search type. For example, partial3-Isearch specifies a minimum of
three non-* components in the modified keys. Omitting the number is equivalent to “partial2-". If the
subject key is 2250.dates.fict.example then the following keys are looked up when the minimum
number of non-* componentsis two:

2250. dates. fi ct. exanpl e
* 2250. dates.fict.exanple
* dates.fict.exanple
* fict.exanple
As soon as one key in the sequence is successfully looked up, the lookup finishes.

Theuse of “*.” asthe partial matching prefix is a default that can be changed. The motivation for this
feature is to allow Exim to operate with file formats that are used by other MTAs. A different prefix
can be supplied in parentheses instead of the hyphen after “partial”. For example:

domai ns = partial (.)lsearch;/sone/file

In this example, if the domain is a.b.c, the sequence of lookupsisa. b.c,.a. b.c,and. b. ¢ (the
default minimum of 2 non-wild components is unchanged). The prefix may consist of any punctuation
characters other than a closing parenthesis. It may be empty, for example:

domai ns = partial 1()cdb;/sone/file
For this example, if the domain is a.b.c, the sequence of lookupsisa. b. ¢, b. c,andc.

If “partial 0" is specified, what happens at the end (when the lookup with just one non-wild component
has failed, and the original key is shortened right down to the null string) depends on the prefix:

« If the prefix has zero length, the whole lookup fails.

« If the prefix has length 1, a lookup for just the prefix is done. For example, the final lookup for
“partial0(.)” isfor . aone.

73 File and database |ookups (9)

» Otherwise, if the prefix ends in a dot, the dot is removed, and the remainder is looked up. With the
default prefix, therefore, the final lookup isfor “*” onits own.

» Otherwise, the whole prefix is looked up.

If the search type endsin “*” or “*@" (see section 9.6 above), the search for an ultimate default that
this implies happens after all partial lookups have failed. If “partial0” is specified, adding “*” to the
search type has no effect with the default prefix, because the “*” key is already included in the
sequence of partial lookups. However, there might be a use for lookup types such as
“partial O(.)Isearch*”.

The use of “*” in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as
*fict.exanpl einadatabase fileis useless, because the asterisk in a partial matching subject key
is aways followed by adot.

9.8 Lookup caching

Exim caches all lookup results in order to avoid needless repetition of lookups. However, because
(apart from the daemon) Exim operates as a collection of independent, short-lived processes, this
caching applies only within asingle Exim process. There is no inter-process lookup caching facility.

For single-key lookups, Exim keeps the relevant files open in case there is another lookup that needs
them. In some types of configuration this can lead to many files being kept open for messages with
many recipients. To avoid hitting the operating system limit on the number of simultaneously open
files, Exim closes the least recently used file when it needs to open more files than its own interna
limit, which can be changed viathe lookup_open_max option.

The single-key lookup files are closed and the lookup caches are flushed at strategic points during
delivery —for example, after all routing is complete.

9.9 Quoting lookup data

When data from an incoming message is included in a query-style lookup, there is the possibility of
specia characters in the data messing up the syntax of the query. For example, a NIS+ query that
contains

[name=$l ocal _part]

will be broken if the local part happens to contain a closing square bracket. For NIS+, data can be
enclosed in double quotes like this:

[name="$l ocal _part"]

but this till leaves the problem of a double quote in the data. The rule for NIS+ is that double quotes
must be doubled. Other lookup types have different rules, and to cope with the differing requirements,
an expansion operator of the following form is provided:

${ quot e_<I ookup-type>: <string>}
For example, the safest way to write the NIS+ query is

[name="${quot e_ni spl us: $l ocal _part}"]

See chapter 11 for full coverage of string expansions. The quote operator can be used for all lookup
types, but has no effect for single-key lookups, since no quoting is ever needed in their key strings.

9.10 More about dnsdb

The dnsdb lookup type uses the DNS as its database. A simple query consists of a record type and a
domain name, separated by an equals sign. For example, an expansion string could contain:

${| ookup dnsdb{nx=a. b. exanpl e}{$val ue}fail}

74 File and database |ookups (9)

If the lookup succeeds, the result is placed in $value, which in this case is used on its own as the
result. If the lookup does not succeed, the f ai | keyword causes a forced expansion failure — see
section 11.4 for an explanation of what this means.

The supported DNS record types are A, CNAME, MX, NS, PTR, SRV, and TXT, and, when Exim is
compiled with 1Pv6 support, AAAA (and A6 if that is aso configured). If no type is given, TXT is
assumed. When the type is PTR, the data can be an IP address, written as normal; inversion and the
addition of in-addr .arpa or ip6.ar pa happens automatically. For example:

${| ookup dnsdb{ptr=192. 168. 4. 5} { $val ue}fail}

If the data for a PTR record is not a syntactically valid IP address, it is not altered and nothing is
added.

For an MX lookup, both the preference value and the host name are returned for each record,
separated by a space. For an SRV lookup, the priority, weight, port, and host name are returned for
each record, separated by spaces.

For any record type, if multiple records are found (or, for A6 lookups, if a single record leads to
multiple addresses), the data is returned as a concatenation, with newline as the default separator. The
order, of course, depends on the DNS resolver. You can specify a different separator character
between multiple records by putting a right angle-bracket followed immediately by the new separator
at the start of the query. For example:

${1 ookup dnsdb{>: a=host 1. exanpl e}}
It is permitted to specify a space as the separator character. Further white space isignored.

9.11 Pseudo dnsdb record types

By default, both the preference value and the host name are returned for each MX record, separated
by a space. If you want only host names, you can use the pseudo-type MXH:

${1 ookup dnsdb{nxh=a. b. exanpl e}}
In this case, the preference values are omitted, and just the host names are returned.

Another pseudo-type is ZNS (for “zone NS’). It performs a lookup for NS records on the given
domain, but if none are found, it removes the first component of the domain name, and tries again.
This process continues until NS records are found or there are no more components left (or there is a
DNS error). In other words, it may return the name servers for atop-level domain, but it never returns
the root name servers. If there are no NS records for the top-level domain, the lookup fails. Consider
these examples:

${1 ookup dnsdb{zns=xxx. quercite.cont}
${I ookup dnsdb{zns=xxx. edu}}

Assuming that in each case there are no NS records for the full domain name, the first returns the
name servers for quer cite.com, and the second returns the name servers for edu.

Y ou should be careful about how you use this lookup because, unless the top-level domain does not
exist, the lookup always returns some host names. The sort of use to which this might be put is for
seeing if the name servers for a given domain are on a blacklist. You can probably assume that the
name servers for the high-level domains such as com or co.uk are not going to be on such alist.

A third pseudo-type is CSA (Client SMTP Authorization). This looks up SRV records according to
the CSA rules, which are described in section 40.39. Although dnsdb supports SRV |ookups directly,
this is not sufficient because of the extra parent domain search behaviour of CSA. The result of a
successful lookup such as:

${| ookup dnsdb {csa=$sender_hel o_nane}}

has two space-separated fields: an authorization code and a target host name. The authorization code
canbe®Y” for yes, “N” for no, “X” for explicit authorization required but absent, or “?’ for unknown.

75 File and database |ookups (9)

9.12 Multiple dnsdb lookups

In the previous sections, dnsdb lookups for a single domain are described. However, you can specify
alist of domains or IP addresses in a single dnsdb lookup. The list is specified in the normal Exim
way, with colon as the default separator, but with the ability to change this. For example:

${| ookup dnsdb{one. domai n. com t wo. dorai n. con} }
${| ookup dnsdb{a=one. host.com two. host. con}}
${1 ookup dnsdb{ptr = <; 1.2.3.4 ; 4.5.6.8}}

In order to retain backwards compatibility, there is one special case: if the lookup type is PTR and no
change of separator is specified, Exim looks to see if the rest of the string is precisely one IPv6
address. In this case, it does not treat it asalist.

The data from each lookup is concatenated, with newline separators by default, in the same way that
multiple DNS records for a single item are handled. A different separator can be specified, as
described above.

The dnsdb lookup fails only if all the DNS lookups fail. If there is atemporary DNS error for any of
them, the behaviour is controlled by an optional keyword followed by a comma that may appear
before the record type. The possible keywords are “defer_strict”, “defer_never”, and “defer_lax”.
With “strict” behaviour, any temporary DNS error causes the whole lookup to defer. With “never”
behaviour, atemporary DNS error isignored, and the behaviour is as if the DNS lookup failed to find
anything. With “lax” behaviour, al the queries are attempted, but a temporary DNS error causes the
whole lookup to defer only if none of the other lookups succeed. The default is“lax”, so the following
lookups are equivalent:

${|1 ookup dnsdb{defer _| ax, a=one. host.com two. host. cont}
${| ookup dnsdb{a=one. host.com two. host. con}}

Thus, in the default case, as long as at least one of the DNS lookups yields some data, the lookup
succeeds.

9.13 More about LDAP

The origina LDAP implementation came from the University of Michigan; this has become “Open
LDAP’, and there are now two different releases. Another implementation comes from Netscape, and
Solaris 7 and subsequent releases contain inbuilt LDAP support. Unfortunately, though these are all
compatible at the lookup function level, their error handling is different. For this reason it is necessary
to set a compile-time variable when building Exim with LDAP, to indicate which LDAP library isin
use. One of the following should appear in your Local/Makefile:

LDAP_LI B_TYPE=UM CHI GAN
LDAP_LI B_TYPE=CPENLDAP1
LDAP_LI B_TYPE=0OPENLDAP2
LDAP_LI B_TYPE=NETSCAPE
LDAP_LI B_TYPE=SOLARI S

If LDAP_LIB_TYPE is not set, Exim assumes OPENLDAP1, which has the same interface as the
University of Michigan version.

There are three LDAP lookup types in Exim. These behave dightly differently in the way they handle
the results of aquery:

* Idap requiresthe result to contain just one entry; if there are more, it gives an error.

 Idapdn also requires the result to contain just one entry, but it is the Distinguished Name that is
returned rather than any attribute values.

» Idapm permits the result to contain more than one entry; the attributes from all of them are
returned.

For Idap and Idapm, if a query finds only entries with no attributes, Exim behaves as if the entry did
not exist, and the lookup fails. The format of the data returned by a successful lookup is described in
the next section. First we explain how LDAP queries are coded.

76 File and database |ookups (9)

9.14 Format of LDAP queries

An LDAP query takes the form of a URL as defined in RFC 2255. For example, in the configuration
of aredirect router one might have this setting:

data = ${| ookup |dap \
{I dap:///cn=$l ocal _part, o=Uni versity%0of %20Canbri dge, \
c=UK?mai | box?base?}}

The URL may begin with | dap or | daps if your LDAP library supports secure (encrypted) LDAP
connections. The second of these ensures that an encrypted TL S connection is used.

9.15 LDAP quoting

Two levels of quoting are required in LDAP queries, the first for LDAP itself and the second because
the LDAP query is represented as a URL. Furthermore, within an LDAP query, two different kinds of
quoting are required. For this reason, there are two different LDAP-specific quoting operators.

The quote_I|dap operator is designed for use on strings that are part of filter specifications.
Conceptually, it first does the following conversions on the string:

* => \ 2A
(= \28
) => \ 29
\ => \5C

in accordance with RFC 2254. The resulting string is then quoted according to the rules for URLS,
that is, all non-alphanumeric characters except

s o- 0 _ () * o+
are converted to their hex values, preceded by a percent sign. For example:
${quote_| dap: a(bc)*, a<yz>; }
yields
%20a%6C28bc ¥ C29% C2AYR CY20a%3Cy z Y8 EY3BYR0
Removing the URL quoting, thisis (with aleading and atrailing space):
a\ 28bc\ 29\ 2A, a<yz>;

The quote Idap_dn operator is designed for use on strings that are part of base DN specifications in
queries. Conceptually, it first converts the string by inserting a backslash in front of any of the
following characters:

, + "N < >

It also inserts a backslash before any leading spaces or # characters, and before any trailing spaces.
(These rules are in RFC 2253.) The resulting string is then quoted according to the rules for URLSs.
For example:

${quote_l dap_dn: a(bc)*, a<yz>; }
yields

% CY¥20a(bc) * %5 C¥2C¥20a%b C¥38Cy z % CYBEYS CY8BYS CO/R20
Removing the URL quoting, thisis (with atrailing space):

\ a(bc)*\, a\l<yz\>\;\

There are some further comments about quoting in the section on LDAP authentication below.

9.16 LDAP connections

77 File and database |ookups (9)

The connection to an LDAP server may either be over TCP/IP, or, when OpenLDAP isin use, viaa
Unix domain socket. The example given above does not specify an LDAP server. A server that is
reached by TCP/IP can be specified in aquery by starting it with

| dap: // <host nane>: <port>/. ..

If the port (and preceding colon) are omitted, the standard LDAP port (389) is used. When no server
is specified in a query, alist of default servers is taken from the Idap_default_servers configuration
option. This supplies a colon-separated list of servers which are tried in turn until one successfully
handles a query, or there is a serious error. Successful handling either returns the requested data, or
indicates that it does not exist. Serious errors are syntactical, or multiple values when only a single
value is expected. Errors which cause the next server to be tried are connection failures, bind failures,
and timeouts.

For each server name in the list, a port number can be given. The standard way of specifing a host and
port is to use a colon separator (RFC 1738). Because |dap_default_serversis a colon-separated list,
such colons have to be doubled. For example

| dap_default _servers = | dapl. exanpl e.com : 145: | dap2. exanpl e. com

If Idap_default_serversis unset, a URL with no server name is passed to the LDAP library with no
server name, and the library’ s default (normally the local host) is used.

If you are using the OpenLDAP library, you can connect to an LDAP server using a Unix domain
socket instead of a TCP/IP connection. This is specified by using | dapi instead of | dap in LDAP
gueries. What follows here applies only to OpenLDAP. If Exim is compiled with a different LDAP
library, thisfeature is not available.

For this type of connection, instead of a host name for the server, a pathname for the socket is
required, and the port number is not relevant. The pathname can be specified either as an item in
Idap_default_servers, or inlinein the query. In the former case, you can have settings such as

| dap_defaul t _servers = /tnp/| dap.sock : backup.|dap.your. domain

When the pathname is given in the query, you have to escape the dashes as ¥2F to fit in with the
LDAP URL syntax. For example:

${1 ookup I dap {I dapi://%RFt np%2FI dap. sock/ o=. ..

When Exim processes an LDAP lookup and finds that the “hostname” is really a pathname, it uses the
Unix domain socket code, even if the query actually specifies | dap or | daps. In particular, no
encryption is used for a socket connection. This behaviour means that you can use a setting of |dap_
default_servers such as in the example above with traditional | dap or | daps queries, and it will
work. First, Exim tries a connection via the Unix domain socket; if that fails, it tries a TCP/IP
connection to the backup host.

If an explicit | dapi type is given in a query when a host name is specified, an error is diagnosed.
However, if there are more itemsin ldap_default_servers, they aretried. In other words:

» Using apathname with | dap or | daps forces the use of the Unix domain interface.
* Using | dapi with a host name causes an error.

Using | dapi with no host or path in the query, and no setting of Idap_default_servers, does
whatever the library does by default.

9.17 LDAP authentication and control information

The LDAP URL syntax provides no way of passing authentication and other control information to
the server. To make this possible, the URL in an LDAP query may be preceded by any number of
<name>=<value> settings, separated by spaces. If a value contains spaces it must be enclosed in
double quotes, and when double quotes are used, backslash is interpreted in the usual way inside
them. The following names are recognized:

78 File and database |ookups (9)

DEREFERENCE set the dereferencing parameter

NETTI ME set atimeout for a network operation

USER set the DN, for authenticating the LDAP bind
PASS set the password, likewise

REFERRALS set thereferrals parameter

SI ZE set the limit for the number of entries returned
TI ME set the maximum waiting time for a query

The value of the DEREFERENCE parameter must be one of the words “never”, “searching”,
“finding”, or “aways’. The value of the REFERRALS parameter must be “follow” (the default) or
“nofollow”. The latter stops the LDAP library from trying to follow referrals issued by the LDAP
server.

The name CONNECT is an obsolete name for NETTIME, retained for backwards compatibility. This
timeout (specified as a number of seconds) is enforced from the client end for operations that can be
caried out over a network. Specifically, it applies to network connections and calls to the
Idap_result() function. If the value is greater than zero, it is used if LDAP_OPT_NETWORK _
TIMEOUT is defined in the LDAP headers (OpenLDAP), or if LDAP_X_OPT_CONNECT_
TIMEOUT is defined in the LDAP headers (Netscape SDK 4.1). A vaue of zero forces an explicit
setting of “no timeout” for Netscape SDK; for OpenLDAP no action is taken.

The TIME parameter (also a number of seconds) is passed to the server to set a server-side limit on
the time taken to complete a search.

Here is an example of an LDAP query in an Exim lookup that uses some of these values. Thisis a
single line, folded to fit on the page:

${1 ookup | dap
{user ="cn=manager, o=Uni versity of Canbridge, c=UK" pass=secr et
I dap:///o=University%0of ¥20Canbri dge, c=UK?sn?sub?(cn=f 00) }
{$val ue}fail}

The encoding of spaces as %20 isaURL thing which should not be done for any of the auxiliary data.
Exim configuration settings that include lookups which contain password information should be
preceded by “hide” to prevent non-admin users from using the -bP option to see their values.

The auxiliary dataitems may be given in any order. The default is no connection timeout (the system
timeout is used), no user or password, no limit on the number of entries returned, and no time limit on
gueries.

When a DN is quoted in the USER= setting for LDAP authentication, Exim removes any URL
quoting that it may contain before passing it LDAP. Apparently some libraries do this for themselves,
but some do not. Removing the URL quoting has two advantages:

It makesit possible to use the same quote ldap_dn expansion for USER= DNs as with DNsinside
actual queries.

* It permits spaces inside USER= DNs.

For example, a setting such as
USER=cn=${ quot e_| dap_dn: $1}

should work even if $1 contains spaces.

Expanded data for the PASS= value should be quoted using the quote expansion operator, rather than
the LDAP quote operators. The only reason this field needs quoting is to ensure that it conforms to the
Exim syntax, which does not allow unquoted spaces. For example:

PASS=${ quot e: $3}

The LDAP authentication mechanism can be used to check passwords as pat of SMTP
authentication. See the [dapauth expansion string condition in chapter 11.

79 File and database |ookups (9)

9.18 Format of data returned by LDAP

The Idapdn lookup type returns the Distinguished Name from a single entry as a sequence of values,
for example

cn=manager, o=University of Canbridge, c=UK

The |dap lookup type generates an error if more than one entry matches the search filter, whereas
Idapm permits this case, and inserts a newline in the result between the data from different entries. It
is possible for multiple values to be returned for both Idap and Idapm, but in the former case you
know that whatever values are returned all came from a single entry in the directory.

In the common case where you specify a single attribute in your LDAP query, the result is not quoted,
and does not contain the attribute name. If the attribute has multiple values, they are separated by
commeas.

If you specify multiple attributes, the result contains space-separated, quoted strings, each preceded
by the attribute name and an equals sign. Within the quotes, the quote character, backslash, and
newline are escaped with backslashes, and commas are used to separate multiple values for the
attribute. Apart from the escaping, the string within quotes takes the same form as the output when a
single attribute is requested. Specifying no attributes is the same as specifying all of an entry’s
attributes.

Here are some examples of the output format. The first line of each pair is an LDAP query, and the
second is the data that is returned. The attribute called attr1 has two values, whereas attr2 has only
one value:

| dap:/// o=base?attr 1?sub?(ui d=fred)
val uel. 1, valuel.?2

| dap:/// o=base?attr2?sub?(ui d=fred)
val ue two

| dap:///o=base?attrl, attr2?sub?(ui d=fred)
attrl1="val uel. 1, valuel.2" attr2="val ue two"

| dap:/// o=base??sub?(ui d=fred)
obj ectCl ass="top" attrl="valuel.1, valuel.2" attr2="val ue two"

The extract operator in string expansions can be used to pick out individual fields from data that
consists of key=value pairs. You can make use of Exim's -be option to run expansion tests and
thereby check the results of LDAP lookups.

9.19 More about NIS+

NIS+ gueries consist of a NI S+ indexed name followed by an optional colon and field name. If thisis
given, the result of a successful query is the contents of the named field; otherwise the result consists
of a concatenation of field-name=field-value pairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

[name=nyl1456], passwd. org_dir
might return the string

nane=ngl456 passwd="" ui d=999 gi d=999 gcos="Martin GQuerre"
hone=/ hone/ ngl456 shel | =/ bi n/ bash shadow=""

(split over two lines hereto fit on the page), whereas
[name=nyl1456], passwd. org_di r: gcos
would just return
Martin Querre

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given indexed

80 File and database |ookups (9)

key. The effect of the quote_nisplus expansion operator is to double any quote characters within the
text.

9.20 SQL lookups

Exim can support lookups in InterBase, MySQL, Oracle, PostgreSQL, and SQL ite databases. Queries
for these databases contain SQL statements, so an example might be

${| ookup mnysql {sel ect mail box fromusers where id="userx'}\
{$val ue}fail}

If the result of the query contains more than one field, the data for each field in the row is returned,
preceded by its name, so the result of

${| ookup pgsql {sel ect hone, nane from users where id="userx'}\
{$val ue}}

might be

home=/ honme/ user x nane="M ster X"

Empty values and values containing spaces are double quoted, with embedded quotes escaped by a
backslash. If the result of the query contains just one field, the value is passed back verbatim, without
afield name, for example:

Mster X

If the result of the query yields more than one row, it is al concatenated, with a newline between the
datafor each row.

9.21 More about MySQL, PostgreSQL, Oracle, and InterBase

If any MySQL, PostgreSQL, Oracle, or InterBase lookups are used, the mysql_servers, pgsgl_
servers, oracle_servers, or ibase_serversoption (as appropriate) must be set to a colon-separated list
of server information. Each item in the list is a slash-separated list of four items: host name, database
name, user name, and password. In the case of Oracle, the host name field is used for the “service
name”, and the database name field is not used and should be empty. For example:

hi de oracl e _servers = oracl e. pl c. exanpl e/ / user x/ abcdwxyz

Because password data is sensitive, you should always precede the setting with “hide’, to prevent
non-admin users from obtaining the setting via the -bP option. Here is an example where two MySQL
servers are listed:

hi de nysql _servers = | ocal host/users/root/secret:\
ot her host / user s/ root/ ot hersecr et

For MySQL and PostgreSQL, a host may be specified as <name>:<port> but because this is a
colon-separated list, the colon has to be doubled. For each query, these parameter groups are tried in
order until a connection and a query succeeds.

The quote_mysqgl, quote pgsql, and quote_or acle expansion operators convert newline, tab, carriage
return, and backspace to \n, \t, \r, and \b respectively, and the characters single-quote, double-quote,
and backdlash itself are escaped with backslashes. The quote pgsqgl expansion operator, in addition,
escapes the percent and underscore characters. This cannot be done for MySQL because these escapes
are not recognized in contexts where these characters are not special.

9.22 Special MySQL features

For MySQL, an empty host name or the use of “localhost” in mysgl_servers causes a connection to
the server on the local host by means of a Unix domain socket. An alternate socket can be specified in
parentheses. The full syntax of each itemin mysgl_serversis:

<hostname>::<port>(<socket name>)/<database>/<user>/<password>

81 File and database |ookups (9)

Any of the three sub-parts of the first field can be omitted. For normal use on the local host it can be
left blank or set to just “localhost”.

No database need be supplied — but if it is absent here, it must be given in the queries.

If aMySQL query isissued that does not request any data (an insert, update, or delete command), the
result of the lookup is the number of rows affected.

Warning: This can be misleading. If an update does not actually change anything (for example,
setting afield to the value it aready has), the result is zero because no rows are affected.

9.23 Special PostgreSQL features

PostgreSQL lookups can also use Unix domain socket connections to the database. This is usually
faster and costs less CPU time than a TCP/IP connection. However it can be used only if the mail
server runs on the same machine as the database server. A configuration line for PostgreSQL via Unix
domain sockets looks like this:

hi de pgsql _servers = (/tnp/.s. PGSQL. 5432)/ db/ user/ password :

In other words, instead of supplying a host name, a path to the socket is given. The path name is
enclosed in parentheses so that its slashes aren’t visually confused with the delimiters for the other
server parameters.

If aPostgreSQL query isissued that does not request any data (an insert, update, or delete command),
the result of the lookup is the number of rows affected.

9.24 More about SQLite

SQL.ite is different to the other SQL lookups because a file name is required in addition to the SQL
guery. An SQL ite database is a single file, and there is no daemon as in the other SQL databases. The
interface to Exim requires the name of the file, as an absolute path, to be given at the start of the
query. It is separated from the query by white space. This means that the path name cannot contain
white space. Here is alookup expansion example:

${I1 ookup sqlite {/some/thing/sqlitedb \
sel ect nane fromaliases where id="userx';}}

In alist, the syntax is similar. For example:

domai nlist relay_domains = sqlite;/sone/thing/sqlitedb \
select * fromrelays where ip='$sender _host _address';

The only character affected by the quote sglite operator is a single quote, which it doubles.

The SQL.ite library handles multiple simultaneous accesses to the database internally. Multiple readers
are permitted, but only one process can update at once. Attempts to access the database while it is
being updated are rejected after atimeout period, during which the SQL.ite library waits for the lock to
be released. In Exim, the default timeout is set to 5 seconds, but it can be changed by means of the
sglite_lock_timeout option.

82 File and database |ookups (9)

10. Domain, host, address, and local part lists

A number of Exim configuration options contain lists of domains, hosts, email addresses, or local
parts. For example, the hold_domains option contains a list of domains whose delivery is currently
suspended. These lists are also used as data in ACL statements (see chapter 40), and as arguments to
expansion conditions such as match_domain.

Each item in one of these lists is a pattern to be matched against a domain, host, email address, or
local part, respectively. In the sections below, the different types of pattern for each case are
described, but first we cover some general facilities that apply to all four kinds of list.

10.1 Expansion of lists

Each list is expanded as a single string before it is used. The result of expansion must be a list,
possibly containing empty items, which is split up into separate items for matching. By default, colon
is the separator character, but this can be varied if necessary. See sections 6.19 and 6.20 for details of
the list syntax; the second of these discusses the way to specify empty list items.

If the string expansion is forced to fail, Exim behaves asif the item it istesting (domain, host, address,
or local part) isnot in the list. Other expansion failures cause temporary errors.

If anitemin alist is aregular expression, backsashes, dollars and possibly other special charactersin
the expression must be protected against misinterpretation by the string expander. The easiest way to
do thisisto usethe\ N expansion feature to indicate that the contents of the regular expression should
not be expanded. For example, in an ACL you might have:

deny senders = \ NN\ d{8}\w@ *\. baddorai n\. exanpl e$\ N : \
${| ookup{ $donmi n} | sear ch{/ badsender s/ bydonmai n} }

Thefirst item is aregular expression that is protected from expansion by \ N, whereas the second uses
the expansion to obtain alist of unwanted senders based on the receiving domain.

10.2 Negated items in lists

Items in a list may be positive or negative. Negative items are indicated by a leading exclamation
mark, which may be followed by optional white space. A list defines a set of items (domains, etc).
When Exim processes one of these lists, it is trying to find out whether a domain, host, address, or
local part (respectively) isin the set that is defined by thelist. It works like this:

Thelist is scanned from left to right. If a positive item is matched, the subject that is being checked is
in the set; if a negative item is matched, the subject is not in the set. If the end of the list is reached
without the subject having matched any of the patterns, it isin the set if the last item was a negative
one, but not if it was a positive one. For example, thelist in

domainlist relay domains = la.b.c : *.b.c

matches any domain ending in .b.c except for a.b.c. Domains that match neither a.b.c nor *.b.c do not
match, because the last item in the list is positive. However, if the setting were

domai nlist relay domains = la.b.c

then all domains other than a.b.c would match because the last item in the list is negative. In other
words, alist that ends with a negative item behaves asif it had an extraitem : * on the end.

Another way of thinking about positive and negative items in lists is to read the connector as “or”
after apositive item and as“and” after a negative item.

10.3 File names in lists

If an item in adomain, host, address, or local part list is an absolute file name (beginning with a slash
character), each line of the file is read and processed as if it were an independent item in the ligt,
except that further file names are not allowed, and no expansion of the data from the file takes place.
Empty linesin the file are ignored, and the file may also contain comment lines:

83 Domain, host, and address lists (10)

» For domain and host lists, if a# character appears anywherein aline of thefile, it and all following
characters are ignored.

» Because local parts may legitimately contain # characters, a comment in an address list or local part
list file isrecognized only if # is preceded by white space or the start of the line. For example:

not #comrent @X. y. z # but this is a conment

Putting a file name in alist has the same effect as inserting each line of the file as an item in the list
(blank lines and comments excepted). However, there is one important difference: the fileisread each
timethelist is processed, so if its contents vary over time, Exim’ s behaviour changes.

If afile nameis preceded by an exclamation mark, the sense of any match within the file is inverted.
For example, if

hol d_domai ns = !/etc/ nohol d- domai ns

and the file contains the lines

la.b.c
* b.c

then a.b.c is in the set of domains defined by hold_domains, whereas any domain matching *. b. c
is not.

10.4 An Isearch file is not an out-of-line list

As will be described in the sections that follow, lookups can be used in lists to provide indexed
methods of checking list membership. There has been some confusion about the way |sear ch lookups
work in lists. Because an Isear ch file contains plain text and is scanned sequentially, it is sometimes
thought that it is allowed to contain wild cards and other kinds of non-constant pattern. Thisis not the
case. The keysin an Isear ch file are always fixed strings, just as for any other single-key lookup type.

If you want to use afile to contain wild-card patterns that form part of alist, just give the file name on
its own, without a search type, as described in the previous section. You could aso use the
wildlsear ch or nwildlsear ch, but thereis no advantage in doing this.

10.5 Named lists

A list of domains, hosts, email addresses, or local parts can be given a name which is then used to
refer to the list elsewhere in the configuration. This is particularly convenient if the same list is
required in several different places. It also allows lists to be given meaningful names, which can
improve the readability of the configuration. For example, it is conventional to define a domain list
called local_domains for all the domains that are handled locally on a host, using a configuration line
such as

domai nli st |ocal _domains = | ocal host: ny. dom exanpl e

Named lists are referenced by giving their name preceded by a plus sign, so, for example, arouter that
isintended to handle local domains would be configured with the line

domai ns = +l ocal _donai ns

The first router in a configuration is often one that handles all domains except the local ones, using a
configuration with a negated item like this:

dnsl ookup:
driver = dnsl ookup
domai ns = ! +l ocal _domai ns
transport = renote_sntp
no_nor e

The four kinds of named list are created by configuration lines starting with the words domainlist,
hostlist, addresdlist, or localpartlist, respectively. Then there follows the name that you are defining,

84 Domain, host, and address lists (10)

followed by an equals sign and the list itself. For example:

host | i st rel ay_hosts
addresslist bad senders

192.168.23.0/24 : ny.friend. exanpl e
cdb; / et c/ badsenders

A named list may refer to other named lists:

domai nlist donl
domai nlist donk
domai nli st donB3

first.exanple : second. exanpl e
+doml : third. exanpl e
fourth. exanple : +donR : fifth.exanple

Warning: If the last item in a referenced list is a negative one, the effect may not be what you
intended, because the negation does not propagate out to the higher level. For example, consider:

la. b
+doml : *.b

domai nlist doml
domai nli st donR

The second list specifies “either in the dom1 list or *.b”. The first list specifies just “not a.b”, so the
domain x.y matches it. That means it matches the second list as well. The effect is not the same as

domainlist don2 =la.b: *.b
where x.y does not match. It's best to avoid negation atogether in referenced lists if you can.

Named lists may have a performance advantage. When Exim is routing an address or checking an
incoming message, it caches the result of tests on named lists. So, if you have a setting such as

domai ns = +l ocal _donai ns

on severa of your routers or in several ACL statements, the actual test is done only for the first one.
However, the caching works only if there are no expansions within the list itself or any sublists that it
references. In other words, caching happens only for lists that are known to be the same each time
they are referenced.

By default, there may be up to 16 named lists of each type. This limit can be extended by changing a
compile-time variable. The use of domain and host lists is recommended for concepts such as local
domains, relay domains, and relay hosts. The default configuration is set up like this.

10.6 Named lists compared with macros

At first sight, named lists might seem to be no different from macros in the configuration file.
However, macros are just textual substitutions. If you write

ALI ST = hostl : host2
auth_advertise hosts = ' ALI ST

it probably won't do what you want, because that is exactly the same as
auth_advertise hosts = 'hostl : host2

Notice that the second host name is not negated. However, if you use ahost list, and write

hostlist alist = hostl : host2
aut h_advertise hosts = ! +ali st

the negation applies to the whole list, and so that is equivalent to

auth_advertise_hosts = 'hostl : !host2

10.7 Named list caching

While processing a message, Exim caches the result of checking a named list if it is surethat thelist is
the same each time. In practice, this means that the cache operates only if the list contains no $
characters, which guarantees that it will not change when it is expanded. Sometimes, however, you
may have an expanded list that you know will be the same each time within a given message. For
example:

85 Domain, host, and address lists (10)

domai nli st special _domains =\
${| ookup{ $sender _host _addr ess}cdb{/sone/fil e}}

This provides alist of domains that depends only on the sending host’s | P address. If this domain list
is referenced a number of times (for example, in several ACL lines, or in several routers) the result of
the check is not cached by default, because Exim does not know that it is going to be the same list
each time.

By appending _cache to donai nl i st you can tell Exim to go ahead and cache the result anyway.
For example:

domai nl i st_cache speci al _domai ns = ${I| ookup{. ..

If you do this, you should be absolutely sure that caching is going to do the right thing in al cases.
When in doubt, leaveit out.

10.8 Domain lists

Domain lists contain patterns that are to be matched against a mail domain. The following types of
item may appear in domain lists:

 |f apattern consists of asingle @ character, it matches the local host name, as set by the primary_
hostname option (or defaulted). This makes it possible to use the same configuration file on severa
different hosts that differ only in their names.

 If a pattern consists of the string @] it matches any local IP interface address, enclosed in square
brackets, asin an email address that contains a domain literal. In today’s Internet, the use of domain
literalsis controversial.

« If apattern consists of the string @rx_any it matches any domain that has an MX record pointing
to the local host or to any host that is listed in hosts_treat_as local. The items @rx_pri mary
and @x_secondary are similar, except that the first matches only when a primary MX target is
the local host, and the second only when no primary MX target is the local host, but a secondary
MX target is. “Primary” means an MX record with the lowest preference value — there may of
course be more than one of them.

The MX lookup that takes place when matching a pattern of thistype is performed with the resolver
options for widening names turned off. Thus, for example, a single-component domain will not be
expanded by adding the resolver’'s default domain. See the qualify_single and search_parents
options of the dnslookup router for a discussion of domain widening.

Sometimes you may want to ignore certain | P addresses when using one of these patterns. Y ou can
specify this by following the pattern with /i gnor e=<ip list>, where <ip list> is a list of IP
addresses. These addresses are ignored when processing the pattern (compare the ignore_target_
hosts option on arouter). For example:

domai ns = @rx_any/ignore=127.0.0.1

This example matches any domain that has an MX record pointing to one of the local host’'s IP
addresses other than 127.0.0.1.

The list of IP addresses is in fact processed by the same code that processes host lists, so it may
contain CIDR-coded network specifications and it may also contain negative items.

Because the list of IP addresses is a sublist within a domain list, you have to be careful about
delimiters if there is more than one address. Like any other list, the default delimiter can be
changed. Thus, you might have:

domai ns = @x_any/ignore=<;127.0.0.1;0.0.0.0 : \
an. ot her. domai n :

s0 that the sublist uses semicolons for delimiters. When |Pv6 addresses are involved, it is easiest to
change the delimiter for the main list aswell:

86 Domain, host, and address lists (10)

domai ns = <? @x_any/ignore=<;127.0.0.1;::1 2?2\
an. ot her.domain ? ...

* If a pattern starts with an asterisk, the remaining characters of the pattern are compared with the
terminating characters of the domain. The use of “*” in domain lists differs from its use in partial
matching lookups. In a domain list, the character following the asterisk need not be a dot, whereas
partial matching works only in terms of dot-separated components. For example, adomain list item
such as* key. ex matches donkey.ex aswell as cipher.key.ex.

» |If a pattern starts with a circumflex character, it is treated as a regular expression, and matched
against the domain using a regular expression matching function. The circumflex is treated as part
of the regular expression. References to descriptions of the syntax of regular expressions are given
in chapter 8.

Warning: Because domain lists are expanded before being processed, you must escape any
backslash and dollar characters in the regular expression, or use the specia \ N sequence (see
chapter 11) to specify that it is not to be expanded (unless you really do want to build a regular
expression by expansion, of course).

« If a pattern starts with the name of a single-key lookup type followed by a semicolon (for example,
“dbm;” or “lsearch;”), the remainder of the pattern must be a file name in a suitable format for the
lookup type. For example, for “cdb;” it must be an absol ute path:

domai ns = cdb;/etc/mail /|l ocal _domai ns. cdb

The appropriate type of lookup is done on the file using the domain name as the key. In most cases,
the data that is looked up is not used; Exim isinterested only in whether or not the key is present in
the file. However, when a lookup is used for the domains option on a router or a domains
condition in an ACL statement, the data is preserved in the $domain_data variable and can be
referred to in other router options or other statementsin the same ACL.

» Any of the single-key lookup type names may be preceded by parti al <n>-, where the <n> is
optional, for example,

domains = partial -dbm/partial /domai ns

This causes partial matching logic to be invoked; a description of how thisworksis given in section
9.7.

» Any of the single-key lookup types may be followed by an asterisk. This causes a default lookup
for akey consisting of a single asterisk to be done if the original lookup fails. This is not a useful
feature when using a domain list to select particular domains (because any domain would match),
but it might have value if the result of the lookup is being used via the $domain_data expansion
variable.

 If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, “nisplus;” or “Idap;”), the remainder of the pattern must be an appropriate query for the
lookup type, as described in chapter 9. For example:

hol d_domai ns = nysql ; sel ect domain fromholdlist \
where domain = ' $dommi n' ;

In most cases, the data that is looked up is not used (so for an SQL query, for example, it doesn’t
matter what field you select). Exim is interested only in whether or not the query succeeds.
However, when a lookup is used for the domains option on a router, the data is preserved in the
$domain_data variable and can be referred to in other options.

« If none of the above cases apply, a caseless textual comparison is made between the pattern and the
domain.

Here is an example that uses several different kinds of pattern:

domai nli st funny_domains =\
@: \

87 Domain, host, and address lists (10)

l'ib.unseen.edu : \

* foundation.fict.exanple : \
\NM[1-2]\d{3}\.fict\.exanpl e$\ N : \

parti al - dbm / opt/ dat a/ pengui n/ book : \

ni s; donai ns. bynanme : \

ni spl us; [nane=$donai n, st at us=I ocal], domai ns. org_di r

There are obvious processing trade-offs among the various matching modes. Using an asterisk is
faster than aregular expression, and listing a few names explicitly probably istoo. The use of afile or
database lookup is expensive, but may be the only option if hundreds of names are required. Because
the patterns are tested in order, it makes sense to put the most commonly matched patterns earlier.

10.9 Host lists

Host lists are used to control what remote hosts are allowed to do. For example, some hosts may be
allowed to use the local host as a relay, and some may be permitted to use the SMTP ETRN
command. Hosts can be identified in two different ways, by name or by IP address. In a host lit,
some types of pattern are matched to a host name, and some are matched to an IP address. Y ou need
to be particularly careful with this when single-key lookups are involved, to ensure that the right value
is being used as the key.

10.10 Special host list patterns

If ahost list item is the empty string, it matches only when no remote host isinvolved. Thisisthe case
when a message is being received from a local process using SMTP on the standard input, that is,
when a TCP/IP connection is not used.

The special pattern “*” in a host list matches any host or no host. Neither the |P address nor the name
is actually inspected.

10.11 Host list patterns that match by IP address

If an IPv4 host calls an IPv6 host and the call is accepted on an IPv6 socket, the incoming address
actually appearsinthe IPv6 host as: : f f f f : <vdaddress>. When such an address is tested against a
host list, it is converted into a traditional 1Pv4 address first. (Not all operating systems accept |Pv4
calls on IPv6 sockets, as there have been some security concerns.)

The following types of pattern in ahost list check the remote host by inspecting its | P address:

« If the pattern is a plain domain name (not a regular expression, not starting with *, not a lookup of
any kind), Exim calls the operating system function to find the associated | P address(es). Exim uses
the newer getipnodebyname() function when available, otherwise gethostbyname(). This typically
causes a forward DNS lookup of the name. The result is compared with the IP address of the
subject host.

If there is a temporary problem (such as a DNS timeout) with the host name lookup, a temporary
error occurs. For example, if the list is being used in an ACL condition, the ACL gives a “defer”
response, usualy leading to a temporary SMTP error code. If no IP address can be found for the
host name, what happens is described in section 10.14 below.

 If the pattern is “@", the primary host name is substituted and used as a domain name, as just
described.

» If the pattern is an IP address, it is matched against the IP address of the subject host. 1Pv4
addresses are given in the norma “dotted-quad” notation. IPv6 addresses can be given in
colon-separated format, but the colons have to be doubled so as not to be taken as item separators
when the default list separator is used. IPv6 addresses are recognized even when Exim is compiled
without IPv6 support. This means that if they appear in a host list on an I1Pv4-only host, Exim will
not treat them as host names. They are just addresses that can never match a client host.

* If the pattern is“ @J[]”, it matches the IP address of any IP interface on the local host. For example,
if the local host is an IPv4 host with one interface address 10.45.23.56, these two ACL statements
have the same effect:

88 Domain, host, and address lists (10)

127.0.0.1 : 10.45.23.56
Q]

* If the pattern is an |P address followed by a slash and a mask length (for example 10.11.42.0/24), it
is matched against the |P address of the subject host under the given mask. This alows, an entire
network of hosts to be included (or excluded) by a single item. The mask uses CIDR notation; it
specifies the number of address bits that must match, starting from the most significant end of the
address.

accept hosts
accept hosts

Note: The mask is not a count of addresses, nor is it the high number of a range of addresses. It is
the number of bits in the network portion of the address. The above example specifies a 24-bit
netmask, so it matches al 256 addressesin the 10.11.42.0 network. An item such as

192. 168. 23. 236/ 31

matches just two addresses, 192.168.23.236 and 192.168.23.237. A mask value of 32 for an IPv4
address is the same as no mask at al; just a single address matches.

Here is another example which shows an IPv4 and an |Pv6 network:

reci pient_unqualified hosts = 192.168.0.0/16: \
3ffe:: ffff..836f::::/48

The doubling of list separator characters applies only when these items appear inline in a host list.
It is not required when indirecting viaafile. For example:

reci pient_unqualified hosts = /opt/exinfungual nets
could make use of afile containing

172.16.0.0/ 12
3ffe:ffff:836f::/48

to have exactly the same effect as the previous example. When listing IPv6 addresses inline, it is
usually more convenient to use the facility for changing separator characters. This list contains the
same two networks:

reci pient_unqualified hosts = <; 172.16.0.0/12; \
ffe:ffff:836f::/48

The separator is changed to semicolon by the leading “<;” at the start of thelist.

10.12 Host list patterns for single-key lookups by host address

When a host is to be identified by a single-key lookup of its complete IP address, the pattern takes this
form:

net - <single-key-search-type>; <search-data>
For example:
hosts | ookup = net-cdb;/ hosts-by-ip.db

The text form of the IP address of the subject host is used as the lookup key. IPv6 addresses are
converted to an unabbreviated form, using lower case letters, with dots as separators because colon is
the key terminator in Isear ch files. [Colons can in fact be used in keys in Isear ch files by quoting the
keys, but thisis afacility that was added later.] The data returned by the lookup is not used.

Single-key lookups can also be performed using masked | P addresses, using patterns of this form:

net <number>- <single-key-search-type>; <search-data>
For example:

net 24- dbm / net wor ks. db

89 Domain, host, and address lists (10)

The IP address of the subject host is masked using <number> as the mask length. A textua string is
constructed from the masked value, followed by the mask, and this is used as the lookup key. For
example, if the host’s IP address is 192.168.34.6, the key that is looked up for the above example is
“192.168.34.0/24". |Pv6 addresses are converted to a text value using lower case letters and dots as
separators instead of the more usual colon, because colon is the key terminator in Isear ch files. Full,
unabbreviated |Pv6 addresses are always used.

Warning: Specifing net32- (for an |Pv4 address) or net128- (for an |Pv6 address) is not the same as
specifing just net- without a number. In the former case the key strings include the mask value,
whereasin the latter case the P address is used on its own.

10.13 Host list patterns that match by host name

There are severa types of pattern that require Exim to know the name of the remote host. These are
either wildcard patterns or lookups by name. (If a complete hosthame is given without any
wildcarding, it is used to find an I P address to match against, as described in the section 10.11 above.)

If the remote host name is not already known when Exim encounters one of these patterns, it has to be
found from the IP address. Although many sites on the Internet are conscientious about maintaining
reverse DNS datafor their hosts, there are also many that do not do this. Consequently, a name cannot
always be found, and this may lead to unwanted effects. Take care when configuring host lists with
wildcarded name patterns. Consider what will happen if a name cannot be found.

Because of the problems of determining host names from I P addresses, matching against host names
is not as common as matching against | P addresses.

By default, in order to find a host name, Exim first does areverse DNS lookup; if no nameisfound in
the DNS, the system function (gethostbyaddr() or getipnodebyaddr() if available) is tried. The order
in which these lookups are done can be changed by setting the host_lookup_order option. For
security, once Exim has found one or more names, it looks up the IP addresses for these names and
compares them with the IP address that it started with. Only those names whose |IP addresses match
are accepted. Any other names are discarded. If no names are left, Exim behaves as if the host name
cannot be found. In the most common case there is only one name and one | P address.

There are some options that control what happens if a host name cannot be found. These are described
in section 10.14 below.

As aresult of aliasing, hosts may have more than one name. When processing any of the following
types of pattern, all the host’ s names are checked:

» |If a pattern starts with “*” the remainder of the item must match the end of the host name. For
example, *. b. ¢ matches all hosts whose names end in .b.c. This special simple form is provided
because thisis a very common requirement. Other kinds of wildcarding require the use of aregular
expression.

 If the item starts with “/” it is taken to be a regular expression which is matched against the host
name. For example,

A(alb)\.c\.d$

is a regular expression that matches either of the two hosts a.c.d or b.c.d. When a regular
expression is used in a host list, you must take care that backslash and dollar characters are not
misinterpreted as part of the string expansion. The simplest way to do thisisto use\ Nto mark that
part of the string as non-expandable. For example:

sender _unqual i fied_hosts = \N'(a|b)\.c\.d$\ N :

Warning: If you want to match a complete host name, you must include the $ terminating
metacharacter in the regular expression, as in the above example. Without it, a match at the start of
the host name is all that is required.

10.14 Behaviour when an IP address or name cannot be found

90 Domain, host, and address lists (10)

While processing a host list, Exim may need to look up an IP address from a name (see section
10.11), or it may need to look up a host name from an IP address (see section 10.13). In either case,
the behaviour when it fails to find the information it is seeking is the same.

By default, Exim behaves as if the host does not match the list. This may not always be what you
want to happen. To change Exim’'s behaviour, the specia items +i ncl ude_unknown or
+i gnor e_unknown may appear in the list (at top level — they are not recognized in an indirected
file).

* If any item that follows +i ncl ude_unknown requires information that cannot found, Exim
behaves asif the host does match the list. For example,

host _reject_connection = +i nclude_unknown: *. eneny. ex

rejects connections from any host whose name matches * . eneny. ex, and aso any hosts whose
name it cannot find.

 If any item that follows +i gnor e_unknown requires information that cannot be found, Exim
ignores that item and proceeds to the rest of the list. For example:

accept hosts = +ignore_unknown : friend.exanple : \
192.168.4.5

accepts from any host whose name is friend.example and from 192.168.4.5, whether or not its host
name can be found. Without +i gnor e_unknown, if no name can be found for 192.168.4.5, it is
rejected.

Both +i ncl ude_unknown and +i gnor e_unknown may appear in the same list. The effect of
each one lasts until the next, or until the end of the list.

Note: This section applies to permanent lookup failures. It does not apply to temporary DNS errors.
They aways cause a defer action (except when dns_again_means_nonexist converts them into
permanent errors).

10.15 Host list patterns for single-key lookups by host name
If apatternis of the form

<single-key-sear ch-type>;<search-data>
for example

dbm / host/ accept/1i st

a single-key lookup is performend, using the host name as its key. If the lookup succeeds, the host
matches the item. The actual datathat islooked up is not used.

Reminder: With this kind of pattern, you must have host names as keys in the file, not | P addresses.
If you want to do lookups based on IP addresses, you must precede the search type with “net-" (see
section 10.12). There is, however, no reason why you could not use two items in the same list, one
doing an address lookup and one doing a name lookup, both using the samefile.

10.16 Host list patterns for query-style lookups

If apatternis of the form

<query-style-sear ch-type>;<query>

the query is obeyed, and if it succeeds, the host matches the item. The actual datathat is looked up is
not used. The variables $sender_host_address and $sender_host_name can be used in the query. For
example:

hosts_| ookup = pgsql;\
select ip fromhostlist where ip=" $sender_host address'

91 Domain, host, and address lists (10)

The value of $sender_host_address for an IPv6 address contains colons. You can use the sg
expansion item to change this if you need to. If you want to use masked IP addresses in database
gueries, you can use the mask expansion operator.

If the query contains a reference to $sender_host_name, Exim automatically looks up the host name if
has not aready done so. (See section 10.13 for comments on finding host names.)

Historical note: prior to release 4.30, Exim would always attempt to find a host name before running
the query, unless the search type was preceded by net - . Thisis no longer the case. For backwards
compatibility, net - is still recognized for query-style lookups, but its presence or absence has no
effect. (Of course, for single-key lookups, net - isimportant. See section 10.12.)

10.17 Mixing wildcarded host names and addresses in host lists

If you have name lookups or wildcarded host names and | P addresses in the same host list, you should
normally put the | P addresses first. For example, in an ACL you could have:

accept hosts = 10.9.8.7 : *.friend. exanple

The reason for this lies in the left-to-right way that Exim processes lists. It can test |P addresses
without doing any DNS lookups, but when it reaches an item that requires a host name, it fails if it
cannot find a host name to compare with the pattern. If the above list is given in the opposite order,
the accept statement fails for a host whose name cannot be found, even if its P addressis 10.9.8.7.

If you really do want to do the name check first, and still recognize the I P address, you can rewrite the
ACL likethis:

accept hosts
accept hosts

* friend. exanpl e
10.9.8.7

If the first accept fails, Exim goes on to try the second one. See chapter 40 for details of ACLS.

10.18 Address lists

Address lists contain patterns that are matched against mail addresses. There is one special case to be
considered: the sender address of a bounce message is always empty. You can test for this by
providing an empty item in an address list. For example, you can set up a router to process bounce
messages by using this option setting:

senders = :

The presence of the colon creates an empty item. If you do not provide any data, the list is empty and
matches nothing. The empty sender can aso be detected by a regular expression that matches an
empty string, and by a query-style lookup that succeeds when $sender_addressis empty.

Non-empty itemsin an address list can be straightforward email addresses. For example:

senders = j bc@skone. exanpl e : hs@nacr eon. exanpl e

A certain amount of wildcarding is permitted. If a pattern contains an @ character, but is not aregular
expression and does not begin with a semicolon-terminated lookup type (described below), the local
part of the subject address is compared with the local part of the pattern, which may start with an
asterisk. If the local parts match, the domain is checked in exactly the same way as for a pattern in a
domain list. For example, the domain can be wildcarded, refer to anamed list, or be alookup:

deny senders = *@ . spanming.site:\
*@hostil e domains:\
bozo@artial -1search;/list/of/dodgy/sites:\
*@bm / bad/ domai ns. db

If alocal part that begins with an exclamation mark is required, it has to be specified using a regular
expression, because otherwise the exclamation mark is treated as a sign of negation, as is standard in
lists.

92 Domain, host, and address lists (10)

If a non-empty pattern that is not aregular expression or alookup does not contain an @ character, it
is matched against the domain part of the subject address. The only two formats that are recognized
this way are a literal domain, or a domain pattern that starts with *. In both these cases, the effect is
the same asif * @preceded the pattern. For example:

deny senders = eneny.domain : *.eneny.domnain

The following kinds of more complicated address list pattern can match any address, including the
empty address that is characteristic of bounce message senders:

o If (after expansion) a pattern starts with “~", a regular expression match is done against the
complete address, with the pattern as the regular expression. Y ou must take care that backslash and
dollar characters are not misinterpreted as part of the string expansion. The simplest way to do this
isto use\ Nto mark that part of the string as non-expandable. For example:

deny senders = \N*. *this. *@xanple\.conB\N : \
\ NM\ d{ 8} . +@pamhaus. exanpl e$\ N :

The \ N sequences are removed by the expansion, so these items do indeed start with “~" by the
time they are being interpreted as address patterns.

» Complete addresses can be looked up by using a pattern that starts with alookup type terminated by
asemicolon, followed by the data for the lookup. For example:

deny senders = cdb;/etc/bl ocked. senders : \
nmysql ; sel ect address from bl ocked where \
addr ess=' ${ quot e_nysql : $sender _addr ess}’

Both query-style and single-key lookup types can be used. For a single-key lookup type, Exim uses
the complete address as the key. However, empty keys are not supported for single-key lookups, so
a match against the empty address always fails. This restriction does not apply to query-style
lookups.

Partial matching for single-key lookups (section 9.7) cannot be used, and is ignored if specified,
with an entry being written to the panic log. However, you can configure lookup defaults, as
described in section 9.6, but thisis useful only for the “*@" type of default. For example, with this
lookup:

accept senders = Isearch*@/sone/file

the file could contains lines like this:

user 1@omai nl. exanpl e
*@omai n2. exanpl e

and for the sender address nimrod@jaeger.example, the sequence of keysthat aretried is:

ni nt od@ aeger . exanpl e
* @ aeger . exampl e
*

Warning 1: Do not include a line keyed by “*” in the file, because that would mean that every
address matches, thus rendering the test useless.

Warning 2: Do not confuse these two kinds of item:

deny recipients = dbmr@/sone/file
deny recipients = *@bm/sone/file

The first does a whole address lookup, with defaulting, as just described, because it starts with a
lookup type. The second matches the local part and domain independently, as described in a bullet
point below.

The following kinds of address list pattern can match only non-empty addresses. If the subject address
is empty, amatch against any of these pattern types alwaysfails.

93 Domain, host, and address lists (10)

o If a pattern starts with “@@" followed by a single-key lookup item (for example,
@@ search; / some/ fil e), the address that is being checked is split into a local part and a
domain. The domain is looked up in the file. If it is not found, there is no match. If it is found, the
data that is looked up from the file is treated as a colon-separated list of local part patterns, each of
which is matched against the subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by “*” (see
section 9.6). The local part patterns that are looked up can be regular expressions or begin with “*”,
or even be further lookups. They may also be independently negated. For example, with

deny senders = @@bm/etc/reject-by-domin

the data from which the DBM fileis built could contain lines like

baddomai n.com ! postmaster : *
to reject al senders except postmaster from that domain.

If alocal part that actually begins with an exclamation mark is required, it has to be specified using
a regular expression. In Isearch files, an entry may be split over several lines by indenting the
second and subsequent lines, but the separating colon must still be included at line breaks. White
space surrounding the colons is ignored. For example:

aol .com spamerl : spamer2 : ~[0-9]+$:
spamer 3 : spanmer 4

Asin al colon-separated listsin Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, the remainder of the item is taken as a
new key to look up in order to obtain a continuation list of local parts. The new key can be any
sequence of characters. Thus one might have entries like

aol .com spamerl : spammer 2 : >*
Xyz.com spamer3 : >*
*: A d{8}$

in afile that was searched with @@dbm*, to specify amatch for 8-digit local partsfor al domains,
in addition to the specific local parts listed for each domain. Of course, using this feature costs
another lookup each time a chain is followed, but the effort needed to maintain the data is reduced.

It is possible to construct loops using this facility, and in order to catch them, the chains may be no
more than fifty items long.

» The @@<lookup> style of item can also be used with a query-style lookup, but in this case, the
chaining facility is not available. The lookup can only return asinglelist of local parts.

Warning: Thereisan important difference between the address list items in these two examples:

sender s

= +ny_list
senders =

*@ny_|ist
In the first one, ny_| i st is a named address list, whereas in the second example it is a named
domain list.

10.19 Case of letters in address lists

Domains in email addresses are aways handled caselessly, but for local parts case may be significant
on some systems (see caseful_local_part for how Exim deals with this when routing addresses).
However, RFC 2505 (Anti-Spam Recommendations for SMTP MTAS) suggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for thiskind of control, Exim attempts to do this by defauilt.

The domain portion of an addressis always lowercased before matching it to an address list. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the datain the address list itself, in files included as plain file names, and in any filethat is

94 Domain, host, and address lists (10)

looked up using the “@@" mechanism, can be in any case. However, the keysin files that are looked
up by a search type other than Isear ch (which works caselessly) must be in lower case, because these
lookups are not case-independent.

To alow for the possibility of caseful address list matching, if an item in an address list is the string
“+caseful”, the original case of the local part is restored for any comparisons that follow, and string
comparisons are no longer case-independent. This does not affect the domain, which remainsin lower
case. However, although independent matches on the domain aone are still performed caselessly,
regular expressions that match against an entire address become case-sensitive after “+caseful” has
been seen.

10.20 Local part lists

Case-senditivity in local part lists is handled in the same way as for address lists, as just described.
The “+caseful” item can be used if required. In a setting of the local_parts option in a router with
caseful_local _part set false, the subject is lowercased and the matching is initially case-insensitive.
In this case, “+caseful” will restore case-sensitive matching in the local part list, but not elsewhere in
the router. If caseful local part is set true in a router, matching in the local_parts option is
case-sengitive from the start.

If alocal part list isindirected to a file (see section 10.3), comments are handled in the same way as
address lists — they are recognized only if the # is preceded by white space or the start of the line.
Otherwise, local part lists are matched in the same way as domain lists, except that the special items
that refer to the local host (@ @], @x_any, @x_pri mary, and @x_secondary) are not
recognized. Refer to section 10.8 for details of the other available item types.

95 Domain, host, and address lists (10)

11. String expansions

Many strings in Exim'’s run time configuration are expanded before use. Some of them are expanded
every time they are used; others are expanded only once.

When a string is being expanded it is copied verbatim from left to right except when a dollar or
backslash character is encountered. A dollar specifies the start of a portion of the string that is
interpreted and replaced as described below in section 11.5 onwards. Backslash is used as an escape
character, as described in the following section.

11.1 Literal text in expanded strings

An uninterpreted dollar can be included in an expanded string by putting a backslash in front of it. A
backslash can be used to prevent any special character being treated specially in an expansion,
including backslash itsalf. If the string appears in quotes in the configuration file, two backs ashes are
required because the quotes themselves cause interpretation of backslashes when the string is read in
(see section 6.16).

A portion of the string can specified as non-expandable by placing it between two occurrences of \ N.
This is particularly useful for protecting regular expressions, which often contain backslashes and
dollar signs. For example:

deny senders = \N'"\ d{8}[a-z] @one\.site\.exanpl e$\ N

On encountering the first \ N, the expander copies subsequent characters without interpretation until it
reaches the next \ N or the end of the string.

11.2 Character escape sequences in expanded strings

A backslash followed by one of the letters “n”, “r”, or “t” in an expanded string is recognized as an
escape sequence for the character newline, carriage return, or tab, respectively. A backdash followed
by up to three octal digits is recognized as an octal encoding for a single character, and a backslash
followed by “x” and up to two hexadecimal digitsis a hexadecimal encoding.

These escape sequences are also recognized in quoted strings when they are read in. Their
interpretation in expansions as well is useful for unquoted strings, and for other cases such as
looked-up strings that are then expanded.

11.3 Testing string expansions

Many expansions can be tested by calling Exim with the -be option. This takes the command
arguments, or lines from the standard input if there are no arguments, runs them through the string
expansion code, and writes the results to the standard output. Variables based on configuration values
are set up, but since no message is being processed, variables such as $local _part have no value.
Nevertheless the -be option can be useful for checking out file and database lookups, and the use of
expansion operators such as sg, substr and nhash.

Exim gives up its root privilege when it is called with the -be option, and instead runs under the uid
and gid it was called with, to prevent users from using -be for reading files to which they do not have
access.

If you want to test expansions that include variables whose values are taken from a message, there are
two other options that can be used. The -bem option is like -be except that it is followed by a file
name. Thefileisread as a message before doing the test expansions. For example:

exim-bem /tnp/test. message ' $h_subj ect:"’

The -Mset option is used in conjunction with -be and is followed by an Exim message identifier. For
example:

exim-be -Met 1G ABW 0004Ws- LQ ' $reci pi ents'
This loads the message from Exim’s spool before doing the test expansions, and is therefore restricted

96 Siring expansions (11)

to admin users.

11.4 Forced expansion failure

A number of expansions that are described in the following section have alternative “true” and “false”
substrings, enclosed in brace characters (which are sometimes called “curly brackets’). Which of the
two strings is used depends on some condition that is evaluated as part of the expansion. If, instead of
a “false” substring, the word “fail” is used (not in braces), the entire string expansion fails in a way
that can be detected by the code that requested the expansion. This is called “forced expansion
failure”, and its consequences depend on the circumstances. In some cases it is no different from any
other expansion failure, but in others a different action may be taken. Such variations are mentioned
in the documentation of the option that is being expanded.

11.5 Expansion items

The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve
readability. War ning: Within braces, white space is significant.

$<variable name> or ${<variable name>}
Substitute the contents of the named variable, for example:

$l ocal _part
${ domai n}

The second form can be used to separate the name from subsequent al phanumeric characters. This
form (using braces) is available only for variables; it does not apply to message headers. The
names of the variables are given in section 11.9 below. If the name of a non-existent variable is
given, the expansion fails.

${<op>:<string>}
The string is first itself expanded, and then the operation specified by <op> is applied to it. For
example:

${1 c: $l ocal part}

The string starts with the first character after the colon, which may be leading white space. A list
of operators is given in section 11.6 below. The operator notation is used for simple expansion
items that have just one argument, because it reduces the number of braces and therefore makes
the string easier to understand.

H dIfunc{<file>}{<function>}{<arg>}{<arg>}...}
This expansion dynamically loads and then calls alocally-written C function. This functionality is
available only if Exim is compiled with

EXPAND_DLFUNC=yes

set in Local/Makefile. Once loaded, Exim remembers the dynamically loaded object so that it
doesn’t reload the same object file in the same Exim process (but of course Exim does start new
processes frequently).

There may be from zero to eight arguments to the function. When compiling alocal function that
isto be caled in thisway, local_scan.h should be included. The Exim variables and functions that
are defined by that API are also available for dynamicaly loaded functions. The function itself
must have the following type:

int dlfunction(uschar **yield, int argc, uschar *argv[])

Where uschar is atypedef for unsi gned char in local_scan.h. The function should return
one of the following values:

OK: Success. The string that is placed in the variable yield is put into the expanded string that is
being built.

97 Siring expansions (11)

FAI L: A non-forced expansion failure occurs, with the error message taken from yield, if it is set.

FAI L_FORCED: A forced expansion failure occurs, with the error message taken from yield if it
is set.

ERROR: Same as FAI L, except that a panic log entry iswritten.

When compiling a function that is to be used in this way with gcc, you need to add -shar ed to the
gcc command. Also, in the Exim build-time configuration, you must add -export-dynamic to
EXTRALIBS.

${extract{<key>}<stringl>}{<string2>}{<string3>}}
The key and <string1> are first expanded separately. Leading and trailing white space is removed
from the key (but not from any of the strings). The key must not consist entirely of digits. The
expanded <stringl> must be of the form:

<keyl> = <valuel> <key2> = <value2> ...

where the equals signs and spaces (but not both) are optional. If any of the values contain white
space, they must be enclosed in double quotes, and any values that are enclosed in double quotes
are subject to escape processing as described in section 6.16. The expanded <stringl> is searched
for the value that corresponds to the key. The search is case-insensitive. If the key is found,
<string2> is expanded, and replaces the whole item; otherwise <string3> is used. During the
expansion of <string2> the variable $value contains the value that has been extracted. Afterwards,
it isrestored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} is also omitted, the value that was extracted is used. Thus, for example, these two
expansions areidentical, and yield “2001":

${extract{gid}{ui d=1984 gi d=2001}}
${extract{gid}{ui d=1984 gi d=2001}{ $val ue}}

Instead of { <string3>} the word “fail” (not in curly brackets) can appear, for example:
${extract{Z}{A=... B=...}{$value} fail }

This forces an expansion failure (see section 11.4); {<string2>} must be present for “fail” to be
recognized.

${extract{<number>}{<separators>}{<stringl>}{ <string2>}{<string3>}}
The <number> argument must consist entirely of decimal digits, apart from leading and trailing
white space, which isignored. This is what distinguishes this form of extract from the previous
kind. It behaves in the same way, except that, instead of extracting a named field, it extracts from
<stringl> the field whose number is given as the first argument. Y ou can use $value in <string2>
orfai |l instead of <string3> as before.

The fields in the string are separated by any one of the characters in the separator string. These
may include space or tab characters. Thefirst field is numbered one. If the number is negative, the
fields are counted from the end of the string, with the rightmost one numbered -1. If the number
given is zero, the entire string is returned. If the modulus of the number is greater than the number
of fields in the string, the result is the expansion of <string3>, or the empty string if <string3> is
not provided. For example:

${extract{2}{:}{x:42:99: & Mail er::/bin/bash}}
yields “42", and
${extract{-4}{:}{x:42:99: & Mail er::/bin/bash}}

yields “99". Two successive separators mean that the field between them is empty (for example,
the fifth field above).

${hash{<stringl>}{<string2>}{<string3>}}

98 Siring expansions (11)

Thisis atextual hashing function, and was the first to be implemented in early versions of Exim.
In current releases, there are other hashing functions (numeric, MD5, and SHA-1), which are
described below.

The first two strings, after expansion, must be numbers. Call them <m> and <n>. If you are using
fixed values for these numbers, that is, if <stringl> and <string2> do not change when they are
expanded, you can use the simpler operator notation that avoids some of the braces:

${hash_<n>_<n»: <string>}

The second number is optional (in both notations). If <n> is greater than or equal to the length of
the string, the expansion item returns the string. Otherwise it computes a new string of length <n>
by applying a hashing function to the string. The new string consists of characters taken from the
first <m> characters of the string

abcdef ghi j kI mopqr st uvwxyz ABCDEFGHI JKLMNOPQARSTUVWKYZ0123456789

If <m> isnot present the value 26 is used, so that only lower case letters appear. For example:

$hash{3}{nonty}} yields j ng
$hash{5}{nonty}} yields nonty
$hash{4}{62}{nonty python}} vyieds f bWk

$header _<header name>: or $h_<header name>:
See $rheader below.

$bheader _<header name>: or $bh_<header name>:
See $rheader below.

$rheader <header name>: or $rh_<header name>:
Substitute the contents of the named message header line, for example

$header _reply-to:

The newline that terminates a header line is not included in the expansion, but internal newlines
(caused by splitting the header line over several physical lines) may be present.

The difference between rheader, bheader, and header isin the way the data in the header lineis
interpreted.

* rheader gives the origina “raw” content of the header line, with no processing at al, and
without the removal of leading and trailing white space.

* bheader removes leading and trailing white space, and then decodes base64 or
guoted-printable MIME “words’ within the header text, but does no character set translation. If
decoding of what looks superficialy like a MIME “word” fails, the raw string is returned. If
decoding produces a binary zero character, it is replaced by a question mark —thisis what Exim
doesfor binary zeros that are actually received in header lines.

» header triesto trandate the string as decoded by bheader to a standard character set. Thisisan
attempt to produce the same string as would be displayed on a user’s MUA. If tranglation fails,
the bheader string is returned. Trandation is attempted only on operating systems that support
the iconv() function. This is indicated by the compile-time macro HAVE_ICONYV in a system
Makefile or in Local/Makefile.

In afilter file, the target character set for header can be specified by a command of the following
form:

headers charset "UTF-8"

This command affects all references to $h_(or $header) expansions in subsequently obeyed filter
commands. In the absence of this command, the target character set in afilter is taken from the
setting of the headers charset option in the runtime configuration. The value of this option
defaults to the value of HEADERS CHARSET in Local/Makefile. The ultimate default is

99 Siring expansions (11)

| SO-8859-1.

Header names follow the syntax of RFC 2822, which states that they may contain any printing
characters except space and colon. Consequently, curly brackets do not terminate header names,
and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Only header lines that are common to all copies of a message are visible to this mechanism. These
are the origina header lines that are received with the message, and any that are added by an ACL
statement or by a system filter. Header lines that are added to a particular copy of a message by a
router or transport are not accessible.

For incoming SMTP messages, no header lines are visible in ACLSs that are obeyed before the
DATA ACL, because the header structure is not set up until the message is received. Header lines
that are added in a RCPT ACL (for example) are saved until the message’ s incoming header lines
are available, at which point they are added. When a DATA ACL is running, however, header
lines added by earlier ACLs arevisible.

Upper case and lower case letters are synonymous in header names. If the following character is
white space, the terminating colon may be omitted, but this is not recommended, because you
may then forget it when it is needed. When white space terminates the header name, it is included
in the expanded string. If the message does not contain the given header, the expansion item is
replaced by an empty string. (See the def condition in section 11.7 for a means of testing for the
existence of a header.)

If there is more than one header with the same name, they are al concatenated to form the
substitution string, up to a maximum length of 64K. Unless rheader is being used, leading and
trailing white space is removed from each header before concatenation, and a completely empty
header is ignored. A newline character is then inserted between non-empty headers, but there is
no newline at the very end. For the header and bheader expansion, for those headers that contain
lists of addresses, acommais also inserted at the junctions between headers. This does not happen
for the rheader expansion.

${hmac{<hashname>}{<secret>}{<string>}}
This function uses cryptographic hashing (either MD5 or SHA-1) to convert a shared secret and
some text into a message authentication code, as specified in RFC 2104. This differs from
${nd5: secret _text...} or ${shal: secret _text...} intha the hmac step adds a
signature to the cryptographic hash, allowing for authentication that is not possible with MD5 or
SHA-1 aone. The hash name must expand to either nd5 or shal at present. For example:

${ hmac{nd5} {sonesecret }{$pri mary_host nane $t od_I| og}}

For the hostname mail.example.com and time 2002-10-17 11:30:59, this produces:

dd97e3ba5d1a61b5006108f 88252953

As an example of how this might be used, you might put in the main part of an Exim
configuration:

SPAMSCAN_SECRET=cohgheelei 2t hahw

In arouter or atransport you could then have:

headers_add =\
X- Spam Scanned: ${primary_host nane} ${nessage_exi mid} \
${ hmac{ nd5} { SPAVGCAN SECRET}\
{${primary_host nane}, ${ nessage_exi m.i d}, $h_nessage-i d: } }

Then given a message, you can check where it was scanned by looking at the X-SpamScanned:
header line. If you know the secret, you can check that this header line is authentic by
recomputing the authentication code from the host name, message ID and the Message-id: header
line. This can be done using Exim’s -be option, or by other means, for example by using the
hmac_md5_hex() function in Perl.

100 Siring expansions (11)

$Hif <condition> {<stringl>}{<string2>}}
If <condition> is true, <stringl> is expanded and replaces the whole item; otherwise <string2> is
used. The available conditions are described in section 11.7 below. For example:

${if eq {$l ocal _part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is replaced
with nothing. Alternatively, the word “fail” may be present instead of the second string (without
any curly brackets). In this case, the expansion is forced to fail if the condition is not true (see
section 11.4).

If both strings are omitted, the result is the string t r ue if the condition is true, and the empty
string if the condition is false. This makes it less cumbersome to write custom ACL and router
conditions. For example, instead of

condition = ${if >{$%acl_mi}{3}{true}{fal se}}
you can use
condition = ${if >{$acl _mi}{3}}

Hlength{<stringl>}{<string2>}}
Thelength item is used to extract the initial portion of a string. Both strings are expanded, and the
first one must yield a number, <n>, say. If you are using a fixed value for the number, that is, if
<string1> does not change when expanded, you can use the simpler operator notation that avoids
some of the braces:

${1 engt h_<n>: <stri ng>}

The result of this item is either the first <n> characters or the whole of <string2>, whichever is
the shorter. Do not confuse length with strlen, which givesthe length of a string.

Hlookup{<key>} <search type> {<file>} {<string1>} {<string2>}}
Thisisthe first of one of two different types of lookup item, which are both described in the next
item.

${lookup <search type> {<query>} {<string1>} {<string2>}}
The two forms of lookup item specify data lookups in files and databases, as discussed in chapter
9. The first form is used for single-key lookups, and the second is used for query-style lookups.
The <key>, <file>, and <query> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, a retry or rewrite
rule, a routing rule for the manualroute router, or any other place where white space is
significant, the lookup item must be enclosed in double quotes. The use of data lookups in users
filter files may be locked out by the system administrator.

If the lookup succeeds, <stringl> is expanded and replaces the entire item. During its expansion,
the variable $value contains the data returned by the lookup. Afterwards it reverts to the value it
had previoudy (at the outer leve it is empty). If the lookup fails, <string2> is expanded and
replaces the entire item. If {<string2>} is omitted, the replacement is the empty string on failure.
If <string2> is provided, it can itself be a nested lookup, thus providing a mechanism for looking
up adefault value when the original lookup fails.

If anested lookup is used as part of <stringl>, $value contains the data for the outer lookup while
the parameters of the second lookup are expanded, and also while <string2> of the second lookup
is expanded, should the second lookup fail. Instead of {<string2>} the word “fail” can appear,
and in this case, if the lookup fails, the entire expansion is forced to fail (see section 11.4). If both
{<stringl>} and {<string2>} are omitted, the result is the looked up value in the case of a
successful lookup, and nothing in the case of failure.

For single-key lookups, the string “partial” is permitted to precede the search type in order to do
partia matching, and * or * @ may follow a search type to request default lookups if the key does
not match (see sections 9.6 and 9.7 for details).

101 Siring expansions (11)

If a partial search is used, the variables $1 and $2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster aliasin the conventional aliasfile:

${I1 ookup {postnmaster} Isearch {/etc/aliases} {$val ue}}

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found:

${| ookup ni splus {[name=$l ocal _part], passwd.org_dir:gcos} \
{$val ue}fail}

${nhash{<stringl>}{<string2>}{<string3>}}
The three strings are expanded; the first two must yield numbers. Call them <n> and <nm>. If you
are using fixed values for these numbers, that is, if <stringl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${ nhash_<n>_<n®: <stri ng>}

The second number is optiona (in both notations). If there is only one number, the result is a
number in the range 0—<n>-1. Otherwise, the string is processed by a div/mod hash function that
returns two numbers, separated by a slash, in the ranges 0 to <n>-1 and 0 to <m>-1, respectively.
For example,

${nhash{8} {64} {supercalifragilisticexpialidocious}}
returns the string “6/33".

H perl{<subroutine>}{<arg>}{<arg>}...}
This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are first separately expanded, and then the Perl subroutine is
called with those arguments. No additional arguments need be given; the maximum number
permitted, including the name of the subroutine, is nine.

The return value of the subroutine is inserted into the expanded string, unless the return value is
undef. In that case, the expansion fails in the same way as an explicit “fail” on alookup item. The
return value is a scalar. Whatever you return is evaluated in a scalar context. For example, if you
return the name of a Perl vector, the return value is the size of the vector, not its contents.

If the subroutine exits by calling Perl’s die function, the expansion fails with the error message
that was passed to die. More details of the embedded Perl facility are given in chapter 12.

The redirect router has an option called forbid_filter _perl which locks out the use of this
expansion item in filter files.

H prvs{<address>}H{ <secret>}{ <keynumber>}}
The first argument is a complete email address and the second is secret keystring. The third
argument, specifying a key number, is optional. If absent, it defaults to 0. The result of the
expansion is a prvs-signed email address, to be typically used with the return_path option on an
smtp transport as part of a bounce address tag validation (BATV) scheme. For more discussion
and an example, see section 40.40.

¥ prvscheck{<address>}{<secret>}{<string>}}
This expansion item is the complement of the prvs item. It is used for checking prvs-signed
addresses. If the expansion of the first argument does not yield a syntactically valid prvs-signed
address, the whole item expands to the empty string. When the first argument does expand to a
syntactically valid prvs-signed address, the second argument is expanded, with the prvs-decoded
version of the address and the key number extracted from the address in the variables $prvscheck
address and $prvscheck _keynum, respectively.

These two variables can be used in the expansion of the second argument to retrieve the secret.
The validity of the prvs-signed address is then checked against the secret. The result is stored in

102 Siring expansions (11)

the variable $prvscheck _result, which isempty for failure or “1” for success.

The third argument is optional; if it is missing, it defaults to an empty string. This argument is
now expanded. If the result is an empty string, the result of the expansion is the decoded version
of the address. This is the case whether or not the signature was valid. Otherwise, the result of the
expansion is the expansion of the third argument.

All three variables can be used in the expansion of the third argument. However, once the
expansion is complete, only $prvscheck result remains set. For more discussion and an example,
see section 40.40.

Hreadfile{<file name>}{<eol string>}}
The file name and end-of-line string are first expanded separately. The file is then read, and its
contents replace the entire item. All newline characters in the file are replaced by the end-of-line
string if it is present. Otherwise, newlines are left in the string. String expansion is not applied to
the contents of thefile. If you want this, you must wrap the item in an expand operator. If the file
cannot be read, the string expansion fails.

The redirect router has an option called forbid_filter _readfile which locks out the use of this
expansion item in filter files.

${r eadsock et{ <name>}{<reguest>}{ <timeout>}{<eol string>}{<fail string>}}
This item inserts data from a Unix domain or Internet socket into the expanded string. The
minimal way of using it uses just two arguments, as in these examples:

${readsocket {/ socket/ nanme}{request string}}
${readsocket {i net: sone. host: 1234} {request string}}

For a Unix domain socket, the first substring must be the path to the socket. For an Internet
socket, the first substring must contain i net : followed by a host name or IP address, followed
by a colon and a port, which can be a number or the name of a TCP port in /etc/services. An IP
address may optionally be enclosed in square brackets. This is best for IPv6 addresses. For
example:

${readsocket{inet:[::1]:1234}{request string}}

Only a single host name may be given, but if looking it up yields more than one |P address, they
are each tried in turn until a connection is made. For both kinds of socket, Exim makes a
connection, writes the request string (unless it is an empty string) and reads from the socket until
an end-of-file is read. A timeout of 5 seconds is applied. Additional, optional arguments extend
what can be done. Firstly, you can vary the timeout. For example:

${readsocket {/ socket/ nanme}{request string}{3s}}

A fourth argument allows you to change any newlines that are in the data that is read, in the same
way as for readfile (see above). This example turns them into spaces:

${readsocket{inet:127.0.0. 1: 3294} {request string}{3s}{ }}

Aswith all expansions, the substrings are expanded before the processing happens. Errors in these
sub-expansions cause the expansion to fail. In addition, the following errors can occur:

 Failureto create a socket file descriptor;
 Failure to connect the socket;

 Failure to write the request string;

» Timeout on reading from the socket.

By default, any of these errors causes the expansion to fail. However, if you supply a fifth
substring, it is expanded and used when any of the above errors occurs. For example:

${readsocket {/ socket/ name}{request string}{3s}{\n}\

103 Siring expansions (11)

{socket failure}}

You can test for the existence of a Unix domain socket by wrapping this expansion in ${i f
exi st s, but there is arace condition between that test and the actual opening of the socket, so it
is safer to use the fifth argument if you want to be absolutely sure of avoiding an expansion error
for anon-existent Unix domain socket, or afailure to connect to an Internet socket.

The redirect router has an option called forbid_filter _readsocket which locks out the use of this
expansion item in filter files.

$rheader <header name>: or $rh_<header name>:
Thisitem inserts “raw” header lines. It is described with the header expansion item above.

${run{<command> <args>}H<stringl>}{<string2>}}
The command and its arguments are first expanded separately, and then the command isrunin a
separate process, but under the same uid and gid. As in other command executions from Exim, a
shell isnot used by default. If you want a shell, you must explicitly codeit.

The standard input for the command exists, but is empty. The standard output and standard error
are set to the same file descriptor. If the command succeeds (gives a zero return code) <stringl>
is expanded and replaces the entire item; during this expansion, the standard output/error from the
command is in the variable $value. If the command fails, <string2>, if present, is expanded and
used. Once again, during the expansion, the standard output/error from the command is in the
variable $value.

If <string2> is absent, the result is empty. Alternatively, <string2> can be the word “fail” (not in
braces) to force expansion failure if the command does not succeed. If both strings are omitted,
the result is contents of the standard output/error on success, and nothing on failure.

The return code from the command is put in the variable $runrc, and this remains set afterwards,
so in afilter file you can do things like this:

if "${run{x y z}{}}$runrc” is 1 then ...
elif $runrc is 2 then ...

endi f
If execution of the command fails (for example, the command does not exist), the return code is
127 —the same code that shells use for non-existent commands.

Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whaose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and useit in another.

The redirect router has an option called forbid_filter _run which locks out the use of this
expansion item in filter files.

${ s <subject>}{ <regex>}{ <replacement>}}
This item works like Perl’s substitution operator (s) with the global (/g) option; hence its name.
However, unlike the Perl equivalent, Exim does not modify the subject string; instead it returns
the modified string for insertion into the overall expansion. The item takes three arguments: the
subject string, aregular expression, and a substitution string. For example:

${ sg{ abcdef abcdef} {abc}{xyz}}

yields “xyzdefxyzdef”. Because al three arguments are expanded before use, if any $ or \
characters are required in the regular expression or in the substitution string, they have to be
escaped. For example:

${sg{abcdef } {~(...)(...)\$}{\$2\$1}}
yields “defabc”, and

${sg{ 1=A 4=D 3=C} {\ N(\ d+) =\ N} { K\ $1=}}

104 Siring expansions (11)

yields “K1=A K4=D K3=C". Note the use of \ N to protect the contents of the regular expression
from string expansion.

${substr{<stringl>}{ <string2>}{ <string3>}}
The three strings are expanded; the first two must yield numbers. Call them <n> and <m>. If you
are using fixed values for these numbers, that is, if <stringl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${ substr_<n>_ <np: <string>}

The second number is optional (in both notations). If it is absent in the simpler format, the
preceding underscore must also be omitted.

The substr item can be used to extract more general substrings than length. The first number,
<n>, isa starting offset, and <m> is the length required. For example

${substr{3}{2}{$l ocal part}}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string,
starting from the given offset. The first character in the string has offset zero.

The substr expansion item can take negative offset values to count from the right-hand end of its
operand. The last character is offset -1, the second-last is offset -2, and so on. Thus, for example,

${substr{-5}{2}{1234567}}

yields “34”. If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of
overshoot. Thus, for example,

${substr{-5}{2}{12}}
yields an empty string, but

${substr{-3}{2}{12}}
yields“1”.
When the second number is omitted from substr, the remainder of the string is taken if the offset

is positive. If it is negative, all characters in the string preceding the offset point are taken. For
example, an offset of -1 and no length, asin these semantically identical examples:

${substr_-1:abcde}
${substr{-1}{abcde}}

yields all but the last character of the string, that is, “abcd”.

${tr{<subject>}{ <characters>}{<replacements>}}
This item does single-character tranglation on its subject string. The second argument is a list of
characters to be trandated in the subject string. Each matching character is replaced by the
corresponding character from the replacement list. For example

${tr{abcdea}{ac}{13}}

yields 1b3del. If there are duplicates in the second character string, the last occurrence is used.
If the third string is shorter than the second, itslast character is replicated. However, if it is empty,
no tranglation takes place.

11.6 Expansion operators

For expansion items that perform transformations on a single argument string, the “operator” notation
is used because it is simpler and uses fewer braces. The substring is first expanded before the
operation is applied to it. The following operations can be performed:

105 Siring expansions (11)

$address:<string>}
The string is interpreted as an RFC 2822 address, as it might appear in a header line, and the
effective address is extracted from it. If the string does not parse successfully, the result is empty.

${base62: <digits>}
The string must consist entirely of decimal digits. The number is converted to base 62 and output
as a string of six characters, including leading zeros. In the few operating environments where
Exim uses base 36 instead of base 62 for its message identifiers (because those systems do not
have case-sensitive file names), base 36 is used by this operator, despite its name. Note: Just to be
absolutely clear: thisis not base64 encoding.

$ base62d: <base-62 digits>}
The string must consist entirely of base-62 digits, or, in operating environments where Exim uses
base 36 instead of base 62 for its message identifiers, base-36 digits. The number is converted to
decimal and output as a string.

$ domain:<string>}
The string is interpreted as an RFC 2822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

¥ escape: <string>}
If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash. Whether characters with the most significant bit set (so-called “8-bit
characters’) count as printing or not is controlled by the print_topbitchars option.

${eval:<string>} and ${eval 10: <string>}

These items supports simple arithmetic and bitwise logical operations in expansion strings. The
string (after expansion) must be a conventional arithmetic expression, but it is limited to basic
arithmetic operators, bitwise logical operators, and parentheses. All operations are carried out
using integer arithmetic. The operator priorities are as follows (the same as in the C programming

language):

highest: not (~), negate (-)
multiply (*), divide (/), remainder (%)
plus (+), minus (-)
shift-left (<<), shift-right (>>)
and (&)
xor (M)
lowest: or (])

Binary operators with the same priority are evaluated from left to right. White space is permitted
before or after operators.

For eval, numbers may be decimal, octal (starting with “0") or hexadecimal (starting with “0x").
For eval 10, all numbers are taken as decimal, even if they start with a leading zero; hexadecimal
numbers are not permitted. This can be useful when processing numbers extracted from dates or
times, which often do have leading zeros.

A number may be followed by “K” or “M” to multiply it by 1024 or 1024* 1024, respectively.
Negative numbers are supported. The result of the computation is a decimal representation of the
answer (without “K” or “M”). For example:

${eval : 1+1} yields 2
${eval : 1+2*3} yields 7
${eval : (1+2)*3} yields 9
${ eval : 2+429%} yields 4
${ eval : 0xc&5} yields 4
${ eval : Oxc| 5} yields 13
${ eval : 0xc”5} yields 9
${ eval : Oxc>>1} yields 6
${ eval : Oxc<<1} yields 24

106 Siring expansions (11)

${ eval : ~25580x1234} yields 4608
${eval : - (~255&0x1234)} vyields-4608

Asamoreredistic example, in an ACL you might have

deny nmessage = Too many bad recipients
condition =
${if and {
E>{$rcpt_count}{10}}

<

{$recipi ents_count}
{${eval : $rcpt _count/ 2}}

}
Hyes}{no}}

The condition is true if there have been more than 10 RCPT commands and fewer than half of
them have resulted in avalid recipient.

—

${expand: <string>}
The expand operator causes a string to be expanded for a second time. For example,

${ expand: ${| ookup{ $domai n} dbn{/ sone/fil e}{$val ue}}}

first looks up a string in afile while expanding the operand for expand, and then re-expands what
it has found.

${from_utf8:<string>}
The world is dowly moving towards Unicode, although there are no standards for email yet.
However, other applications (including some databases) are starting to store data in Unicode,
using UTF-8 encoding. This operator converts from a UTF-8 string to an 1SO-8859-1 string.
UTF-8 code values greater than 255 are converted to underscores. The input must be a valid
UTF-8 string. If it is not, the result is an undefined sequence of bytes.

Unicode code points with values less than 256 are compatible with ASCII and 1SO-8859-1 (also
known as Latin-1). For example, character 169 is the copyright symboal in both cases, though the
way it is encoded is different. In UTF-8, more than one byte is needed for characters with code
values greater than 127, whereas | SO-8859-1 is a single-byte encoding (but thereby limited to 256
characters). This makes trandation from UTF-8 to 1SO-8859-1 straightforward.

${hash_<n> <m>:<string>}
The hash operator is a simpler interface to the hashing function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is
the same as

${ hash{<n>}{<np}{<string>}}

See the description of the general hash item above for details. The abbreviation h can be used
when hash is used as an operator.

$ hex2b64: <hexstring>}
This operator converts a hex string into one that is base64 encoded. This can be useful for
processing the output of the MD5 and SHA-1 hashing functions.

Hlc:<string>}
Thisforces the letters in the string into lower-case, for example:

${lc: $l ocal _part}

${length_<number>:<string>}
The length operator is a simpler interface to the length function that can be used when the
parameter is a fixed number (as opposed to a string that changes when expanded). The effect is
the same as

${| engt h{ <nunber >} {<stri ng>}}

107 Siring expansions (11)

See the description of the general length item above for details. Note that length is not the same
asstrlen. The abbreviation | can be used when length is used as an operator.

${local_part:<string>}
The string is interpreted as an RFC 2822 address and the local part is extracted from it. If the
string does not parse successfully, the result is empty.

${mask: <IP address>/<bit count>}
If the form of the string to be operated on is not an I P address followed by a slash and an integer
(that is, a network address in CIDR notation), the expansion fails. Otherwise, this operator
converts the |P address to binary, masks off the least significant bits according to the bit count,
and converts the result back to text, with mask appended. For example,

${mask: 10. 111. 131. 206/ 28}

returns the string “10.111.131.192/28". Since this operation is expected to be mostly used for
looking up masked addresses in files, the result for an IPv6 address uses dots to separate
components instead of colons, because colon terminates a key string in Isearch files. So, for
example,

${mask: 3ffe: ffff:836f:0a00: 000a: 0800: 200a: c031/ 99}
returns the string

3ffe.ffff.836f.0a00. 000a. 0800. 2000. 0000/ 99
Lettersin IPv6 addresses are always output in lower case.

${md5: <string>}
The md5 operator computes the MD5 hash value of the string, and returns it as a 32-digit
hexadecimal number, in which any lettersarein lower case.

${nhash_<n> <m>:<string>}
The nhash operator is a simpler interface to the numeric hashing function that can be used when
the two parameters are fixed numbers (as opposed to strings that change when expanded). The
effect isthe same as

${ nhash{<n>}{<np}{<stri ng>}}
See the description of the general nhash item above for details.

${quote: <string>}
The quote operator puts its argument into double quotes if it is an empty string or contains
anything other than letters, digits, underscores, dots, and hyphens. Any occurrences of double
quotes and backslashes are escaped with a backslash. Newlines and carriage returns are converted
to\ n and\ r, respectively For example,

${ quot e: ab" *" cd}
becomes
"ab\"*\"cd"

The place where this is useful is when the argument is a substitution from a variable or a message
header.

${quote local_part:<string>}
This operator is like quote, except that it quotes the string only if required to do so by the rules of
RFC 2822 for quoting local parts. For example, a plus sign would not cause quoting (but it would
for quote). If you are creating a new email address from the contents of $local_part (or any other
unknown data), you should always use this operator.

$quote_<lookup-type>:<string>}
This operator applies lookup-specific quoting rules to the string. Each query-style lookup type has

108 Siring expansions (11)

its own quoting rules which are described with the lookups in chapter 9. For example,
${quote_| dap:two * two}
returns

t wo%209%6 C2A%20t wo

For single-key lookup types, no quoting is ever necessary and this operator yields an unchanged
string.

${rfc2047:<string>}
This operator encodes text according to the rules of RFC 2047. Thisis an encoding that isused in
header lines to encode non-ASCII characters. It is assumed that the input string is in the encoding
specified by the headers_charset option, which defaults to 1SO-8859-1. If the string contains
only charactersin the range 33-126, and no instances of the characters

?=()<>@, ; :\" . [1_

it is not modified. Otherwise, the result is the RFC 2047 encoding of the string, using as many
“encoded words’ as necessary to encode all the characters.

$rxquote:<string>}
The rxquote operator inserts a backslash before any non-alphanumeric charactersin its argument.
Thisis useful when substituting the values of variables or headersinside regular expressions.

$shal:<string>}
The shal operator computes the SHA-1 hash value of the string, and returns it as a 40-digit
hexadecimal number, in which any letters arein upper case.

Hstat:<string>}

The string, after expansion, must be afile path. A call to the stat() function is made for this path.
If stat() fails, an error occurs and the expansion fails. If it succeeds, the data from the stat replaces
the item, as a series of <name>=<value> pairs, where the values are all numerical, except for the
value of “smode”. The names are: “mode” (giving the mode as a 4-digit octal number), “smode”
(giving the mode in symbolic format as a 10-character string, as for the Is command), “inode”,
“device’, “links’, “uid”, “gid”, “size”, “atime’, “mtime”, and “ctime”. Y ou can extract individual
fields using the extract expansion item.

The use of the stat expansion in users' filter files can be locked out by the system administrator.
Warning: Thefile size may be incorrect on 32-bit systemsfor files larger than 2GB.

${str2b64: <string>}
This operator converts a string into one that is base64 encoded.

Hstrlen:<string>}
The item is replace by the length of the expanded string, expressed as a decimal number. Note:
Do not confuse strlen with length.

Hsubstr_<start>_<length>:<string>}
The substr operator is a simpler interface to the substr function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is
the same as

${substr{<start>}{<l ength>}{<string>}}

See the description of the general substr item above for details. The abbreviation s can be used
when substr is used as an operator.

$time_eval:<string>}
Thisitem converts an Exim timeinterval such as 2d4h5minto a number of seconds.

${time _interval:<string>}
The argument (after sub-expansion) must be a sequence of decimal digits that represents an
interval of time as a number of seconds. It is converted into a number of larger units and output in

109 Siring expansions (11)

Exim’s normal time format, for example, 1w3d4h2nb6s.

Huc:<string>}
Thisforces the lettersin the string into upper-case.

11.7 Expansion conditions
The following conditions are available for testing by the ${if construct while expanding strings:

I<condition>
Preceding any condition with an exclamation mark negates the result of the condition.

<symbolic operator> {<stringl>} <string2>}

There are a number of symbolic operators for doing numeric comparisons. They are:

= equal

== equal

> greater

>= greater or equal

< less

<= less or equal
For example:

${if >{$nmessage_si ze}{10M

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters “K” or
“M” (in either upper or lower case), signifying multiplication by 1024 or 1024*1024,
respectively. As a specia case, the numerical value of an empty string is taken as zero.

crypteq {<stringl>}{<string2>}

This condition is included in the Exim binary if it is built to support any authentication
mechanisms (see chapter 33). Otherwise, it is necessary to define SUPPORT _CRYPTEQ in
Local/Makefile to get crypteq included in the binary.

The crypteq condition has two arguments. The first is encrypted and compared against the
second, which is aready encrypted. The second string may be in the LDAP form for storing
encrypted strings, which starts with the encryption type in curly brackets, followed by the data. If
the second string does not begin with “{” it is assumed to be encrypted with crypt() or crypt16()
(see below), since such strings cannot begin with “{". Typicaly this will be a field from a
password file. An example of an encrypted string in LDAP form is:

{ md5} CY9r zUYhO3PK3k6DJi e09g==

If such a string appears directly in an expansion, the curly brackets have to be quoted, because
they are part of the expansion syntax. For example:

${if crypteq {test}{\{nd5\}CY9r zUYhO3PK3k6DJi e09g==}{yes}{no}}
The following encryption types (whose hames are matched case-independently) are supported:

» {md5} computes the MD5 digest of the first string, and expresses this as printable characters to
compare with the remainder of the second string. If the length of the comparison string is 24,
Exim assumes that it is base64 encoded (as in the above example). If the length is 32, Exim
assumes that it is a hexadecimal encoding of the MD5 digest. If the length not 24 or 32, the
comparison fails.

» {shal} computes the SHA-1 digest of the first string, and expresses this as printable characters
to compare with the remainder of the second string. If the length of the comparison string is 28,
Exim assumes that it is base64 encoded. If the length is 40, Exim assumes that it is a
hexadecimal encoding of the SHA-1 digest. If the length is not 28 or 40, the comparison fails.

» {crypt} calsthe crypt() function, which traditionally used to use only the first eight characters

110 Siring expansions (11)

of the password. However, in modern operating systems this is no longer true, and in many
cases the entire password is used, whatever its length.

o {cryptl6} calls the cryptl6() function, which was orginaly created to use up to 16 characters
of the password in some operating systems. Again, in modern operating systems, more
characters may be used.

Exim has its own version of cryptl6(), which is just a double call to crypt(). For operating
systems that have their own version, setting HAVE_CRYPT16 in Local/Makefile when building
Exim causes it to use the operating system version instead of its own. This option is set by default
in the OS-dependent Makefile for those operating systems that are known to support crypt16().

Some years after Exim's crypt16() was implemented, a user discovered that it was not using the
same agorithm as some operating systems' versions. It turns out that as well as crypt16() thereis
a function called bigcrypt() in some operating systems. This may or may not use the same
algorithm, and both of them may be different to Exim’s built-in crypt16().

However, since there is now a move away from the traditional crypt() functions towards using
SHA1 and other algorithms, tidying up this area of Exim is seen as very low priority.

If you do not put a encryption type (in curly brackets) in a cryptegq comparison, the default is
usually either { crypt } or {crypt 16}, as determined by the setting of DEFAULT_CRYPT in
Local/Makefile. The default default is{ cr ypt } . Whatever the default, you can always use either
function by specifying it explicitly in curly brackets.

def:<variable name>
The def condition must be followed by the name of one of the expansion variables defined in
section 11.9. The condition istrue if the variable does not contain the empty string. For example:

${if def:sender _ident {from $sender _ident}}

Note that the variable name is given without a leading $ character. If the variable does not exist,
the expansion fails.

def:header <header name>: or def:h_<header name>:
This condition istrue if amessage is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from}}

Note: No $ appears before header _or h_in the condition, and the header name must be terminated
by acolon if white space does not follow.

eq {<stringl>}{<string2>}
The two substrings are first expanded. The condition is true if the two resulting strings are
identical, including the case of letters.

eqi {<stringl>}{<string2>}
The two substrings are first expanded. The condition is true if the two resulting strings are
identical when compared in a case-independent way.

exists {<file name>}
The substring is first expanded and then interpreted as an absolute path. The condition is true if
the named file (or directory) exists. The existence test is done by calling the stat() function. The
use of the existstest in users' filter files may be locked out by the system administrator.

first_delivery
This condition, which has no data, is true during a message's first delivery attempt. It is false
during any subsequent delivery attempts.

ge {<stringl>}{<string2>}
See gel.

gei {<stringl>}{<string2>}

111 Siring expansions (11)

The two substrings are first expanded. The condition is true if the first string is lexically greater
than or equal to the second string: for ge the comparison includes the case of |etters, whereas for
gei the comparison is case-independent.

gt {<string1>}{<string2>}
See gti.

gti {<string1>}{<string2>}
The two substrings are first expanded. The condition is true if the first string is lexically greater
than the second string: for gt the comparison includes the case of letters, whereas for gti the
comparison is case-independent.

isip {<string>}
Seeisipb.
isip4 {<string>}
Seeisip6.
iSip6 {<string>}
The substring is first expanded, and then tested to see if it has the form of an IP address. Both

IPv4 and IPv6 addresses are valid for isip, whereas isip4 and isip6 test just for 1Pv4 or I1Pv6
addresses, respectively. For example, you could use

${if isipd{$sender_host_address}...
to test which version of IP an incoming SMTP connection is using.

Idapauth {<ldap query>}

This condition supports user authentication using LDAP. See section 9.13 for details of how to
use LDAP in lookups and the syntax of queries. For this use, the query must contain a user name
and password. The query itself is not used, and can be empty. The condition is true if the
password is not empty, and the user name and password are accepted by the LDAP server. An
empty password is rejected without calling LDAP because LDAP binds with an empty password
are considered anonymous regardless of the username, and will succeed in most configurations.
See chapter 33 for details of SMTP authentication, and chapter 34 for an example of how this can
be used.

le {<string1>}{<string2>}
Seelei.

lei {<stringl>}{<string2>}
The two substrings are first expanded. The condition is true if the first string is lexically less than
or equal to the second string: for le the comparison includes the case of letters, whereas for lei the
comparison is case-independent.

It {<string1l>}{<string2>}
Seelti.

Iti {<stringl>}H<string2>}
The two substrings are first expanded. The condition is true if the first string is lexically less than
the second string: for It the comparison includes the case of letters, whereas for Iti the comparison
is case-independent.

match {<string1>}{<string2>}
The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped. Care must also be taken if the regular expression
contains braces (curly brackets). A closing brace must be escaped so that it is not taken as a
premature termination of <string2>. The easiest approach is to use the \ N feature to disable
expansion of the regular expression. For example,

${if match {$l ocal part}{\ N\ d{3}\ N}
If the whole expansion string is in double quotes, further escaping of backslashesis also required.

112 Siring expansions (11)

The condition is true if the regular expression match succeeds. The regular expression is not
required to begin with a circumflex metacharacter, but if there is no circumflex, the expression is
not anchored, and it may match anywhere in the subject, not just at the start. If you want the
pattern to match at the end of the subject, you must include the $ metacharacter at an appropriate
point.

At the start of an if expansion the values of the numeric variable substitutions $1 etc. are
remembered. Obeying a match condition that succeeds causes them to be reset to the substrings
of that condition and they will have these values during the expansion of the success string. At the
end of the if expansion, the previous values are restored. After testing a combination of conditions
using or, the subsequent values of the numeric variables are those of the condition that succeeded.

match_address {<string1>}{<string2>}
See match_local_part.

match_domain {<string1l>}{<string2>}
Seematch_local_part.

match_ip {<stringl>}{<string2>}
This condition matches an IP address to a list of IP address patterns. It must be followed by two
argument strings. The first (after expansion) must be an | P address or an empty string. The second
(after expansion) is a restricted host list that can match only an IP address, not a host name. For
example:

${if match_i p{$sender_host _address}{1.2.3.4:5.6.7.8}{...}{...}}
The specific types of host list item that are permitted in the list are:

* An|P address, optionally with a CIDR mask.

» A single asterisk, which matches any |P address.

* An empty item, which matches only if the IP address is empty. This could be useful for testing
for alocally submitted message or one from specific hostsin asingle test such as

${if match_i p{$sender _host _address}{:4.3.2.1:...}{...}{...}}
where thefirst item in the list is the empty string.
» Theitem @[] matches any of the local host’ s interface addresses.

» Lookups are assumed to be “net-" style lookups, even if net - is not specified. Thus, the
following are equivalent:

${if match_i p{$sender _host _address}{l search;/sone/file}...
${if match_i p{$sender _host _address}{net-Isearch;/sone/file}...

You do need to specify the net - prefix if you want to specify a specific address mask, for
example, by using net 24- . However, unless you are combining a match_ip condition with
others, it is usually neater to use an expansion lookup such as:

${| ookup{ ${ mask: $sender _host _address/ 24} }| search{/some/file}...
Consult section 10.11 for further details of these patterns.

match_local_part {<stringl>}{<string2>}
This condition, together with match_address and match_domain, make it possible to test
domain, address, and local part lists within expansions. Each condition requires two arguments:
an item and allist to match. A trivial exampleis:

${if match_domain{a.b.c}{x.y.z:a.b.c:p.q.r}{yes}{no}}

In each case, the second argument may contain any of the allowable items for a list of the
appropriate type. Also, because the second argument (after expansion) is a standard form of list, it
ispossibleto refer to anamed list. Thus, you can use conditions like this:

113 Siring expansions (11)

${if mat ch_domai n{ $domai n} { +l ocal _donmi ns}{. ..

For address lists, the matching starts off caselesdly, but the +casef ul item can be used, asin all
address lists, to cause subsequent items to have their local parts matched casefully. Domains are
always matched caselessly.

Note: Host lists are not supported in this way. This is because hosts have two identities: a name
and an IP address, and it is not clear how to specify cleanly how such a test would work.
However, | P addresses can be matched using match_ip.

pam {<stringl>:<string2>:...}
Pluggable Authentication Modules (http://www.kernel.org/pub/linux/libs/pam/) are a facility
that is available in the latest releases of Solaris and in some GNU/Linux distributions. The Exim
support, which is intended for use in conjunction with the SMTP AUTH command, is available
only if Exim is compiled with

SUPPCORT_PAMFyes

in Local/Makefile. You probably need to add -Ipam to EXTRALIBS, and in some releases of
GNU/Linux -ldl is also needed.

The argument string is first expanded, and the result must be a colon-separated list of strings.
Leading and trailing white space isignored. The PAM module isinitialized with the service name
“exim” and the user name taken from the first item in the colon-separated data string (<stringl>).
The remaining items in the data string are passed over in response to requests from the
authentication function. In the simple case there will only be one request, for a password, so the
data consists of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
way, these have to be doubled to avoid being taken as separators. If the datais being inserted from
a variable, the sg expansion item can be used to double any existing colons. For example, the
configuration of a LOGIN authenticator might contain this setting:

server_condition = ${if pan{$authl: ${sg{Sauth2}{:}{::}}}}
For a PLAIN authenticator you could use:
server_condition = ${if pan{$auth2: ${sg{Sauth3}{:}{::}}}}

In some operating systems, PAM authentication can be done only from a process running as root.
Since Exim is running as the Exim user when receiving messages, this means that PAM cannot be
used directly in those systems. A patched version of the pam_unix module that comes with the
Linux PAM package is available from http://www.e-admin.de/pam_exim/. The patched module
alows one specia uid/gid combination, in addition to root, to authenticate. If you build the
patched module to alow the Exim user and group, PAM can then be used from an Exim
authenticator.

pwcheck {<stringl>:<string2>}
This condition supports user authentication using the Cyrus pwcheck daemon. This is one way of
making it possible for passwords to be checked by a process that is not running as root. Note: The
use of pwcheck is now deprecated. Its replacement is saslauthd (see below).

The pwcheck support is not included in Exim by default. Y ou need to specify the location of the
pwcheck daemon’s socket in Local/Makefile before building Exim. For example:

CYRUS PWCHECK SOCKET=/ var/ pwcheck/ pwcheck

You do not need to install the full Cyrus software suite in order to use the pwcheck daemon. Y ou
can compile and install just the daemon alone from the Cyrus SASL library. Ensure that exim is
the only user that has access to the /var/pwcheck directory.

The pwcheck condition takes one argument, which must be the user name and password,
separated by a colon. For example, in a LOGIN authenticator configuration, you might have this:

114 Siring expansions (11)

http://www.kernel.org/pub/linux/libs/pam/
http://www.e-admin.de/pam_exim/

server_condition = ${if pwcheck{$aut hl: $aut h2}}

gueue_running
This condition, which has no data, is true during delivery attempts that are initiated by queue
runner processes, and false otherwise.

radius {<authentication string>}
Radius authentication (RFC 2865) is supported in asimilar way to PAM. Y ou must set RADIUS _
CONFIG_FILE in Local/Makefile to specify the location of the Radius client configuration file in
order to build Exim with Radius support.

With just that one setting, Exim expects to be linked with the radiusclient library, using the
original API. If you are using release 0.4.0 or later of thislibrary, you need to set

RADI US_LI B_TYPE=RADI USCLI ENTNEW

in Local/Makefile when building Exim. You can aso link Exim with the libradius library that
comes with FreeBSD. To do this, set

RADI US_LI B_TYPE=RADLI B

in Local/Makefile, in addition to setting RADIUS CONFIGURE_FILE. You may also have to
supply a suitable setting in EXTRALIBS so that the Radius library can be found when Exim is
linked.

The string specified by RADIUS_CONFIG_FILE is expanded and passed to the Radius client
library, which calls the Radius server. The condition is true if the authentication is successful. For
example:

server_condition = ${if radi us{<argunents>}}

saslauthd {{<user>}{<password>}{<service>}{<realm>}}
This condition supports user authentication using the Cyrus saslauthd daemon. This replaces the
older pwcheck daemon, which is now deprecated. Using this daemon is one way of making it
possible for passwords to be checked by a process that is not running as root.

The saslauthd support is not included in Exim by default. Y ou need to specify the location of the
saslauthd daemon’ s socket in Local/Makefile before building Exim. For example:

CYRUS_SASLAUTHD SOCKET=/ var/ st at e/ sasl aut hd/ nmux

Y ou do not need to install the full Cyrus software suite in order to use the saslauthd daemon. Y ou
can compile and install just the daemon alone from the Cyrus SASL library.

Up to four arguments can be supplied to the sadauthd condition, but only two are mandatory. For
example:

server_condition = ${if sasl aut hd{{$aut hl1}{$aut h2}}}

The service and the realm are optional (which is why the arguments are enclosed in their own set
of braces). For details of the meaning of the service and realm, and how to run the daemon,
consult the Cyrus documentation.

11.8 Combining expansion conditions

Severa conditions can be tested at once by combining them using the and and or combination
conditions. Note that and and or are complete conditions on their own, and precede their lists of
sub-conditions. Each sub-condition must be enclosed in braces within the overall braces that contain
thelist. No repetition of if is used.

or {{<cond1>}{<cond2>}...}
The sub-conditions are evaluated from left to right. The condition is true if any one of the
sub-conditionsis true. For example,

115 Siring expansions (11)

${if or {{eq{$l ocal part}{spqr}}{eq{$domai n}{testing.con}}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several “match” sub-conditions the values of the numeric variables afterwards are taken from the
first one that succeeds.

and {{<cond1>}{<cond2>}...}
The sub-conditions are evaluated from left to right. The condition is true if al of the
sub-conditions are true. If there are severa “match” sub-conditions, the values of the numeric
variables afterwards are taken from the last one. When a false sub-condition is found, the
following ones are parsed but not evaluated.

11.9 Expansion variables

This section contains an alphabetical list of al the expansion variables. Some of them are available
only when Exim is compiled with specific options such as support for TLS or the content scanning
extension.

$0, $1, etc
When a match expansion condition succeeds, these variables contain the captured substrings
identified by the regular expression during subsequent processing of the success string of the
containing if expansion item. They may also be set externally by some other matching process
which precedes the expansion of the string. For example, the commands available in Exim filter
filesinclude an if command with its own regular expression matching condition.

$acl_c0—$acl_c19
Vaues can be placed in these variables by the set modifier in an ACL. The values persist
throughout the lifetime of an SMTP connection. They can be used to pass information between
ACLs and between different invocations of the same ACL. When a message is received, the
values of these variables are saved with the message, and can be accessed by filters, routers, and
transports during subsequent delivery.

$acl_m0 — $acl_m19
Values can be placed in these variables by the set modifier in an ACL. They retain their values
while a message is being received, but are reset afterwards. They are also reset by MAIL, RSET,
EHLO, HELO, and after starting a TLS session. When a message is received, the values of these
variables are saved with the message, and can be accessed by filters, routers, and transports during
subsequent delivery.

$acl_verify_message
After an address verification has failed, this variable contains the failure message. It retains its
value for use in subsequent modifiers. The message can be preserved by coding like this:

warn !verify = sender
set acl _nD = $acl _verify_nessage

You can use $acl_ verify _message during the expansion of the message or log_message
modifiers, to include information about the verification failure.

$address data
Thisvariable is set by means of the address_data option in routers. The value then remains with
the address while it is processed by subsequent routers and eventually a transport. If the transport
is handling multiple addresses, the value from the first address is used. See chapter 15 for more
details. Note: The contents of $address_data are visible in user filter files.

If $address_data is set when the routers are called from an ACL to verify arecipient address, the
fina vaueis gtill in the variable for subsequent conditions and modifiers of the ACL statement. If
routing the address caused it to be redirected to just one address, the child address is also routed
as part of the verification, and in this case the final value of $address data is from the child's
routing.

If $address_data is set when the routers are called from an ACL to verify a sender address, the
final value is also preserved, but this time in $sender_address _data, to distinguish it from data

116 Siring expansions (11)

from arecipient address.

In both cases (recipient and sender verification), the value does not persist after the end of the
current ACL statement. If you want to preserve these values for longer, you can save them in
ACL variables.

$address file
When, as aresult of aliasing, forwarding, or filtering, a message is directed to a specific file, this
variable holds the name of the file when the transport is running. At other times, the variable is
empty. For example, using the default configuration, if user r2d2 has a .forward file containing

/ home/ r 2d2/ saveni |
then when the address file transport is running, $address file contains “/home/r2d2/savemail”.

For Sieve filters, the value may be “inbox” or arelative folder name. It is then up to the transport
configuration to generate an appropriate absolute path to the relevant file.

$address pipe
When, as aresult of aliasing or forwarding, a message is directed to a pipe, this variable holds the
pipe command when the transport is running.

$authl — $auth3
These variables are used in SMTP authenticators (see chapters 34-38). Elsewhere, they are
empty.

$authenticated_id

When a server successfully authenticates a client it may be configured to preserve some of the
authentication information in the variable $authenticated id (see chapter 33). For example, a
user/password authenticator configuration might preserve the user name for use in the routers.
Note that this is not the same information that is saved in $sender _host_authenticated. When a
message is submitted locally (that is, not over a TCP connection) the value of $authenticated idis
normally the login name of the calling process. However, a trusted user can override this by
means of the -oMai command line option.

Sauthenticated_sender
When acting as a server, Exim takes note of the AUTH= parameter on an incoming SMTP MAIL
command if it believes the sender is sufficiently trusted, as described in section 33.2. Unless the
data is the string “<>", it is set as the authenticated sender of the message, and the value is
available during delivery in the $authenticated_sender variable. If the sender is not trusted, Exim
accepts the syntax of AUTH=, but ignores the data.

When a message is submitted locally (that is, not over a TCP connection), the value of
$authenticated _sender is an address constructed from the login name of the calling process and
$qualify _domain, except that a trusted user can override this by means of the -oMas command
line option.

$authentication failed
This variable is set to “1” in an Exim server if a client issues an AUTH command that does not
succeed. Otherwise it is set to “0”. This makes it possible to distinguish between “did not try to
authenticate” ($sender_host_authenticated is empty and $authentication_failed is set to “0”) and
“tried to authenticate but failed” ($sender_host_authenticated is empty and $authentication
failed is set to “1"). Failure includes any negative response to an AUTH command, including (for
example) an attempt to use an undefined mechanism.

$body_linecount
When a message is being received or delivered, this variable contains the number of lines in the
message’ s body. See also $message_linecount.

$body_zerocount
When a message is being received or delivered, this variable contains the number of binary zero
bytesin the message's body.

$bounce_recipient

117 Siring expansions (11)

Thisis set to the recipient address of a bounce message while Exim is creating it. It is useful if a
customized bounce message text file isin use (see chapter 46).

$bounce _return_size limit
This contains the value set in the bounce_return_size limit option, rounded up to a multiple of
1000. It is useful when a customized error message text file isin use (see chapter 46).

$caller_gid
The real group id under which the process that called Exim was running. This is not the same as
the group id of the originator of a message (see $originator_gid). If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim gid.

$caller_uid
Therea user id under which the process that called Exim was running. Thisis not the same as the
user id of the originator of a message (see $originator_uid). If Exim re-execs itself, this variable
in the new incarnation normally contains the Exim uid.

$compile_date
The date on which the Exim binary was compiled.

$compile_number
The building process for Exim keeps a count of the number of times it has been compiled. This
serves to distinguish different compilations of the same version of the program.

$demime_errorlevel
This variable is available when Exim is compiled with the content-scanning extension and the
obsolete demime condition. For details, see section 41.6.

$demime_reason
This variable is available when Exim is compiled with the content-scanning extension and the
obsolete demime condition. For details, see section 41.6.

$dnglist_domain
When a client host is found to be on a DNS (black) list, the list's domain name is put into this
variable so that it can be included in the rejection message.

$dnslist_text
When aclient host is found to be on a DNS (black) list, the contents of any associated TXT record
are placed in this variable.

$dnslist_value
When aclient host is found to be on a DNS (black) list, the IP address from the resource record is
placed in this variable. If there are multiple records, all the addresses are included, comma-space
separated.

$domain
When an address is being routed, or delivered on its own, this variable contains the domain.
Uppercase letters in the domain are converted into lower case for $domain.

Globa address rewriting happens when a message is received, so the value of $domain during
routing and delivery is the value after rewriting. $domain is set during user filtering, but not
during system filtering, because a message may have many recipients and the system filter is
called just once.

When more than one address is being delivered at once (for example, several RCPT commandsin
one SMTP delivery), $domain is set only if they all have the same domain. Transports can be
restricted to handling only one domain at a time if the value of $domain is required at transport
time — this is the default for local transports. For further details of the environment in which local
transports are run, see chapter 23.

At the end of a delivery, if al deferred addresses have the same domain, it is set in $domain
during the expansion of delay_warning_condition.

The $domain variable is also used in some other circumstances;

118 Siring expansions (11)

* When an ACL is running for a RCPT command, $domain contains the domain of the recipient
address. The domain of the sender address is in $sender_address_domain at both MAIL time
and a RCPT time. $domain is not normally set during the running of the MAIL ACL.
However, if the sender address is verified with a callout during the MAIL ACL, the sender
domain is placed in $domain during the expansions of hosts, interface, and port in the smtp
transport.

» When arewrite item is being processed (see chapter 31), $domain contains the domain portion
of the address that is being rewritten; it can be used in the expansion of the replacement
address, for example, to rewrite domains by file lookup.

» With one important exception, whenever a domain list is being scanned, $domain contains the
subject domain. Exception: When a domain list in a sender_domains condition in an ACL is
being processed, the subject domain is in $sender_address_domain and not in $domain. It
works this way so that, in a RCPT ACL, the sender domain list can be dependent on the
recipient domain (which iswhat isin $domain at this time).

* When the smtp_etrn_command option is being expanded, $domain contains the complete
argument of the ETRN command (see section 45.8).

$domain_data
When the domains option on a router matches a domain by means of a lookup, the data read by
the lookup is available during the running of the router as $domain_data. In addition, if the driver
routes the address to a transport, the value is available in that transport. If the transport is handling
multiple addresses, the value from the first addressis used.

$domain_data is also set when the domains condition in an ACL matches a domain by means of
a lookup. The data read by the lookup is available during the rest of the ACL statement. In all
other situations, this variable expands to nothing.

$exim gid
This variable contains the numerical value of the Exim group id.

$exim_path
This variable contains the path to the Exim binary.

$exim uid
This variable contains the numerical value of the Exim user id.

$found_extension
This variable is available when Exim is compiled with the content-scanning extension and the
obsolete demime condition. For details, see section 41.6.

$header _<name>
Thisis not strictly an expansion variable. It is expansion syntax for inserting the message header
line with the given name. Note that the name must be terminated by colon or white space, because
it may contain awide variety of characters. Note also that braces must not be used.

$home
When the check_local_user option is set for a router, the user’s home directory is placed in
$home when the check succeeds. In particular, this means it is set during the running of users
filter files. A router may also explicitly set a home directory for use by a transport; this can be
overridden by a setting on the transport itself.

When running afilter test via the -bf option, $home is set to the value of the environment variable
HOME.

$host
If a router assigns an address to a transport (any transport), and passes a list of hosts with the
address, the value of $host when the transport starts to run is the name of the first host on the list.
Note that this applies both to local and remote transports.

For the smtp transport, if there is more than one host, the value of $host changes as the transport

119 Siring expansions (11)

works its way through the list. In particular, when the smtp transport is expanding its options for
encryption using TLS, or for specifying a transport filter (see chapter 24), $host contains the name
of the host to which it is connected.

When used in the client part of an authenticator configuration (see chapter 33), $host contains the
name of the server to which the client is connected.

$host_address
This variable is set to the remote host’s | P address whenever $host is set for a remote connection.
It isalso set to the I P address that is being checked when the ignore _target _hosts option is being
processed.

$host_data
If ahosts condition in an ACL is satisfied by means of alookup, the result of the lookup is made
available in the $host_data variable. This alows you, for example, to do things like this:

deny hosts = net-I|search;/sone/file
nessage = $host_data

$host_lookup_deferred
This variable normally contains “0”, as does $host_lookup_failed. When a message comes from a
remote host and there is an attempt to look up the host’ s name from its I P address, and the attempt
is not successful, one of these variablesis set to “1”.

« |f the lookup receives a definite negative response (for example, a DNS lookup succeeded, but
no records were found), $host_|ookup_failed isset to “1”.

* If thereisany kind of problem during the lookup, such that Exim cannot tell whether or not the
host name is defined (for example, atimeout for a DNS lookup), $host_lookup_deferred is set
to“1".

Looking up a host’s name from its | P address consists of more than just a single reverse lookup.
Exim checks that a forward lookup of at least one of the names it receives from a reverse |ookup
yields the original 1P address. If thisis not the case, Exim does not accept the looked up name(s),
and $host_lookup_failed is set to “1”. Thus, being able to find a name from an |P address (for
example, the existence of a PTR record in the DNS) is not sufficient on its own for the success of
a host name lookup. If the reverse lookup succeeds, but there is a lookup problem such as a
timeout when checking the result, the name is not accepted, and $host_|ookup_deferred is set to
“1”. See also $sender_host_name.

$host_lookup_failed
See $host_lookup_deferred.

$inode
The only time this variable is set is while expanding the directory_file option in the appendfile
transport. The variable contains the inode number of the temporary file which is about to be
renamed. It can be used to construct a unique name for the file.

$interface address
Thisis an obsolete name for $received_ip_address.

Sinterface port
Thisis an obsolete name for $received_port.

$ldap _dn
This variable, which is available only when Exim is compiled with LDAP support, contains the
DN from the last entry in the most recently successful LDAP lookup.

$load_average
This variable contains the system load average, multiplied by 1000 to that it is an integer. For
example, if the load average is 0.21, the value of the variable is 210. The value is recomputed
every time the variable is referenced.

$local_part

120 Siring expansions (11)

When an address is being routed, or delivered on its own, this variable contains the local part.
When a number of addresses are being delivered together (for example, multiple RCPT
commandsin an SMTP session), $local_part is not set.

Global address rewriting happens when a message is received, so the value of $local_part during
routing and delivery is the value after rewriting. $local_part is set during user filtering, but not
during system filtering, because a message may have many recipients and the system filter is
called just once.

If alocal part prefix or suffix has been recognized, it is not included in the value of $local_part
during routing and subsequent delivery. The values of any prefix or suffix are in $local_part_
prefix and $local_part_suffix, respectively.

When a message is being delivered to afile, pipe, or autoreply transport as a result of aiasing or
forwarding, $local_part is set to the local part of the parent address, not to the file name or
command (see $address file and $address _pipe).

When an ACL is running for a RCPT command, $local_part contains the local part of the
recipient address.

When arewrite item is being processed (see chapter 31), $local_part contains the local part of the
address that is being rewritten; it can be used in the expansion of the replacement address, for
example.

Inall cases, al quoting is removed from the local part. For example, for both the addresses

"abc: xyz" @est. exanpl e
abc\: xyz@ est . exanpl e

the value of $local_part is
abc: xyz

If you use $local_part to create another address, you should always wrap it inside a quoting
operator. For example, in aredirect router you could have:

data = ${quote_l ocal _part: $l ocal _part} @ew. donai n. exanpl e

Note: The value of $local_part is normally lower cased. If you want to process local partsin a
case-dependent manner in arouter, you can set the caseful_local_part option (see chapter 15).

$local_part_data
When the local_parts option on arouter matches alocal part by means of alookup, the data read
by the lookup is available during the running of the router as $local_part_data. In addition, if the
driver routes the address to a transport, the value is available in that transport. If the transport is
handling multiple addresses, the value from the first address is used.

$local_part_data is also set when the local_parts condition in an ACL matches a local part by
means of alookup. The data read by the lookup is available during the rest of the ACL statement.
In al other situations, this variable expands to nothing.

$local_part_prefix
When an address is being routed or delivered, and a specific prefix for the local part was
recognized, it is available in this variable, having been removed from $local_part.

$local_part_suffix
When an address is being routed or delivered, and a specific suffix for the local part was
recognized, it is available in this variable, having been removed from $local_part.

$local_scan data
This variable contains the text returned by the local_scan() function when a message is received.
See chapter 42 for more details.

$local_user_gid
See $local_user_uid.

121 Siring expansions (11)

$local_user_uid
This variable and $local_user_gid are set to the uid and gid after the check_local _user router
precondition succeeds. This means that their values are available for the remaining preconditions
(senders, require_files, and condition), for the address data expansion, and for any
router-specific expansions. At all other times, the values in these variables are (ui d_t) (- 1)
and (gid_t)(-1),respectively.

$localhost_number
This contains the expanded value of the localhost_number option. The expansion happens after
the main options have been read.

$log_inodes
The number of free inodes in the disk partition where Exim’'s log files are being written. The
value is recalculated whenever the variable is referenced. If the relevant file system does not have
the concept of inodes, the value of is-1. See also the check_log_inodes option.

$log_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s log files
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is-1. See also the check _|og_space option.

$mailstore_basename
This variable is set only when doing deliveries in “mailstore” format in the appendfile transport.
During the expansion of the mailstore_prefix, mailstore_suffix, message prefix, and message
suffix options, it contains the basename of the files that are being written, that is, the name
without the “.tmp”, “.env”, or “.msg” suffix. At al other times, this variable is empty.

$malware_name
This variable is available when Exim is compiled with the content-scanning extension. It is set to
the name of the virus that was found when the ACL malwar e condition is true (see section 41.1).

$message_age
This variable is set at the start of a delivery attempt to contain the number of seconds since the
message was received. It does not change during asingle delivery attempt.

$message_body
This variable contains the initial portion of a message’s body while it is being delivered, and is
intended mainly for use in filter files. The maximum number of characters of the body that are put
into the variable is set by the message _body_visible configuration option; the default is 500.
Newlines are converted into spaces to make it easier to search for phrases that might be split over
aline break. Binary zeros are also converted into spaces.

$message_body end
This variable contains the final portion of a message's body while it is being delivered. The
format and maximum size are as for $message_body.

$message _body size
When amessage is being delivered, this variable contains the size of the body in bytes. The count
starts from the character after the blank line that separates the body from the header. Newlines are
included in the count. See also $message _size, $body_linecount, and $body_zerocount.

$message exim id
When a message is being received or delivered, this variable contains the unigque message id that
is generated and used by Exim to identify the message. An id is not created for a message until
after its header has been successfully received. Note: Thisis not the contents of the Message-ID:
header ling; it is the loca id that Exim assigns to the message, for example:
1BXTI K- 0001y O VA.

$message _headers
This variable contains a concatenation of al the header lines when a message is being processed,
except for lines added by routers or transports. The header lines are separated by newline

122 Siring expansions (11)

characters. Their contents are decoded in the same way as a header line that is inserted by
bheader.

$message_headers raw
Thisvariableis like $message_headers except that no processing of the contents of header linesis
done.

$message id
Thisisan old name for $message_exim _id, which is now deprecated.

$message _linecount

This variable contains the total number of lines in the header and body of the message. Compare
$body_linecount, which is the count for the body only. During the DATA and content-scanning
ACLs, $message_linecount contains the number of lines received. Before delivery happens (that
is, before filters, routers, and transports run) the count is increased to include the Received: header
line that Exim standardly adds, and also any other header lines that are added by ACLSs. The blank
line that separates the message header from the body is hot counted. Here is an example of the use
of thisvariableina DATA ACL.:

deny nessage = Too nmany lines in nmessage header
condition =\
${if <{250}{%${eval: $message_l i necount - $body_linecount}}}

In the MAIL and RCPT ACLs, the value is zero because at that stage the message has not yet
been received.

$message_size
When a message is being processed, this variable contains its size in bytes. In most cases, the size
includes those headers that were received with the message, but not those (such as Envelope-to:)
that are added to individual deliveries as they are written. However, there is one special case:
during the expansion of the maildir_tag option in the appendfile transport while doing a delivery
in maildir format, the value of $message_size is the precise size of the file that has been written.
See also $message body_size, $body_linecount, and $body_zerocount.

While running an ACL at the time of an SMTP RCPT command, $message_size contains the size
supplied on the MAIL command, or -1 if no size was given. The value may not, of course, be
truthful.

$mime_xxx
A number of variables whose names start with $mime are available when Exim is compiled with
the content-scanning extension. For details, see section 41.4.

$n0 — $n9
These variables are counters that can be incremented by means of the add command in filter files.

$original_domain
When a top-level address is being processed for delivery, this contains the same value as
$domain. However, if a“child” address (for example, generated by an alias, forward, or filter file)
is being processed, this variable contains the domain of the original address (lower cased). This
differs from $parent_domain only when there is more than one level of aiasing or forwarding.
When more than one address is being delivered in a single transport run, $original_domain is not
Set.

If anew address is created by means of a deliver command in a system filter, it is set up with an
artificial “parent” address. This has the local part system-filter and the default qualify domain.

$original_local_part
When atop-level address is being processed for delivery, this contains the same value as $local_
part, unless a prefix or suffix was removed from the local part, because $original_local_part
aways contains the full local part. When a “child” address (for example, generated by an dias,
forward, or filter file) is being processed, this variable contains the full local part of the original
address.

If the router that did the redirection processed the local part case-insensitively, the value in

123 Siring expansions (11)

$original_local _part isin lower case. This variable differs from $parent_local _part only when
there is more than one level of aliasing or forwarding. When more than one address is being
delivered in asingle transport run, $original_local_part is not set.

If anew addressis created by means of a deliver command in a system filter, it is set up with an
artificial “parent” address. This has the local part system-filter and the default qualify domain.

Soriginator_gid
This variable contains the value of $caller_gid that was set when the message was received. For
messages received via the command line, this is the gid of the sending user. For messages
received by SMTP over TCP/IP, thisis normally the gid of the Exim user.

$originator_uid
The value of $caller_uid that was set when the message was received. For messages received via
the command line, this is the uid of the sending user. For messages received by SMTP over
TCP/IP, thisis normally the uid of the Exim user.

$parent_domain
This variable is similar to $original_domain (see above), except that it refers to the immediately
preceding parent address.

$parent_local_part
This variable is similar to $original_ local_ part (see above), except that it refers to the
immediately preceding parent address.

$pid
This variable contains the current processid.

$pipe_addresses
Thisis not an expansion variable, but is mentioned here because the string $pi pe_addr esses
is handled specially in the command specification for the pipe transport (chapter 29) and in
transport filters (described under transport_filter in chapter 24). It cannot be used in general
expansion strings, and provokes an “unknown variable” error if encountered.

$primary_hostname
This variable contains the value set by primary_hostname in the configuration file, or read by
the uname() function. If uname() returns a single-component name, Exim calls gethostbyname()
(or getipnodebyname() where available) in an attempt to acquire a fully qualified host name. See
also $smtp_active_hostname.

$prvscheck_address
This variable is used in conjunction with the prvscheck expansion item, which is described in
sections 11.5 and 40.40.

Pprvscheck _keynum
This variable is used in conjunction with the prvscheck expansion item, which is described in
sections 11.5 and 40.40.

$prvscheck_result
This variable is used in conjunction with the prvscheck expansion item, which is described in
sections 11.5 and 40.40.

$qualify_domain
The value set for the qualify_domain option in the configuration file.

$qualify_recipient
The value set for the qualify_recipient option in the configuration file, or if not set, the value of
$qualify_domain.

$rept_count
When a message is being received by SMTP, this variable contains the number of RCPT
commands received for the current message. If this variable is used in a RCPT ACL, its value
includes the current command.

124 Siring expansions (11)

$rept_defer_count
When a message is being received by SMTP, this variable contains the number of RCPT
commands in the current message that have previously been rejected with a temporary (4xx)
response.

$rept_fail_count
When a message is being received by SMTP, this variable contains the number of RCPT
commands in the current message that have previously been rejected with a permanent (5xx)
response.

Preceived_count
This variable contains the number of Received: header lines in the message, including the one
added by Exim (so its value is always greater than zero). It is available in the DATA ACL, the
non-SMTP ACL, and while routing and delivering.

$received for
If there is only a single recipient address in an incoming message, this variable contains that
address when the Received: header lineis being built. The value is copied after recipient rewriting
has happened, but before the local_scan() functionisrun.

$received_ip_address
As soon as an Exim server starts processing an incoming TCP/IP connection, this variable is set to
the address of the local IP interface, and $received port is set to the local port number. (The
remote |P address and port are in $sender__host_address and $sender_host_port.) When testing
with -bh, the port valueis -1 unlessit has been set using the -oMi command line option.

Aswell as being useful in ACLs (including the “connect” ACL), these variable could be used, for
example, to make the file name for a TLS certificate depend on which interface and/or port is
being used for the incoming connection. The values of $received ip_address and $received port
are saved with any messages that are received, thus making these variables available at delivery
time.

Note: There are no equivalent variables for outgoing connections, because the values are
unknown (unless they are explicitly set by options of the smtp transport).

$received port
See $received ip_address.

$received_protocol
When a message is being processed, this variable contains the name of the protocol by which it
was received. Most of the names used by Exim are defined by RFCs 821, 2821, and 3848. They
start with “smtp” (the client used HELO) or “esmtp” (the client used EHLO). This can be
followed by “s’ for secure (encrypted) and/or “a’ for authenticated. Thus, for example, if the
protocol is set to “esmtpsa’, the message was received over an encrypted SMTP connection and
the client was successfully authenticated.

Exim uses the protocol name “smtps’ for the case when encryption is automatically set up on
connection without the use of STARTTLS (seetls on_connect_ports), and the client uses HELO
to initiate the encrypted SMTP session. The name “smtps’ is also used for the rare situation where
the client initially uses EHL O, sets up an encrypted connection using STARTTLS, and then uses
HELO afterwards.

The -oMr option provides a way of specifying a custom protocol name for messages that are
injected locally by trusted callers. This is commonly used to identify messages that are being
re-injected after some kind of scanning.

$received time
This variable contains the date and time when the current message was received, as a number of
seconds since the start of the Unix epoch.

$recipient_data
This variable is set after an indexing lookup success in an ACL recipients condition. It contains
the data from the lookup, and the value remains set until the next recipients test. Thus, you can

125 Siring expansions (11)

do things like this:

require recipients = cdb*@/sone/file
deny some further test involving $r eci pi ent _dat a

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for alookup that
is used as part of the string expansion that all such lists undergo before being interpreted.

Srecipient_verify failure
Inan ACL, when arecipient verification fails, this variable contains information about the failure.
It is set to one of the following words:

» “qualify”: The address was unqualified (no domain), and the message was neither local nor
came from an exempted host.

* “route”: Routing failed.

* “mail”: Routing succeeded, and a callout was attempted; rejection occurred at or before the
MAIL command (that is, oninitial connection, HELO, or MAIL).

» “recipient”: The RCPT command in a callout was rejected.
» “postmaster”: The postmaster check in a callout was rejected.

The main use of this variable is expected to be to distinguish between regjections of MAIL and
rejections of RCPT.

$recipients
This variable contains a list of envelope recipients for a message. A comma and a space separate
the addresses in the replacement text. However, the variable is not generally available, to prevent
exposure of Bcc recipientsin unprivileged users' filter files. Y ou can use $recipients only in these
two cases:

(1) Inasystemfilter file.

(2) Inthe ACLs associated with the DATA command and with non-SM TP messages, that is, the
ACLs defined by acl_smtp_predata, acl_smtp_data, acl_smtp_mime, acl_not_smtp_
start, acl_not_smtp, and acl_not_smtp_mime.

$recipients_count
When a message is being processed, this variable contains the number of envelope recipients that
came with the message. Duplicates are not excluded from the count. While a message is being
received over SMTP, the number increases for each accepted recipient. It can be referenced in an
ACL.

$regex_match_string
This variable is set to contain the matching regular expression after a regex ACL condition has
matched (see section 41.5).

$reply_address
When a message is being processed, this variable contains the contents of the Reply-To: header
line if one exists and it is not empty, or otherwise the contents of the From: header line. Apart
from the removal of leading white space, the value is not processed in any way. In particular, no
RFC 2047 decoding or character code translation takes place.

$return_path
When a message is being delivered, this variable contains the return path — the sender field that
will be sent as part of the envelope. It is not enclosed in <> characters. At the start of routing an
address, $return_path has the same value as $sender_address, but if, for example, an incoming
message to a mailing list has been expanded by a router which specifies a different address for
bounce messages, $return_path subsequently contains the new bounce address, whereas $sender
address aways contains the original sender address that was received with the message. In other
words, $sender_address contains the incoming envelope sender, and $return_path contains the

126 Siring expansions (11)

outgoing envel ope sender.

$return_size limit
Thisis an obsolete name for $bounce_return_size limit.

$runrc
This variable contains the return code from a command that is run by the ${run...} expansion
item. Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and useit in another.

$self_hostname
When an address is routed to a supposedly remote host that turns out to be the local host, what
happens is controlled by the self generic router option. One of its values causes the address to be
passed to another router. When this happens, $self_hostname is set to the name of the local host
that the original router encountered. In other circumstances its contents are null.

$sender_address
When a message is being processed, this variable contains the sender’ s address that was received
in the message’ s envelope. The case of lettersin the address is retained, in both the local part and
the domain. For bounce messages, the value of this variable is the empty string. See also $return_
path.

$sender_address data
If $address _data is set when the routers are called from an ACL to verify a sender address, the
final value is preserved in $sender_address_data, to distinguish it from data from a recipient
address. The value does not persist after the end of the current ACL statement. If you want to
preserveit for longer, you can saveit in an ACL variable.

$sender_address_domain
The domain portion of $sender_address.

$sender_address local_part
The local part portion of $sender_address.

$sender_data
This variable is set after a lookup success in an ACL senders condition or in a router senders
option. It contains the data from the lookup, and the value remains set until the next sender s test.
Thus, you can do things like this:

requi re senders = cdb*@/sone/file
deny some further test involving $sender _dat a

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for a lookup that
is used as part of the string expansion that all such lists undergo before being interpreted.

$sender_fullhost

When a message is received from a remote host, this variable contains the host name and IP
addressin asingle string. It ends with the I P address in square brackets, followed by a colon and a
port number if the logging of ports is enabled. The format of the rest of the string depends on
whether the host issued a HELO or EHLO SMTP command, and whether the host name was
verified by looking up its IP address. (Looking up the IP address can be forced by the host_
lookup option, independent of verification.) A plain host name at the start of the string is a
verified host name; if this is not present, verification either failed or was not requested. A host
name in parentheses is the argument of a HELO or EHLO command. This is omitted if it is
identical to the verified host name or to the host’s I P address in square brackets.

$sender _helo _name
When a message is received from a remote host that has issued a HELO or EHLO command, the
argument of that command is placed in thisvariable. It isaso set if HELO or EHLO is used when
amessage isreceived using SMTP locally viathe -bs or -bS options.

127 Siring expansions (11)

$sender_host_address
When a message is received from a remote host, this variable contains that host’s | P address. For
locally submitted messages, it is empty.

$sender _host_authenticated
This variable contains the name (not the public name) of the authenticator driver that successfully
authenticated the client from which the message was received. It is empty if there was no
successful authentication. See also $authenticated_id.

$sender _host_name
When a message is received from a remote host, this variable contains the host’s name as
obtained by looking up its IP address. For messages received by other means, this variable is
empty.

If the host name has not previously been looked up, a reference to $sender _host_name triggers a
lookup (for messages from remote hosts). A looked up name is accepted only if it leads back to
the original |P address via a forward lookup. If either the reverse or the forward lookup fails to
find any data, or if the forward lookup does not yield the original |P address, $sender_host_name
remains empty, and $host_lookup_failed isset to “1”.

However, if either of the lookups cannot be completed (for example, there is a DNS timeout),
$host_lookup_deferred isset to “1”, and $host_lookup_failed remains set to “0”.

Once $host_lookup_failed is set to “1”, Exim does not try to look up the host name again if there
is a subsequent reference to $sender_host_name in the same Exim process, but it does try again if
$host_lookup_deferred issetto “1”.

Exim does not automatically look up every calling host’s name. If you want maximum efficiency,
you should arrange your configuration so that it avoids these lookups atogether. The lookup
happens only if one or more of the following are true:

* A string containing $sender_host_name is expanded.

» The caling host matches the list in host_|lookup. In the default configuration, this option is set
to *, so it must be changed if lookups are to be avoided. (In the code, the default for host_
lookup is unset.)

» Exim needs the host name in order to test an item in a host list. The items that require this are
described in sections 10.13 and 10.15.

» The calling host matches helo_try_verify hosts or helo_verify _hosts. In this case, the host
name is required to compare with the name quoted in any EHLO or HELO commands that the
client issues.

» The remote host issues a EHLO or HELO command that quotes one of the domains in helo_
lookup_domains. The default value of this optionis

hel o_| ookup_domains = @: @]

which causes alookup if aremote host (incorrectly) gives the server's name or |P addressin an
EHLO or HELO command.

$sender_host_port
When a message is received from a remote hogt, this variable contains the port number that was
used on the remote host.

$sender_ident
When a message is received from a remote host, this variable contains the identification received
in response to an RFC 1413 request. When a message has been received locally, this variable
contains the login name of the user that called Exim.

$sender_rate xxx
A number of variables whose names begin $sender_rate _are set as part of the ratelimit ACL
condition. Details are given in section 40.32.

128 Siring expansions (11)

$sender_rcvhost
This is provided specifically for use in Received: headers. It starts with either the verified host
name (as obtained from areverse DNS lookup) or, if there is no verified host name, the I P address
in square brackets. After that there may be text in parentheses. When the first item is a verified
host name, the first thing in the parentheses is the IP address in square brackets, followed by a
colon and a port number if port logging is enabled. When the first item isan IP address, the port is
recorded as “port=xxxx" inside the parentheses.

There may aso be items of the form “helo=xxxx" if HELO or EHL O was used and its argument
was not identical to the real host name or IP address, and “ident=xxxx" if an RFC 1413 ident
string is available. If al three items are present in the parentheses, a newline and tab are inserted
into the string, to improve the formatting of the Received: header.

$sender_verify failure
In an ACL, when a sender verification fails, this variable contains information about the failure.
The details are the same as for $recipient_verify failure.

$smtp_active_hostname
During an incoming SMTP session, this variable contains the value of the active host name, as
specified by the smtp_active_hostname option. The value of $smtp_active hostname is saved
with any message that is received, so its value can be consulted during routing and delivery.

$smtp_command
During the processing of an incoming SMTP command, this variable contains the entire
command. This makes it possible to distinguish between HELO and EHLO in the HELO ACL,
and also to distinguish between commands such as these:

MAI L FROM <>
MAI L FROM <>

For a MAIL command, extra parameters such as SIZE can be inspected. For a RCPT command,
the address in $smtp_command is the original address before any rewriting, whereas the valuesin
$local_part and $domain are taken from the address after SMTP-time rewriting.

$smtp_command_argument
While an ACL is running to check an SMTP command, this variable contains the argument, that
is, the text that follows the command name, with leading white space removed. Following the
introduction of $smtp_ command, this variable is somewhat redundant, but is retained for
backwards compatibility.

$sn0 — $sn9
These variables are copies of the values of the $n0 — $n9 accumulators that were current at the
end of the system filter file. This allows a system filter file to set values that can be tested in
users' filter files. For example, a system filter could set a value indicating how likely it is that a
message is junk mail.

$spam_xxx
A number of variables whose names start with $spam are available when Exim is compiled with
the content-scanning extension. For details, see section 41.2.

$spool_directory
The name of Exim’s spool directory.

$spool_inades
The number of free inodes in the disk partition where Exim’'s spool files are being written. The
value is recalculated whenever the variable is referenced. If the relevant file system does not have
the concept of inodes, the value of is-1. See also the check_spool_inodes option.

$spool_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s spool files

are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is -1. For example, to check in an ACL that there is at least 50

129 Siring expansions (11)

megabytes free on the spool, you could write:
condition = ${if > {$spool _space} {50000} }
See also the check_spool_space option.

$thisaddress
This variable is set only during the processing of the foranyaddress command in afilter file. Its
use is explained in the description of that command, which can be found in the separate document
entitled Exim’ s interfaces to mail filtering.

$tls certificate verified
This variable is set to “1” if a TLS certificate was verified when the message was received, and
“0" otherwise.

$tls _cipher
When a message is received from a remote host over an encrypted SMTP connection, this
variable is set to the cipher suite that was negotiated, for example DES-CBC3-SHA. In other
circumstances, in particular, for message received over unencrypted connections, the variable is
empty. See chapter 39 for details of TLS support.

$tls _peerdn
When a message is received from a remote host over an encrypted SMTP connection, and Exim is
configured to request a certificate from the client, the value of the Distinguished Name of the
certificate is made available in the $tls_peerdn during subsequent processing.

$tod_bsdinbox
The time of day and the date, in the format required for BSD-style mailbox files, for example:
Thu Oct 17 17:14:09 1995.

$tod_epoch
The time and date as a number of seconds since the start of the Unix epoch.

$tod_full
A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The
timezone is always given as anumerical offset from UTC, with positive values used for timezones
that are ahead (east) of UTC, and negative values for those that are behind (west).

$tod_log
The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
15:32:29, but without a timezone.

$tod_logfile
This variable contains the date in the format yyyymmdd. This is the format that is used for
datestamping log files when log_file_path contains the %D flag.

$tod_zone
This variable contains the numerical value of the local timezone, for example: -0500.

$tod zulu
This variable contains the UTC date and time in “Zulu” format, as specified by 1SO 8601, for
example: 200302211540237.

$value
This variable contains the result of an expansion lookup, extraction operation, or external
command, as described above.

$version_number
The version number of Exim.

$warn_message _delay
This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section 46.2.

$warn_message_recipients

130 Siring expansions (11)

This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section 46.2.

131 Siring expansions (11)

12. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include theline

EXIM PERL = perl.o
in your Local/Makefile and then build Exim in the normal way.

12.1 Setting up so Perl can be used

Access to Perl subroutinesis via a global configuration option called perl_startup and an expansion
string operator ${perl ...}. If there is no perl_startup option in the Exim configuration file then no
Perl interpreter is started and there is aimost no overhead for Exim (since none of the Perl library will
be paged in unless used). If thereisaperl_startup option then the associated value is taken to be Perl
code which is executed in anewly created Perl interpreter.

The value of perl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl _startup = do '/etc/eximpl'

where /etc/exim.pl is Perl code which defines any subroutines you want to use from Exim. Exim can
be configured either to start up a Perl interpreter as soon asiit is entered, or to wait until the first time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
Also, note that this does not mean that Exim is necessarily running as root when Perl is called at a
later time. By default, the interpreter is started only when it is needed, but this can be changed in two

ways:

e Setting perl_at_start (a boolean option) in the configuration requests a startup when Exim is
entered.

» The command line option -ps also requests a startup when Exim is entered, overriding the setting of
perl_at_start.

There is also a command line option -pd (for delay) which suppresses the initial startup, even if perl_
at_start isset.

12.2 Calling Perl subroutines

When the configuration file includes a perl_startup option you can make use of the string expansion
item to call the Perl subroutines that are defined by the perl_startup code. The operator is used in any
of the following forms:

${ perl {foo}}
${ per| {foo}{argunent}}
${perl {foo}{argunent 1} {argunent2} ... }

which calls the subroutine foo with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many argunents passed to Perl subroutine "foo" (nmax is 8)

The return value of the Perl subroutine is evaluated in a scalar context before it is passed back to Exim
to be inserted into the expanded string. If the return value is undef, the expansion is forced to fail in
the same way as an explicit “fail” on an if or lookup item. If the subroutine aborts by obeying Perl’s
die function, the expansion fails with the error message that was passed to die.

12.3 Calling Exim functions from Perl

132 Embedded Per| (12)

Within any Perl code called from Exim, the function Exim::expand_string() is available to call back
into Exim’s string expansion function. For example, the Perl code

ny $lp = Exi m:expand_string('$local _part');

makes the current Exim $local _part available in the Perl variable $lp. Note those are single quotes
and not double quotes to protect against $local_part being interpolated as a Perl variable.

If the string expansion is forced to fail by a“fail” item, the result of Exim::expand_string() is undef.
If there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the same way asif die were used.

Two other Exim functions are available for use from within Perl code. Exim::debug_write() writes a
string to the standard error stream if Exim’'s debugging is enabled. If you want a newline at the end,
you must supply it. Exim::log_write() writes a string to Exim’s main log, adding a leading timestamp.
In this case, you should not supply aterminating newline.

12.4 Use of standard output and error by Perl

Y ou should not write to the standard error or output streams from within your Perl code, as it is not
defined how these are set up. In versions of Exim before 4.50, it is possible for the standard output or
error to refer to the SMTP connection during message reception via the daemon. Writing to this
stream is certain to cause chaos. From Exim 4.50 onwards, the standard output and error streams are
connected to /dev/null in the daemon. The chaos is avoided, but the output islost.

The Perl warn statement writes to the standard error stream by default. Calls to warn may be
embedded in Perl modules that you use, but over which you have no control. When Exim starts up the
Perl interpreter, it arranges for output from the warn statement to be written to the Exim main log.
Y ou can change this by including appropriate Perl magic somewhere in your Perl code. For example,
to discard war n output completely, you need this:

$SIG _WARN _} = sub { };

Whenever a warn is obeyed, the anonymous subroutine is called. In this example, the code for the
subroutine is empty, so it does nothing, but you can include any Perl code that you like. The text of
the warn message is passed as the first subroutine argument.

133 Embedded Perl (12)

13. Starting the daemon and the use of network
interfaces

A host that is connected to a TCP/IP network may have one or more physical hardware network
interfaces. Each of these interfaces may be configured as one or more “logical” interfaces, which are
the entities that a program actually works with. Each of these logical interfaces is associated with an
IP address. In addition, TCP/IP software supports “loopback” interfaces (127.0.0.1 in IPv4 and ::1in
IPv6), which do not use any physical hardware. Exim requires knowledge about the host’s interfaces
for usein three different circumstances:

(1) When alistening daemon is started, Exim needs to know which interfaces and portsto listen on.

(2) When Exim is routing an address, it needs to know which IP addresses are associated with local
interfaces. Thisis required for the correct processing of MX lists by removing the local host and
others with the same or higher priority values. Also, Exim needs to detect cases when an address
isrouted to an |P address that in fact belongs to the local host. Unless the self router option or the
allow_localhost option of the smtp transport is set (as appropriate), this is treated as an error
situation.

(3) When Exim connects to a remote host, it may need to know which interface to use for the
outgoing connection.

Exim’s default behaviour is likely to be appropriate in the vast majority of cases. If your host has only
one interface, and you want al its IP addresses to be treated in the same way, and you are using only
the standard SMTP port, you should not need to take any special action. The rest of this chapter does

not apply to you.

In a more complicated situation you may want to listen only on certain interfaces, or on different
ports, and for this reason there are a nhumber of options that can be used to influence Exim's
behaviour. The rest of this chapter describes how they operate.

When a message is received over TCP/IP, the interface and port that were actually used are set in
$received ip_address and $received port.

13.1 Starting a listening daemon

When a listening daemon is started (by means of the -bd command line option), the interfaces and
ports on which it listens are controlled by the following options:

» daemon_smtp_ports contains a list of default ports. (For backward compatibility, this option can
also be specified in the singular.)

* local_interfaces contains list of interface | P addresses on which to listen. Each item may optionally
also specify a port.

The default list separator in both casesis a colon, but this can be changed as described in section 6.19.
When IPv6 addresses are involved, it is usually best to change the separator to avoid having to double
all the colons. For example:

| ocal _interfaces = <; 127.0.0.1 ; \
192.168.23.65 ; \
0100\
ffe:ffff:836f::feB86:al6l
There are two different formats for specifying a port along with an IP addressin local_inter faces:

(1) The port is added onto the address with a dot separator. For example, to listen on port 1234 on
two different |P addresses:

| ocal interfaces = <; 192.168. 23.65.1234 ; \
3ffe:ffff:836f::fe86:a061. 1234

(2) TheIP address is enclosed in square brackets, and the port is added with a colon separator, for

134 Sarting the daemon (13)

example:

| ocal _interfaces = <; [192.168.23.65]:1234 ; \
[3ffe:ffff:836f::fe86:a061]:1234

When a port is not specified, the value of daemon_smtp_portsis used. The default setting contains
just one port:

daenon_sntp_ports = sntp

If more than one port is listed, each interface that does not have its own port specified listens on all of
them. Ports that are listed in daemon_smtp_ports can be identified either by name (defined in
[etc/services) or by number. However, when ports are given with individual IP addresses in local_
interfaces, only numbers (not names) can be used.

13.2 Special IP listening addresses

The addresses 0.0.0.0 and ::0 are treated specially. They are interpreted as “all 1Pv4 interfaces’ and
“al 1Pv6 interfaces’, respectively. In each case, Exim tells the TCP/IP stack to “listen on all 1Pvx
interfaces’ instead of setting up separate listening sockets for each interface. The default value of
local_interfacesis

| ocal _interfaces = 0.0.0.0

when Exim is built without |Pv6 support; otherwiseit is:

| ocal interfaces = <; ::0; 0.0.0.0

Thus, by default, Exim listens on all available interfaces, on the SMTP port.

13.3 Overriding local_interfaces and daemon_smtp_ports

The -0X command line option can be used to override the values of daemon_smtp_ports and/or
local_interfaces for a particular daemon instance. Another way of doing this would be to use macros
and the -D option. However, -0X can be used by any admin user, whereas modification of the runtime
configuration by -D is allowed only when the caller isroot or exim.

The value of -0X is alist of items. The default colon separator can be changed in the usual way if
required. If there are any items that do not contain dots or colons (that is, are not IP addresses), the
value of daemon_smtp_ports is replaced by the list of those items. If there are any items that do
contain dots or colons, the value of local_interfacesis replaced by those items. Thus, for example,

-0X 1225
overrides daemon_smtp_ports, but leaveslocal_inter faces unchanged, whereas
-0X 192.168. 34. 5. 1125

overrides local_ interfaces, leaving daemon_ smtp_ ports unchanged. (However, since local
interfaces now contains no items without ports, the value of daemon_smtp_ports is no longer
relevant in this example.)

13.4 Support for the obsolete SSMTP (or SMTPS) protocol

Exim supports the obsolete SSMTP protocol (also known as SMTPS) that was used before the
STARTTLS command was standardized for SMTP. Some legacy clients still use this protocol. If the
tls_on_connect_ports option is set to a list of port numbers, connections to those ports must use
SSMTP. The most common use of this option is expected to be

tIs_on_connect _ports = 465

because 465 is the usual port number used by the legacy clients. There is also a command line option
-tIs-on-connect, which forces all ports to behave in this way when a daemon is started.

Warning: Setting tls_on_connect_ports does not of itself cause the daemon to listen on those ports.

135 Sarting the daemon (13)

You must still specify them in daemon_smtp_ports, local _interfaces, or the -oX option. (This is
because tls_on_connect_ ports applies to inetd connections as well as to connections via the
daemon.)

13.5 IPv6 address scopes

IPv6 addresses have “scopes’, and a host with multiple hardware interfaces can, in principle, have the
same link-local |Pv6 address on different interfaces. Thus, additional information is needed, over and
above the IP address, to distinguish individual interfaces. A convention of using a percent sign
followed by something (often the interface name) has been adopted in some cases, leading to
addresses like this:

fe80::202: b3ff: fe03: 45c1%t hO

To accommodate this usage, a percent sign followed by an arbitrary string is allowed at the end of an
IPv6 address. By default, Exim calls getaddrinfo() to convert a textual 1Pv6 address for actual use.
This function recognizes the percent convention in operating systems that support it, and it processes
the address appropriately. Unfortunately, some older libraries have problems with getaddrinfo(). If

| PV6_USE_I NET_PTON=yes

is set in Local/Makefile (or an OS-dependent Makefile) when Exim is built, Exim uses inet_pton() to
convert atextual 1Pv6 address for actual use, instead of getaddrinfo(). (Before version 4.14, it aways
used this function.) Of course, this means that the additional functionality of getaddrinfo() —
recognizing scoped addresses—is lost.

13.6 Disabling IPv6

Sometimes it happens that an Exim binary that was compiled with IPv6 support is run on a host
whose kernel does not support 1Pv6. The binary will fall back to using 1Pv4, but it may waste
resources looking up AAAA records, and trying to connect to IPv6 addresses, causing delays to mail
delivery. If you set the disable ipv6 option true, even if the Exim binary has IPv6 support, no IPv6
activities take place. AAAA records are never looked up, and any I1Pv6 addresses that are listed in
local_interfaces, data for the manualroute router, etc. are ignored. If IP literals are enabled, the
ipliteral router declines to handle IPv6 literal addresses.

On the other hand, when IPv6 is in use, there may be times when you want to disable it for certain
hosts or domains. Y ou can use the dns_ipv4_lookup option to globally suppress the lookup of AAAA
records for specified domains, and you can use the ignore_target hosts generic router option to
ignore IPv6 addresses in an individual router.

13.7 Examples of starting a listening daemon
The default case in an IPv6 environment is

daenon_sntp ports = sntp
| ocal interfaces = <; ::0; 0.0.0.0

This specifies listening on the smtp port on all 1Pv6 and IPv4 interfaces. Either one or two sockets
may be used, depending on the characteristics of the TCP/IP stack. (This is complicated and messy;
for more information, read the comments in the daemon.c source file.)

To specify listening on ports 25 and 26 on all interfaces:
daenon_sntp_ports = 25 : 26
(leaving local_interfaces at the default setting) or, more explicitly:

| ocal interfaces = <; ::0.25 :::0.26 \
0.0.0.0.25 ; 0.0.0.0.26

To listen on the default port on all 1Pv4 interfaces, and on port 26 on the IPv4 |oopback address only:
| ocal interfaces = 0.0.0.0 : 127.0.0.1. 26

136 Sarting the daemon (13)

To specify listening on the default port on specific interfaces only:

| ocal _interfaces = 192.168.34.67 : 192.168. 34. 67

War ning: Such a setting excludes listening on the loopback interfaces.

13.8 Recognising the local host

The local_interfaces option is also used when Exim needs to determine whether or not an IP address
refers to the local host. That is, the IP addresses of al the interfaces on which a daemon is listening
are always treated as local.

For this usage, port numbers in local_interfaces are ignored. If either of the items 0.0.0.0 or ::0 are
encountered, Exim gets a complete list of available interfaces from the operating system, and extracts
the relevant (that is, IPv4 or |Pv6) addresses to use for checking.

Some systems set up large numbers of virtual interfaces in order to provide many virtual web servers.
In this situation, you may want to listen for email on only a few of the available interfaces, but
nevertheless treat al interfaces as local when routing. You can do this by setting extra_local_
interfaces to alist of 1P addresses, possibly including the “all” wildcard values. These addresses are
recognized as local, but are not used for listening. Consider this example:

| ocal _interfaces = <; 127.0.0.1 ; ::1 ; \
192.168.53.235 ; \
3ffe:;2101: 12: 1: a00:; 20ff: f e86: a061

extra local interfaces = <; ::0; 0.0.0.0

The daemon listens on the loopback interfaces and just one IPv4 and one IPv6 address, but all
available interface addresses are treated as local when Exim is routing.

In some environments the local host name may be in an MX list, but with an IP address that is not
assigned to any loca interface. In other cases it may be desirable to treat other host names as if they
referred to the local host. Both these cases can be handled by setting the hosts treat_as local option.
This contains host names rather than 1P addresses. When a host is referenced during routing, either via
an MX record or directly, it is treated as the local host if its name matches hosts treat_as local, or if
any of its 1P addresses match local_interfaces or extra local _interfaces.

13.9 Delivering to a remote host

Delivery to aremote host is handled by the smtp transport. By default, it alows the system’s TCP/IP
functions to choose which interface to use (if there is more than one) when connecting to a remote
host. However, the inter face option can be set to specify which interface is used. See the description
of the smtp transport in chapter 30 for more details.

137 Sarting the daemon (13)

14. Main configuration

Thefirst part of the run time configuration file contains three types of item:

» Macro definitions. These lines start with an upper case letter. See section 6.4 for details of macro

processing.

* Named list definitions: These lines start with one of the words “domainlist”, “hostlist”,
“addresslist”, or “localpartlist”. Their useis described in section 10.5.

» Main configuration settings: Each setting occupies one line of the file (with possible continuations).
If any setting is preceded by the word “hide”, the -bP command line option displays its value to
admin users only. See section 6.10 for a description of the syntax of these option settings.

This chapter specifies al the main configuration options, along with their types and default values.
For ease of finding a particular option, they appear in aphabetical order in section 14.23 below.
However, because there are now so many options, they are first listed briefly in functional groups, as
an aid to finding the name of the option you are looking for. Some options are listed in more than one

group.

14.1 Miscellaneous

bi_command
disable ipv6
keep_malformed
localhost_number
message_body_visible
mua_wrapper
print_topbitchars
timezone

14.2 Exim parameters

exim_group
exim_path
exim_user
primary_hostname
split_spool_directory
spool_directory

14.3 Privilege controls

admin_groups
deliver_drop_privilege
local_from_check
local_from_prefix
local_from_suffix
local_sender_retain
never_users
prod_requires_admin
queue list_requires_admin
trusted_groups
trusted_users

14.4 Logging

hosts connection_nolog
log_file_path
log_selector
log_timezone
message_|logs

to run for -bi command line option

do no IPv6 processing

for broken files — should not happen
for unique message ids in clusters
how much to show in $message body
runin“MUA wrapper” mode

top-bit characters are printing

force time zone

override compiled-in value
override compiled-in value
override compiled-in value
default from uname()

use multiple directories
override compiled-in value

groups that are Exim admin users
drop root for delivery processes
insert Sender: if necessary

for testing From: for local sender
for testing From: for local sender
keep Sender: from untrusted user
do not run deliveries as these
forced delivery requires admin user
gueue listing requires admin user
groups that are trusted

users that are trusted

exemption from connect logging
override compiled-in value
set/unset optional 1ogging

add timezoneto log lines

create per-message logs

138 Main configuration (14)

preserve_message_|logs
process log path
syslog_duplication
sydog_facility
syslog_processname
sydog_timestamp
write rejectlog

14.5 Frozen messages

auto_thaw

freeze tell

move _frozen_messages
timeout_frozen_after

14.6 Data lookups

Idap_default_servers
Idap_version
lookup_open_max
mysql_servers

oracle servers
pgsql_servers
sglite_lock_timeout

14.7 Message ids

message_id_header_domain
message id_header text

14.8 Embedded Perl Startup

perl_at_start
perl_startup

14.9 Daemon

daemon_smtp_ports
daemon_startup_retries
daemon_startup_sleep
extra local_interfaces
local_interfaces

pid_file path
queue_run_max

14.10 Resource control

check log_inodes

check _log_space
check_spool_inodes
check_spool_space
deliver_queue load_max

queue only load
gueue_run_max
remote_max_parallel
smtp_accept_max
smtp_accept_max_nonmail
smtp_accept_max_nonmail_hosts
smtp_accept_max_per_connection
smtp_accept_max_per_host
smtp_accept_queue

after message completion

for SIGUSR1 and exiwhat

controls duplicate log lines on syslog
set syslog “facility” field

set syslog “ident” field

timestamp syslog lines

control use of message log

setstime for retrying frozen messages
send message when freezing

to another directory

keep frozen messages only so long

used if no server in query
set protocol version
lookup files held open
asit says

asit says

asit says

asit says

used to build Message-ID: header
ditto

always start the interpreter
code to obey when starting Perl

default ports

number of timesto retry

time to sleep between tries

not necessarily listened on

on which to listen, with optional ports
override compiled-in value

maximum simultaneous queue runners

before accepting a message

before accepting a message

before accepting a message

before accepting a message

no queue deliveriesif load high
gueue incoming if load high
maximum simultaneous queue runners
paralel SMTP delivery per message
simultaneous incoming connections
non-mail commands

hosts to which the limit applies
messages per connection
connections from one host

gueue mail if more connections

139 Main configuration (14)

SMtp_accept_queue_per_connection

smtp_accept_reserve
smtp_check _spool_space
smtp_connect_backlog
smtp_load_reserve
smtp_reserve hosts

14.11 Policy controls

acl_not_smtp
acl_not_smtp_mime
acl_not_smtp_start
acl_smtp_auth
acl_smtp_connect
acl_smtp_data
acl_smtp_etrn
acl_smtp_expn
acl_smtp_helo
acl_smtp_mail
acl_smtp_mailauth
acl_smtp_mime
acl_smtp_predata
acl_smtp_quit
acl_smtp_rcpt
acl_smtp_starttls
acl_smtp_vrfy
av_scanner
check_rfc2047_length
dns _csa search_limit
dns csa_use reverse
header maxsize
header line maxsize
helo_accept_junk_hosts
helo_allow_chars
helo_lookup_domains
helo_try verify hosts
helo verify _hosts
host_lookup
host_lookup_order
host_reject_connection
hosts treat_as local
local_scan_timeout
message_size limit
percent_hack _domains
spamd_address
strict_acl_vars

gueue if more messages per connection
only reserve hosts if more connections
from SIZE on MAIL command

passed to TCP/IP stack

SMTP from reserved hosts if load high
these are the reserve hosts

ACL for non-SMTP messages

ACL for non-SMTP MIME parts
ACL for start of non-SMTP message
ACL for AUTH

ACL for connection

ACL for DATA

ACL for ETRN

ACL for EXPN

ACL for EHLO or HELO

ACL for MAIL

ACL for AUTH on MAIL command
ACL for MIME parts

ACL for start of data

ACL for QUIT

ACL for RCPT

ACL for STARTTLS

ACL for VRFY

specify virus scanner

check length of RFC 2047 “encoded words’
control CSA parent search depth
en/disable CSA IP reverse search
total size of message header
individual header line limit

allow syntactic junk from these hosts
alow illegal charsin HELO names
lookup hostname for these HEL O names
HEL O soft-checked for these hosts
HEL O hard-checked for these hosts
host name looked up for these hosts
order of DNS and local name lookups
reject connection from these hosts
useful in some cluster configurations
timeout for local_scan()

for al messages

recognize %-hack for these domains
set interface to SpamAssassin

object to unset ACL variables

14.12 Callout cache

callout_domain_negative _expire
callout_domain_positive_expire
callout_negative expire
callout_positive_expire
callout_random_local_part

14.13 TLS

tls advertise _hosts advertise TLSto these hosts
tls certificate location of server certificate
tls crl certificate revocation list

timeout for negative domain cache item
timeout for positive domain cacheitem
timeout for negative address cache item
timeout for positive address cache item
string to use for “random” testing

140 Main configuration (14)

tls_dhparam

tls on_connect_ports
tls privatekey

tls remember_esmtp
tls require _ciphers
tls try verify_hosts
tls verify certificates
tls verify_hosts

14.14 Local user handling

finduser_retries
gecos_name

gecos _pattern
max_username length
unknown_login
unknown_username
uucp_from_pattern
uucp_from_sender

DH parameters for server
specify SSMTP (SMTPS) ports
location of server private key
don’t reset after starting TLS
specify acceptable cipers

try to verify client certificate
expected client certificates
insist on client certificate verify

useful in NIS environments
used when creating Sender:
ditto

for systems that truncate

used when no login name found
ditto

for recognizing “From ” lines
ditto

14.15 All incoming messages (SMTP and non-SMTP)

header _maxsize
header _line_maxsize
message _size limit
percent_hack domains
received_header_text
received_headers max
recipients_max
recipients max_reject

total size of message header
individual header line limit
applies to all messages

recognize %-hack for these domains
expanded to make Received:

for mail loop detection

limit per message

permanently reject excess

14.16 Non-SMTP incoming messages

receive_timeout

for non-SMTP messages

14.17 Incoming SMTP messages

See a so the Policy controls section above.

host_lookup

host_lookup_order
recipient_unqualified_hosts
rfcl413 hosts

rfcl413 query_timeout

sender _unqualified_hosts
smtp_accept_keepalive
smtp_accept_max
smtp_accept_max_nonmail
smtp_accept_max_nonmail_hosts
smtp_accept_max_per_connection
smtp_accept_max_per_host
smtp_accept_queue
smtp_accept_queue_per_connection
smtp_accept_reserve
smtp_active_hosthame
smtp_banner

smtp_check _spool_space
smtp_connect_backlog
smtp_enforce_sync
smtp_etrn_command
smtp_etrn_serialize

host name looked up for these hosts
order of DNS and local name lookups
may send unqualified recipients
make ident calls to these hosts

zero disablesident calls

may send unqualified senders

some TCP/IP magic

simultaneous incoming connections
non-mail commands

hosts to which the limit applies
messages per connection

connections from one host

gueue mail if more connections
gueue if more messages per connection
only reserve hosts if more connections
host name to use in messages

text for welcome banner

from SIZE on MAIL command
passed to TCP/IP stack

of SMTP command/responses

what to run for ETRN

only one at once

141 Main configuration (14)

smtp_load_reserve
smtp_max_unknown_commands
smtp_ratelimit_hosts
smtp_ratelimit_mail
smtp_ratelimit_rcpt
smtp_receive_timeout
smtp_reserve hosts
smtp_return_error_details

14.18 SMTP extensions

accept_8bitmime
auth_advertise hosts
ignore_fromline_hosts
ignore fromline local
pipelining_advertise_hosts
tls advertise_hosts

14.19 Processing messages

allow_domain_literals
allow_mx_to_ip

allow_utf8 domains
check_rfc2047_length
delivery_date remove
envelope to_remove
extract_addresses remove_arguments
headers char set
qualify_domain
qualify_recipient
return_path_remove
strip_excess_angle brackets
strip_trailing_dot
untrusted set sender

14.20 System filter

system_filter
system_filter_directory_transport
system_filter_file transport
system_filter_group
system_filter_pipe_transport
system_filter_reply transport
system_filter_user

14.21 Routing and delivery

disable_ipv6
dns_again_means_nonexist
dns_check_names _pattern
dns_ipv4_lookup

dns retrans

dns retry

hold_domains
local_interfaces
queue_domains
queue_only

qgueue only file

queue only load
queue_only _override

only reserve hosts if thisload
before dropping connection
apply ratelimiting to these hosts
ratelimit for MAIL commands
ratelimit for RCPT commands
per command or dataline

these are the reserve hosts

give detail on regjections

advertise 8BITMIME

advertise AUTH to these hosts
alow “From” from these hosts
alow “From” from local SMTP
advertise pipelining to these hosts
advertise TLS to these hosts

recognize domain literal syntax
alow MX to point to IP address
in addresses

check length of RFC 2047 “encoded words’
from incoming messages

from incoming messages

affects -t processing

default for translations

default for senders

default for recipients

from incoming messages

in addresses

at end of addresses

untrusted can set envel ope sender

locate system filter

transport for delivery to a directory
transport for delivery to afile
group for filter running

transport for delivery to a pipe
transport for autoreply delivery
user for filter running

do no IPv6 processing

for broken domains

pre-DNS syntax check

only v4 lookup for these domains
parameter for resolver

parameter for resolver

hold delivery for these domains
for routing checks

no immediate delivery for these

no immediate delivery at all

no immediate delivery if file exists
no immediate delivery if load is high
allow command lineto override

142

Main configuration (14)

queue_run_in_order order of arrival

queue _run_max of simultaneous queue runners
queue_smtp_domains no immediate SMTP delivery for these
remote_max_parallel paralel SMTP delivery per message
remote_sort_domains order of remote deliveries
retry_data_expire timeout for retry data

retry interval_max safety net for retry rules

14.22 Bounce and warning messages

bounce_message file content of bounce
bounce_message text content of bounce

bounce return_body include body if returning message
bounce_return_message include original message in bounce
bounce return_size limit limit on returned message

bounce sender_authentication send authenticated sender with bounce
errors_copy copy bounce messages

errors reply to Reply-to: in bounces
delay_warning time schedule
delay_warning_condition condition for warning messages
ignore_bounce_errors_after discard undeliverable bounces
smtp_return_error_details give detail on rejections
warn_message file content of warning message

14.23 Alphabetical list of main options
Those options that undergo string expansion before use are marked with .

|accept_8bitmime Use: main Type: boolean Defaullt: false|

This option causes Exim to send 8BITMIME in its response to an SMTP EHLO command, and to
accept the BODY = parameter on MAIL commands. However, though Exim is 8-hit clean, it is hot a
protocol converter, and it takes no steps to do anything special with messages received by this route.
Consequently, this option is turned off by default.

lacl_not_smtp Use: main Type: string?t Default: unset|

This option defines the ACL that is run when a non-SM TP message has been read and is on the point
of being accepted. See chapter 40 for further details.

lacl_not_smtp_mime Use: main Type: string? Default: unset|

This option defines the ACL that is run for individual MIME parts of non-SMTP messages. It
operates in exactly the same way as acl_smtp_mime operates for SM TP messages.

lacl_not_smtp_start Use: main Type: string? Default: unset|

This option defines the ACL that is run before Exim starts reading a non-SM TP message. See chapter
40 for further details.

|acl_smtp_auth Use: main Type: string Default: unset|

This option defines the ACL that is run when an SMTP AUTH command is received. See chapter 40
for further details.

|acl_smtp_connect Use: main Type: string? Default: unset|

143 Main configuration (14)

This option defines the ACL that is run when an SMTP connection is received. See chapter 40 for
further details.

lacl_smtp_data Use: main Type: stringt Default: unset|

This option defines the ACL that is run after an SMTP DATA command has been processed and the
message itself has been received, but before the final acknowledgement is sent. See chapter 40 for
further details.

lacl_smtp_etrn Use: main Type: string? Default: unset|

This option defines the ACL that is run when an SMTP ETRN command is received. See chapter 40
for further details.

lacl_smtp_expn Use: main Type: stringt Default: unset|

This option defines the ACL that is run when an SMTP EXPN command is received. See chapter 40
for further details.

lacl_smtp_helo Use: main Type: string? Default: unset|

This option defines the ACL that is run when an SMTP EHLO or HELO command is received. See
chapter 40 for further details.

|acl_smtp_mail Use: main Type: string Defaullt: unset|

This option defines the ACL that is run when an SMTP MAIL command is received. See chapter 40
for further details.

lacl_smtp_mailauth Use: main Type: string? Default: unset|

This option defines the ACL that is run when thereisan AUTH parameter on a MAIL command. See
chapter 40 for details of ACLSs, and chapter 33 for details of authentication.

lacl_smtp_mime Use: main Type: stringt Default: unset|

This option is available when Exim is built with the content-scanning extension. It defines the ACL
that is run for each MIME part in amessage. See section 41.4 for details.

lacl_smtp_predata Use: main Type: string? Default: unset|

This option defines the ACL that is run when an SMTP DATA command is received, before the
message itself is received. See chapter 40 for further details.

lacl_smtp_quit Use: main Type: string? Default: unset|

This option defines the ACL that is run when an SMTP QUIT command is received. See chapter 40
for further details.

|acl_smtp_rcpt Use: main Type: stringt Default: unset|

This option defines the ACL that is run when an SMTP RCPT command is received. See chapter 40
for further details.

144 Main configuration (14)

|acl_smtp_starttls Use: main Type: string Default: unset|

This option defines the ACL that is run when an SMTP STARTTLS command is received. See
chapter 40 for further details.

lacl_smtp_vrfy Use: main Type: string? Default: unset|

This option defines the ACL that is run when an SMTP VRFY command is received. See chapter 40
for further details.

ladmin_groups Use: main Type: string listt Default: unset|

This option is expanded just once, at the start of Exim’'s processing. If the current group or any of the
supplementary groups of an Exim caller isin this colon-separated list, the caller has admin privileges.
If all your system programmers are in a specific group, for example, you can give them al Exim
admin privileges by putting that group in admin_groups. However, this does not permit them to read
Exim’s spool files (whose group owner is the Exim gid). To permit this, you have to add individuals
to the Exim group.

lallow_domain_literals Use: main Type: boolean Default: false|

If this option is set, the RFC 2822 domain literal format is permitted in email addresses. The option is
not set by default, because the domain literal format is not normally required these days, and few
people know about it. It has, however, been exploited by mail abusers.

Unfortunately, it seems that some DNS black list maintainers are using this format to report black
listing to postmasters. If you want to accept messages addressed to your hosts by 1P address, you need
to set allow_domain_literals true, and also to add @] to the list of local domains (defined in the
named domain list local_domains in the default configuration). This “magic string” matches the
domain literal form of al the local host’s I P addresses.

lallow_mx_to_ip Use: main Type: boolean Default: false|

It appears that more and more DNS zone administrators are breaking the rules and putting domain
names that look like IP addresses on the right hand side of MX records. Exim follows the rules and
rejects this, giving an error message that explains the mis-configuration. However, some other MTAs
support this practice, so to avoid “Why can’'t Exim do this?’ complaints, allow_mx_to_ip exists, in
order to enable this heinous activity. It is not recommended, except when you have no other choice.

|allow_utf8_domains Use: main Type: boolean Defaullt: false|

Lots of discussion is going on about internationalized domain names. One camp is strongly in favour
of just using UTF-8 characters, and it seems that at least two other MTAS permit this. This option
allows Exim usersto experiment if they wish.

If it is set true, EXim’'s domain parsing function alows valid UTF-8 multicharacters to appear in
domain name components, in addition to letters, digits, and hyphens. However, just setting this option
is not enough; if you want to look up these domain names in the DNS, you must also adjust the value
of dns_check_names_pattern to match the extended form. A suitable setting is:
dns_check_names_pattern = (?2i)(?>(?2(1)\.]| ()
(?>[-a-z0-9\ x80-\xff]*[a-z0-9\ x80-\xbf])?)

Alternatively, you can just disable this feature by setting

)[a-z0-9\ xcO-\ xff]\
+$

dns_check_nanes_pattern =

That is, set the option to an empty string so that no check is done.

145 Main configuration (14)

lauth_advertise_hosts Use: main Type: host listt Default: * |

If any server authentication mechanisms are configured, Exim advertises them in response to an
EHLO command only if the calling host matches this list. Otherwise, Exim does not advertise AUTH.
Exim does not accept AUTH commands from clients to which it has not advertised the availability of
AUTH. The advertising of individual authentication mechanisms can be controlled by the use of the
server _advertise condition generic authenticator option on the individual authenticators. See
chapter 33 for further details.

Certain mail clients (for example, Netscape) require the user to provide a name and password for
authentication if AUTH is advertised, even though it may not be needed (the host may accept
messages from hosts on its local LAN without authentication, for example). The auth_advertise
hosts option can be used to make these clients more friendly by excluding them from the set of hosts
to which Exim advertises AUTH.

If you want to advertise the availability of AUTH only when the connection is encrypted using TLS,
you can make use of the fact that the value of this option is expanded, with a setting like this:

aut h_advertise_hosts = ${if eq{$tls_cipher}{}{}{*}}

If $tIs_cipher is empty, the session is not encrypted, and the result of the expansion is empty, thus
matching no hosts. Otherwise, the result of the expansion is*, which matches all hosts.

lauto_thaw Use: main Type: time Default: Os|

If this option is set to atime greater than zero, a queue runner will try a new delivery attempt on any
frozen message, other than a bounce message, if this much time has passed since it was frozen. This
may result in the message being re-frozen if nothing has changed since the last attempt. It is a way of
saying “keep on trying, even though there are big problems”.

Note: Thisis an old option, which predates timeout_frozen_after and ignore_bounce errors_after.
It is retained for compatibility, but it is not thought to be very useful any more, and its use should
probably be avoided.

|av_scanner Use: main Type: string Default: see below|

This option is available if Exim is built with the content-scanning extension. It specifies which
anti-virus scanner to use. The default valueis:

sophi e: /var/run/ sophi e

If the value of av_scanner starts with dollar character, it is expanded before use. See section 41.1 for
further details.

|bi_command Use: main Type: string Default: unset|

This option supplies the name of a command that is run when Exim is called with the -bi option (see
chapter 5). The string value is just the command name, it is not a complete command line. If an
argument is required, it must come from the -oA command line option.

[bounce_message file Use: main Type: string Default: unset|

This option defines a template file containing paragraphs of text to be used for constructing bounce
messages. Details of the file's contents are given in chapter 46. See also warn_message file.

|bounce_message_text Use: main Type: string Default: unset|

When this option is set, its contents are included in the default bounce message immediately after

146 Main configuration (14)

“This message was created automatically by mail delivery software.” It is not used if bounce_
message fileis set.

|bounce_return_body Use: main Type: boolean Defaullt: true|

This option controls whether the body of an incoming message is included in a bounce message when
bounce_return_message is true. The default setting causes the entire message, both header and body,
to be returned (subject to the value of bounce _return_size limit). If this option is false, only the
message header is included. In the case of a non-SMTP message containing an error that is detected
during reception, only those header lines preceding the point at which the error was detected are
returned.

|bounce_return_message Use: main Type: boolean Defaullt: true|

If this option is set false, none of the original message is included in bounce messages generated by
Exim. See dso bounce return_size limit and bounce return_body.

[bounce _return_size limit Use: main Type: integer Default: 100K

This option sets a limit in bytes on the size of messages that are returned to senders as part of bounce
messages when bounce _return_message is true. The limit should be less than the value of the global
message_size limit and of any message size limit settings on transports, to allow for the bounce
text that Exim generates. If this option is set to zero there is no limit.

When the body of any message that is to be included in a bounce message is greater than the limit, it
is truncated, and a comment pointing this out is added at the top. The actua cutoff may be greater
than the value given, owing to the use of buffering for transferring the message in chunks (typically
8K in size). The ideaisto save bandwidth on those undeliverable 15-megabyte messages.

[bounce_sender_authentication Use: main Type: string Default: unset|

This option provides an authenticated sender address that is sent with any bounce messages generated
by Exim that are sent over an authenticated SM TP connection. A typical setting might be:

bounce_sender _authentication = mail er-daenon@ry. domai n. exanpl e
which would cause bounce messages to be sent using the SMTP command:
MAI L FROM <> AUTH=mmi | er - daenon@ry. domai n. exanpl e

The value of bounce _sender _authentication must always be a complete email address.

|callout_domain_negative_expire Use: main Type: time Default: 3h|

This option specifies the expiry time for negative calout cache data for a domain. See section 40.34
for details of callout verification, and section 40.36 for details of the caching.

|callout_domain_positive_expire Use: main Type: time Default: 7d|

This option specifies the expiry time for positive callout cache data for a domain. See section 40.34
for details of callout verification, and section 40.36 for details of the caching.

|callout_negative_expire Use: main Type: time Default: 2h|

This option specifies the expiry time for negative callout cache data for an address. See section 40.34
for details of callout verification, and section 40.36 for details of the caching.

147 Main configuration (14)

[callout_positive_expire Use: main Type: time Default: 24h|

This option specifies the expiry time for positive callout cache data for an address. See section 40.34
for details of callout verification, and section 40.36 for details of the caching.

|callout_random_local_part Use: main Type: string? Default: see below|

This option defines the “random” local part that can be used as part of callout verification. The default
vaueis

$pri mary_host _nane- $t od_epoch-testing

See section 40.35 for details of how thisvalueis used.

|check_log_inodes Use: main Type: integer Default: O]

See check_spool_space below.

|check_log_space Use: main Type: integer Default: 0]

See check_spool_space below.

|check_rfc2047_length Use: User: main Type: boolean Defaullt: true|

RFC 2047 defines a way of encoding non-ASCII characters in headers using a system of “encoded
words’. The RFC specifies a maximum length for an encoded word; strings to be encoded that exceed
this length are supposed to use multiple encoded words. By default, Exim does not recognize encoded
words that exceed the maximum length. However, it seems that some software, in violation of the
RFC, generates overlong encoded words. If check_rfc2047_length is set false, Exim recognizes
encoded words of any length.

|check_spool_inodes Use: main Type: integer Default: 0|

See check _spool_space below.

|check _spool_space Use: main Type: integer Default: 0|

Thefour check ... options allow for checking of disk resources before a message is accepted.

When any of these options are set, they apply to all incoming messages. If you want to apply different
checks to different kinds of message, you can do so by testing the variables $log_inodes, $log_space,
$spool_inodes, and $spool_space in an ACL with appropriate additional conditions.

check _spool space and check _spool_inodes check the spool partition if either value is greater than
zero, for example:

check_spool space = 10M
check_spool _i nodes = 100

The spool partition is the one that contains the directory defined by SPOOL_DIRECTORY in
Local/Makefile. It is used for holding messages in transit.

check_log_space and check_log_inodes check the partition in which log files are written if either is
greater than zero. These should be set only if log_file path and spool _directory refer to different
partitions.

If thereis less space or fewer inodes than requested, Exim refuses to accept incoming mail. In the case
of SMTP input this is done by giving a 452 temporary error response to the MAIL command. If
ESMTP is in use and there was a SIZE parameter on the MAIL command, its value is added to the

148 Main configuration (14)

check_spool_space value, and the check is performed even if check_spool _spaceis zero, unlessno_
smtp_check spool_spaceis set.

The values for check_spool _space and check log space are held as a number of kilobytes. If a
non-multiple of 1024 is specified, it is rounded up.

For non-SMTP input and for batched SMTP input, the test is done at start-up; on failure a message is
written to stderr and Exim exits with a non-zero code, as it obviously cannot send an error message of
any kind.

|daemon_smtp_ports Use: main Type: string Default: snt p|

This option specifies one or more default SMTP ports on which the Exim daemon listens. See chapter
13 for details of how it is used. For backward compatibility, daemon_smtp_port (singular) is a
synonym.

|daemon_startup_retries Use: main Type: integer Default: 9|

This option, along with daemon_startup_sleep, controls the retrying done by the daemon at startup
when it cannot immediately bind a listening socket (typically because the socket is already in use):
daemon_startup_retries defines the number of retries after the first failure, and daemon_startup_
sleep defines the length of time to wait between retries.

|daemon_startup_sleep Use: main Type: time Default: 30s|

See daemon_startup_retries.

|delay_warning Use: main Type: timelist Default: 24h|

When a message is delayed, Exim sends a warning message to the sender at intervals specified by this
option. The datais a colon-separated list of times after which to send warning messages. If the value
of the option is an empty string or a zero time, no warnings are sent. Up to 10 times may be given. If a
message has been on the queue for longer than the last time, the last interval between the timesis used
to compute subsequent warning times. For example, with

del ay_war ni ng = 4h: 8h: 24h

the first message is sent after 4 hours, the second after 8 hours, and the third one after 24 hours. After
that, messages are sent every 16 hours, because that is the interval between the last two times on the
list. If you set just one time, it specifies the repeat interval. For example, with:

del ay_warni ng = 6h

messages are repeated every six hours. To stop warnings after agiven time, set avery largetime at the
end of thelist. For example:

del ay_warning = 2h: 12h: 99d

|delay_warning_condition Use: main Type: stringt Default: see below|

The string is expanded at the time a warning message might be sent. If al the deferred addresses have
the same domain, it is set in $domain during the expansion. Otherwise $domain is empty. If the result
of the expansion is a forced failure, an empty string, or a string matching any of “0”, “no” or “false”
(the comparison being done caselessly) then the warning message is not sent. The default is:

del ay_warning condition = ${if or {\
{ Teg{$h list-id:$h _|ist-post:$h |ist-subscribe:}{} }\
{ match{$h_precedence: }{(?i)bul k| list]junk} }\
% mat ch{ $h_aut o- subm tted: }{(?i) aut o- gener at ed| aut o-replied} }\

{no}{yes}}

149 Main configuration (14)

This suppresses the sending of warnings for messages that contain List-ID:, List-Post:, or
List-Subscribe: headers, or have “bulk”, “list” or “junk” in a Precedence: header, or have
“auto-generated” or “auto-replied” in an Auto-Submitted: header.

|deliver_drop_privilege Use: main Type: boolean Default: false|

If this option is set true, Exim drops its root privilege at the start of a delivery process, and runs as the
Exim user throughout. This severely restricts the kinds of local delivery that are possible, but is viable
in certain types of configuration. There is a discussion about the use of root privilege in chapter 52.

|deliver_queue load_max Use: main Type: fixed-point Default: unset|

When this option is set, a queue run is abandoned if the system load average becomes greater than the
value of the option. The option has no effect on ancient operating systems on which Exim cannot
determine the load average. See also queue_only load and smtp_load_reserve.

|delivery_date remove Use: main Type: boolean Defallt: true|

Exim’ s transports have an option for adding a Delivery-date: header to a message when it is delivered,
in exactly the same way as Return-path: is handled. Delivery-date: records the actual time of delivery.
Such headers should not be present in incoming messages, and this option causes them to be removed
at the time the message is received, to avoid any problems that might occur when a delivered message
is subsequently sent on to some ather recipient.

|disable_ipv6 Use: main Type: boolean Default: false|

If this option is set true, even if the Exim binary has IPv6 support, no IPv6 activities take place.
AAAA records are never looked up, and any IPv6 addresses that are listed in local_interfaces, data
for the manualroute router, etc. are ignored. If IP literals are enabled, the ipliteral router declines to
handle IPv6 literal addresses.

|[dns_again_means_nonexist Use: main Type: domain listt Defaullt: unset|

DNS lookups give a “try again” response for the DNS errors “non-authoritative host not found” and
“SERVERFAIL”. This can cause Exim to keep trying to deliver a message, or to give repeated
temporary errors to incoming mail. Sometimes the effect is caused by a badly set up name server and
may persist for along time. If a domain which exhibits this problem matches anything in dns_again_
means_nonexigt, it is treated as if it did not exist. This option should be used with care. You can
make it apply to reverse lookups by a setting such asthis:

dns_agai n_neans_nonexi st = *.in-addr. arpa

This option applies to all DNS lookups that Exim does. It also applies when the gethostbyname() or
getipnodebyname() functions give temporary errors, since these are most likely to be caused by DNS
lookup problems. The dnslookup router has some options of its own for controlling what happens
when lookups for MX or SRV records give temporary errors. These more specific options are applied
after this global option.

|dns_check_names pattern Use: main Type: string Default: see below|

When this option is set to a hon-empty string, it causes Exim to check domain names for characters
that are not allowed in host names before handing them to the DNS resolver, because some resolvers
give temporary errors for names that contain unusual characters. If a domain name contains any
unwanted characters, a “not found” result is forced, and the resolver is not called. The check is done
by matching the domain name against a regular expression, which is the value of this option. The
default patternis

150 Main configuration (14)

dns_check_nanes_pattern

=\
() M(2>(2(D)VL 1 O)) MW

(?>[a-z0-9/-]1*[MW])?)+$
which permits only letters, digits, slashes, and hyphens in components, but they must start and end
with aletter or digit. Hyphens are not, in fact, permitted in host names, but they are found in certain

NS records (which can be accessed in Exim by using a dnsdb lookup). If you set allow_utf8
domains, you must modify this pattern, or set the option to an empty string.

|dns_csa_search_limit Use: main Type: integer Default: 5]

This option controls the depth of parental searching for CSA SRV records in the DNS, as described in
more detail in section 40.39.

|[dns_csa_use reverse Use: main Type: boolean Defaullt: true|

This option controls whether or not an |P address, given as a CSA domain, is reversed and looked up
in the reverse DNS, as described in more detail in section 40.39.

|dns_ipv4_lookup Use: main Type: domain listt Default: unset|

When Exim is compiled with 1Pv6 support and disable_ipv6 is not set, it looks for 1Pv6 address
records (AAAA records) as well as IPv4 address records (A records) when trying to find | P addresses
for hosts, unless the host’s domain matches this list.

Thisisafudge to help with name servers that give big delays or otherwise do not work for the AAAA
record type. In due course, when the world’ s name servers have all been upgraded, there should be no
need for this option.

|[dns_retrans Use: main Type: time Default: Os|

The options dns_retrans and dns_retry can be used to set the retransmission and retry parameters for
DNS lookups. Values of zero (the defaults) leave the system default settings unchanged. The first
value is the time between retries, and the second is the number of retries. It isn't totally clear exactly
how these settings affect the total time a DNS lookup may take. | haven't found any documentation
about timeouts on DNS lookups; these parameter values are available in the external resolver interface
structure, but nowhere does it seem to describe how they are used or what you might want to set in
them.

ldns retry Use: main Type: integer Default: 0|

See dns retrans above.

|drop_cr Use: main Type: boolean Default: false|

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
charactersin incoming messages. What happens now is described in section 44.2.

|envelope_to_remove Use: main Type: boolean Defaullt: true|

Exim'’ s transports have an option for adding an Envel ope-to: header to a message when it is delivered,
in exactly the same way as Return-path: is handled. Envelope-to: records the original recipient
address from the messages' s envel ope that caused the delivery to happen. Such headers should not be
present in incoming messages, and this option causes them to be removed at the time the message is
received, to avoid any problems that might occur when a delivered message is subsequently sent on to
some other recipient.

lerrors_copy Use: main Type: string listt Default: unset|

151 Main configuration (14)

Setting this option causes Exim to send bcc copies of bounce messages that it generates to other
addresses. Note: This does not apply to bounce messages coming from elsewhere. The value of the
option is a colon-separated list of items. Each item consists of a pattern, terminated by white space,
followed by a comma-separated list of email addresses. If a pattern contains spaces, it must be
enclosed in double quotes.

Each pattern is processed in the same way as asingleitem in an address list (see section 10.18). When
a pattern matches the recipient of the bounce message, the message is copied to the addresses on the
list. The items are scanned in order, and once a matching one is found, no further items are examined.
For example:

errors_copy = spqr@ydonai n post nmast er @rydonai n. exanpl e :\
rqps@rydomnai n host nast er @rydonai n. exanpl e, \
post nast er @rydonai n. exanpl e

The address list is expanded before use. The expansion variables $local _part and $domain are set
from the original recipient of the error message, and if there was any wildcard matching in the pattern,
the expansion variables $0, $1, etc. are set in the normal way.

lerrors reply_to Use: main Type: string Default: unset|

By default, Exim’'s bounce and delivery warning messages contain the header line

From WMail Delivery System <Mi | er - Daenmon@jualify-domain>

where qualify-domain is the value of the qualify _domain option. A warning message that is
generated by the quota_warn_message option in an appendfile transport may contain its own From:
header line that overrides the default.

Experience shows that people reply to bounce messages. If the errors reply to option is set, a
Reply-To: header is added to bounce and warning messages. For example:

errors_reply to = postmaster @y. donmai n. exanpl e

The value of the option is not expanded. It must specify a valid RFC 2822 address. However, if a
warning message that is generated by the quota_warn_message option in an appendfile transport
contain its own Reply-To: header line, the value of the errors reply_to option is not used.

exim_group Use: main Type: string Default: compile-time
configured

This option changes the gid under which Exim runs when it gives up root privilege. The default value
is compiled into the binary. The value of this option is used only when exim_user is also set. Unless
it consists entirely of digits, the string is looked up using getgrnam(), and failure causes a
configuration error. See chapter 52 for a discussion of security issues.

|exim_path Use: main Type: string Default: see below|

This option specifies the path name of the Exim binary, which is used when Exim needs to re-exec
itself. The default is set up to point to the file exim in the directory configured at compile time by the
BIN_DIRECTORY setting. It is necessary to change exim_path if, exceptionally, Exim is run from
some other place. Warning: Do not use a macro to define the value of this option, because you will
break those Exim utilities that scan the configuration file to find where the binary is. (They then use
the -bP option to extract option settings such as the value of spool_directory.)

exim_user Use: main Type: string Default: compile-time
configured

This option changes the uid under which Exim runs when it gives up root privilege. The default value
is compiled into the binary. Ownership of the run time configuration file and the use of the -C and -D

152 Main configuration (14)

command line optionsis checked against the values in the binary, not what is set here.

Unless it consists entirely of digits, the string is looked up using getpwnam(), and failure causes a
configuration error. If exim_group is not also supplied, the gid is taken from the result of getpwnam()
if itisused. See chapter 52 for a discussion of security issues.

|extra_local_interfaces Use: main Type: string list Default: unset|

This option defines network interfaces that are to be considered local when routing, but which are not
used for listening by the daemon. See section 13.8 for details.

extract_addresses remove Use: main Type: boolean Default: true
arguments

According to some Sendmail documentation (Sun, IRIX, HP-UX), if any addresses are present on the
command line when the -t option is used to build an envelope from a message's To:, Cc: and Bcc:
headers, the command line addresses are removed from the recipients list. This is also how Smail
behaves. However, other Sendmail documentation (the O'Reilly book) states that command line
addresses are added to those obtained from the header lines. When extract_addresses remove_
argumentsiis true (the default), Exim subtracts argument headers. If it is set false, Exim adds rather
than removes argument addresses.

[finduser_retries Use: main Type: integer Default: O]

On systems running NIS or other schemes in which user and group information is distributed from a
remote system, there can be times when getpwnam() and related functions fail, even when given valid
data, because things time out. Unfortunately these failures cannot be distinguished from genuine “not
found” errors. If finduser_retriesis set greater than zero, Exim will try that many extra times to find
auser or agroup, waiting for one second between retries.

Y ou should not set this option greater than zero if your user information isin atraditional /etc/passwd
file, because it will cause Exim needlessly to search the file multiple times for non-existent users, and
also cause delay.

freeze tell Use: main Type: string list, Default: unset
comma separ ated

On encountering certain errors, or when configured to do so in a system filter, ACL, or specia router,
Exim freezes a message. This means that no further delivery attempts take place until an administrator
thaws the message, or the auto_thaw, ignore_bounce_errors_after, or timeout_ frozen_ after
feature cause it to be processed. If freeze tell is set, EXim generates a warning message whenever it
freezes something, unless the message it is freezing is a locally-generated bounce message. (Without
this exception there is the possibility of looping.) The warning message is sent to the addresses
supplied as the commarseparated value of this option. If several of the message's addresses cause
freezing, only asingle message is sent. If the freezing was automatic, the reason(s) for freezing can be
found in the message log. If you configure freezing in a filter or ACL, you must arrange for any
logging that you require.

|gecos_name Use: main Type: stringt Default: unset|

Some operating systems, notably HP-UX, use the “gecos’ field in the system password file to hold
other information in addition to users’ real names. Exim looks up this field for use when it is creating
Sender: or From: headers. If either gecos_pattern or gecos name are unset, the contents of the field
are used unchanged, except that, if an ampersand is encountered, it is replaced by the user’s login
name with the first character forced to upper case, since this is a convention that is observed on many
systems.

When these options are set, gecos pattern istreated as aregular expression that is to be applied to the
field (again with & replaced by the login name), and if it matches, gecos name is expanded and used

153 Main configuration (14)

as the user’ s name.

Numeric variables such as $1, $2, etc. can be used in the expansion to pick up sub-fields that were
matched by the pattern. In HP-UX, where the user’ s name terminates at the first comma, the following
can be used:

gecos_pattern = ([",]*)
gecos_nane = $1

|gecos_pattern Use: main Type: string Default: unset|

See gecos_name above.

|headers _char set Use: main Type: string Default: see below|

This option sets a default character set for trandating from encoded MIME “words” in header lines,
when referenced by an $h_xxx expansion item. The default is the value of HEADERS _CHARSET in
Local/Makefile. The ultimate default is 1SO-8859-1. For more details see the description of header
insertionsin section 11.5.

|header_maxsize Use: main Type: integer Default: see below|

This option controls the overall maximum size of a message’'s header section. The default is the value
of HEADER_MAXSIZE in Local/Makefile; the default for that is 1IM. Messages with larger header
sections are rejected.

|header_line_maxsize Use: main Type: integer Default: 0|

This option limits the length of any individual header line in a message, after all the continuations
have been joined together. Messages with individual header lines that are longer than the limit are
rejected. The default value of zero means “no limit”.

|helo_accept_junk_hosts Use: main Type: host listt Default: unset|

Exim checks the syntax of HEL O and EHL O commands for incoming SMTP mail, and gives an error
response for invalid data. Unfortunately, there are some SMTP clients that send syntactic junk. They
can be accommodated by setting this option. Note that this is a syntax check only. See helo_verify_
hosts if you want to do semantic checking. See also helo_allow_chars for a way of extending the
permitted character set.

[helo_allow_chars Use: main Type: string Default: unset|

This option can be set to a string of rogue characters that are permitted in all EHLO and HEL O names
in addition to the standard letters, digits, hyphens, and dots. If you really must allow underscores, you
can set

hel o_al l ow_chars = _

Note that the value is one string, not alist.

[helo_lookup_domains Use: main Type: domain listt Default: @ @] |

If the domain given by a client in a HELO or EHLO command matches this list, a reverse lookup is
done in order to establish the host’ s true name. The default forces alookup if the client host gives the
server's name or any of its | P addresses (in brackets), something that broken clients have been seen to
do.

154 Main configuration (14)

[helo_try_verify_hosts Use: main Type: host listT Default: unset|

By default, Exim just checks the syntax of HELO and EHLO commands (see helo_accept_junk_
hosts and helo_allow_chars). However, some sites like to do more extensive checking of the data
supplied by these commands. The ACL conditionveri f y = hel o isprovided to make this possible.
Formerly, it was necessary also to set this option (helo_try verify hosts) to force the check to occur.
From release 4.53 onwards, this is no longer necessary. If the check has not been done before
verify = hel o is encountered, it is done at that time. Consequently, this option is obsolete. Its
specification is retained here for backwards compatibility.

When an EHLO or HELO command is received, if the calling host matches helo_try verify _hosts,
Exim checks that the host name given in the HELO or EHLO command either:

 isan|Pliteral matching the calling address of the host, or
» matches the host name that Exim obtains by doing a reverse lookup of the calling host address, or

» when looked up using gethostbyname() (or getipnodebyname() when available) yields the calling
host address.

However, the EHLO or HELO command is not rejected if any of the checks fail. Processing
continues, but the result of the check is remembered, and can be detected later in an ACL by the
veri fy =hel o condition.

[helo_verify_hosts Use: main Type: host listt Default: unset|

Like helo_try_verify _hosts, this option is obsolete, and retained only for backwards compatibility.
For hosts that match this option, Exim checks the host name given in the HELO or EHL O in the same
way asfor helo_try verify_hosts. If the check fails, the HELO or EHLO command is rejected with a
550 error, and entries are written to the main and reject logs. If a MAIL command is received before
EHLO or HELO, it is rejected with a 503 error.

[hold_domains Use: main Type: domain listt Default: unset|

This option alows mail for particular domains to be held on the queue manually. The option is
overridden if a message delivery is forced with the -M, -gf, -Rf or -Sf options, and also while testing
or verifying addresses using -bt or -bv. Otherwise, if adomain matches an item in hold_domains, no
routing or delivery for that addressis done, and it is deferred every time the message islooked at.

This option is intended as a temporary operational measure for delaying the delivery of mail while
some problem is being sorted out, or some new configuration tested. If you just want to delay the
processing of some domains until a queue run occurs, you should use queue_domains or queue_
smtp_domains, not hold_domains.

A setting of hold_domains does not override Exim's code for removing messages from the queue if
they have been there longer than the longest retry time in any retry rule. If you want to hold messages
for longer than the normal retry times, insert adummy retry rule with along retry time.

[host_lookup Use: main Type: host listt Default: unset|

Exim does not ook up the name of a calling host from its |P address unlessi it is required to compare
against some host list, or the host matches helo_try_verify _hosts or helo_verify _hosts, or the host
matches this option (which normally contains IP addresses rather than host names). The default
configuration file contains

host _| ookup = *

which causes a lookup to happen for all hosts. If the expense of these lookups is felt to be too great,
the setting can be changed or removed.

After a successful reverse lookup, Exim does a forward lookup on the name it has obtained, to verify

155 Main configuration (14)

that it yields the |P address that it started with. If this check fails, Exim behaves asif the name lookup
failed.

After any kind of failure, the host name (in $sender_host_name) remains unset, and $host_lookup_
failed is set to the string “1”. See adso dns_again_means_nonexist, helo_lookup_domains, and
verify =reverse_host_| ookupinACLs.

host_|lookup_order Use: main Type: string list Default:
bydns: byaddr

This option specifies the order of different lookup methods when Exim is trying to find a host name
from an IP address. The default is to do a DNS lookup first, and then to try a local lookup (using
gethostbyaddr() or equivalent) if that fails. You can change the order of these lookups, or omit one
entirely, if you want.

Warning: The “byaddr” method does not always yield aliases when there are multiple PTR recordsin
the DNS and the IP address is not listed in /etc/hosts. Different operating systems give different
resultsin this case. That is why the default triesa DNS |ookup first.

[host_reject_connection Use: main Type: host listT Default: unset|

If this option is set, incoming SMTP calls from the hosts listed are rejected as soon as the connection
ismade. This option is obsolete, and retained only for backward compatibility, because nowadays the
ACL specified by acl_smtp_connect can a so reject incoming connections immediately.

The ability to give an immediate rejection (either by this option or using an ACL) is provided for use
in unusual cases. Many hosts will just try again, sometimes without much delay. Normally, it is better
to use an ACL to reject incoming messages at a later stage, such as after RCPT commands. See
chapter 40.

|hosts_connection_nolog Use: main Type: host listt Default: unset|

This option defines a list of hosts for which connection logging does not happen, even though the
smtp_connection log selector is set. For example, you might want not to log SMTP connections from
local processes, or from 127.0.0.1, or from your local LAN. This option is consulted in the main loop
of the daemon; you should therefore strive to restrict its value to a short inline list of IP addresses and
networks. To disable logging SMTP connections from local processes, you must create a host list with
an empty item. For example:

hosts_connection_nolog = :

If the smtp_connection log selector is not set, this option has no effect.

[hosts_treat_as local Use: main Type: domain listt Default: unset|

If this option is set, any host names that match the domain list are treated as if they were the local host
when Exim is scanning host lists obtained from MX records or other sources. Note that the value of
this option is a domain list, not a host list, because it is always used to check host names, not IP
addresses.

This option also applies when Exim is matching the special items @x_any, @x_pri nary, and
@nx_secondary in a domain list (see section 10.8), and when checking the hosts option in the
smtp transport for the local host (see the allow_localhost option in that transport). See also local_
interfaces, extra local_interfaces, and chapter 13, which contains a discussion about local network
interfaces and recognising the local host.

lignore_bounce _errors_after Use: main Type: time Default: 10w/

This option affects the processing of bounce messages that cannot be delivered, that is, those that

156 Main configuration (14)

suffer a permanent delivery failure. (Bounce messages that suffer temporary delivery failures are of
courseretried in the usual way.)

After a permanent delivery failure, bounce messages are frozen, because there is no sender to whom
they can be returned. When a frozen bounce message has been on the queue for more than the given
time, it is unfrozen at the next queue run, and a further delivery is attempted. If delivery fails again,
the bounce message is discarded. This makes it possible to keep failed bounce messages around for a
shorter time than the normal maximum retry time for frozen messages. For example,

i gnore_bounce_errors_after = 12h

retries failed bounce message deliveries after 12 hours, discarding any further failures. If the value of
this option is set to a zero time period, bounce failures are discarded immediately. Setting a very long
time (asin the default value) has the effect of disabling this option. For ways of automatically dealing
with other kinds of frozen message, see auto_thaw and timeout_frozen_after.

lignore_fromline_hosts Use: main Type: host listt Default: unset|

Some broken SMTP clients insist on sending a UUCP-like “From " line before the headers of a
message. By default thisis treated as the start of the message’ s body, which means that any following
headers are not recognized as such. Exim can be made to ignore it by setting ignore_fromline_hosts
to match those hosts that insist on sending it. If the sender is actually alocal process rather than a
remote host, and is using -bs to inject the messages, ignore_fromline_local must be set to achieve
this effect.

lignore_fromline_|ocal Use: main Type: boolean Default: false|

Seeignore fromline_hosts above.

|keep_malformed Use: main Type: time Default: 4d|

This option specifies the length of time to keep messages whose spool files have been corrupted in
some way. This should, of course, never happen. At the next attempt to deliver such a message, it gets
removed. Theincident is logged.

[ldap_default_servers Use: main Type: string list Default: unset|

This option provides a list of LDAP servers which are tried in turn when an LDAP query does not
contain a server. See section 9.14 for details of LDAP queries. This option is available only when
Exim has been built with LDAP support.

[ldap_version Use: main Type: integer Default: unset|

This option can be used to force Exim to set a specific protocol version for LDAP. If it option is
unset, it is shown by the -bP command line option as -1. When this is the case, the default is 3 if
LDAP_VERSIONS is defined in the LDAP headers; otherwise it is 2. This option is available only
when Exim has been built with LDAP support.

[local_from_check Use: main Type: boolean Defaullt: true|

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existing Sender: header line, and checks that the From: header line matches the
login of the calling user and the domain specified by qualify_domain.

Note: An unqualified address (no domain) in the From: header in a locally submitted message is
automatically qualified by Exim, unless the -bng command line option is used.

You can use local_from_prefix and local_from_suffix to permit affixes on the local part. If the
From: header line does not match, Exim adds a Sender: header with an address constructed from the

157 Main configuration (14)

calling user’slogin and the default qualify domain.

If local_from_check is set false, the From: header check is disabled, and no Sender: header is ever
added. If, in addition, you want to retain Sender: header lines supplied by untrusted users, you must
also set local _sender retain to betrue.

These options affect only the header lines in the message. The envelope sender is still forced to be the
login id at the qualify domain unless untrusted _set _sender permits the user to supply an envelope
sender.

For messages received over TCP/IP, an ACL can specify “submission mode” to request similar header
line checking. See section 44.16, which has more details about Sender: processing.

[local_from_prefix Use: main Type: string Default: unset|

When Exim checks the From: header line of locally submitted messages for matching the login id
(seelocal_from_check above), it can be configured to ignore certain prefixes and suffixesin the local
part of the address. This is done by setting local _from_ prefix and/or local from_ suffix to
appropriate lists, in the same form as the local_part_prefix and local_part_suffix router options (see
chapter 15). For example, if

local fromprefix = *-
isset, aFrom: line containing
From anyt hi ng-user @our . domai n. exanpl e

will not cause a Sender: header to be added if user @your.domain.example matches the actual sender
address that is constructed from the login name and qualify domain.

[local_from_suffix Use: main Type: string Default: unset|

Seelocal_from_prefix above.

[local_interfaces Use: main Type: string list Default: see below|

This option controls which network interfaces are used by the daemon for listening; they are also used
to identify the local host when routing. Chapter 13 contains a full description of this option and the
related options daemon_smtp_ports, extra_local_interfaces, hosts treat_as local, and tls_on_
connect_ports. The default value for local_interfacesis

| ocal interfaces = 0.0.0.0

when Exim is built without 1Pv6 support; otherwiseit is

| ocal _interfaces = <; ::0; 0.0.0.0

[local_scan_timeout Use: main Type: time Default: 5m|

This timeout applies to the local_scan() function (see chapter 42). Zero means “no timeout”. If the
timeout is exceeded, the incoming message is reected with a temporary error if it is an SMTP
message. For anon-SM TP message, the message is dropped and Exim ends with a non-zero code. The
incident is logged on the main and reject logs.

[local_sender _retain Use: main Type: boolean Default: false|

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existing Sender: header line. If you do not want this to happen, you must set local _
sender_retain, and you must also set local _from_check to be false (Exim will complain if you do
not). See also the ACL modifier control = suppress_| ocal _fi xups. Section 44.16 has

158 Main configuration (14)

more details about Sender: processing.

[localhost_number Use: main Type: stringt Default: unset|

Exim’s message ids are normally unique only within the local host. If uniqueness among a set of hosts
is required, each host must set a different value for the localhost_number option. The string is
expanded immediately after reading the configuration file (so that a number can be computed from the
host name, for example) and the result of the expansion must be a number in the range 0-16 (or 0-10
on operating systems with case-insensitive file systems). This is available in subsequent string
expansions via the variable $localhost_number. When localhost_ number is set, the fina two
characters of the message id, instead of just being a fractional part of the time, are computed from the
time and the local host number as described in section 3.4.

log_file path Use: main Type: string listt Default: set at compile
time

This option sets the path which is used to determine the names of Exim’s log files, or indicates that
logging isto beto syslog, or both. It is expanded when Exim is entered, so it can, for example, contain
areference to the host name. If no specific path is set for the log files at compile or run time, they are
written in a sub-directory called log in Exim’s spool directory. Chapter 49 contains further details
about Exim’s logging, and section 49.1 describes how the contents of log_file_path are used. If this
string is fixed at your installation (contains no expansion variables) it is recommended that you do not
set this option in the configuration file, but instead supply the path using LOG_FILE _PATH in
Local/Makefile so that it is available to Exim for logging errors detected early on — in particular,
failure to read the configuration file.

[log_selector Use: main Type: string Default: unset|

This option can be used to reduce or increase the number of things that Exim writesto itslog files. Its
argument is made up of names preceded by plus or minus characters. For example:

| og_sel ector = +argunents -retry_defer

A list of possible names and what they control is given in the chapter on logging, in section 49.15.

[log_timezone Use: main Type: boolean Default: false|

By default, the timestamps on log lines are in local time without the timezone. This means that if your
timezone changes twice a year, the timestampsin log lines are ambiguous for an hour when the clocks
go back. One way of avoiding this problem isto set the timezoneto UTC. An alternativeisto set log_
timezone true. This turns on the addition of the timezone offset to timestampsin log lines. Turning on
this option can add quite a lot to the size of log files because each line is extended by 6 characters.
Note that the $tod_log variable contains the log timestamp without the zone, but there is another
variable called $tod_zone that contains just the timezone offset.

[lookup_open_max Use: main Type: integer Default: 25|

This option limits the number of simultaneously open files for single-key lookups that use regular
files (that is, Isearch, dbm, and cdb). Exim normally keeps these files open during routing, because
often the samefile is required several times. If the limit is reached, Exim closes the |east recently used
file. Note that if you are using the ndbm library, it actualy opens two files for each logical DBM
database, though it still counts as one for the purposes of lookup_open_max. If you are getting “too
many open files” errors with NDBM, you need to reduce the value of lookup_open_max.

|max_username_length Use: main Type: integer Default: 0]

Some operating systems are broken in that they truncate long arguments to getpwnam() to eight
characters, instead of returning “no such user”. If this option is set greater than zero, any attempt to

159 Main configuration (14)

call getpwnam() with an argument that is longer behaves asif getpwnam() failed.

|message_body_visible Use: main Type: integer Default: 500

This option specifies how much of a message’s body is to be included in the $message body and
$message_body_end expansion variables.

|message_id_header_domain Use: main Type: string? Default: unset|

If this option is set, the string is expanded and used as the right hand side (domain) of the
Message-I1D: header that Exim creates if a locally-originated incoming message does not have one.
“Locally-originated” means “not received over TCP/IP.” Otherwise, the primary host name is used.
Only letters, digits, dot and hyphen are accepted; any other characters are replaced by hyphens. If the
expansion isforced to fail, or if the result is an empty string, the option isignored.

|message_id_header _text Use: main Type: string? Default: unset|

If this variable is set, the string is expanded and used to augment the text of the Message-id: header
that Exim creates if alocally-originated incoming message does not have one. The text of this header
isrequired by RFC 2822 to take the form of an address. By default, Exim uses its internal message id
as the local part, and the primary host name as the domain. If this option is set, it is expanded, and
provided the expansion is not forced to fail, and does not yield an empty string, the result is inserted
into the header immediately before the @, separated from the internal message id by a dot. Any
characters that are illegal in an address are automatically converted into hyphens. This means that
variables such as $tod_log can be used, because the spaces and colons will become hyphens.

|message_logs Use: main Type: boolean Defaullt: true|

If this option is turned off, per-message log files are not created in the msglog spool sub-directory.
This reduces the amount of disk 1/0 required by Exim, by reducing the number of files involved in
handling a message from a minimum of four (header spool file, body spool file, delivery journal, and
per-message log) to three. The other major 1/0O activity is Exim’'s main log, which is not affected by
this option.

|message_size limit Use: main Type: string? Default: 50M|

This option limits the maximum size of message that Exim will process. The value is expanded for
each incoming connection so, for example, it can be made to depend on the IP address of the remote
host for messages arriving via TCP/IP. After expansion, the value must be a sequence of decimal
digits, optionally followed by K or M.

Note: This limit cannot be made to depend on a message's sender or any other properties of an
individual message, because it has to be advertised in the server's response to EHLO. String
expansion failure causes a temporary error. A value of zero means no limit, but its use is not
recommended. See also bounce_return_size limit.

Incoming SMTP messages are failed with a 552 error if the limit is exceeded; locally-generated
messages either get a stderr message or a delivery failure message to the sender, depending on the -oe
setting. Rejection of an oversized message is logged in both the main and the reject logs. See also the
generic transport option message _size limit, which limits the size of message that an individual
transport can process.

[move_frozen_messages Use: main Type: boolean Defaullt: false|

This option, which is available only if Exim has been built with the setting
SUPPORT_MOVE_FROZEN_MESSAGES=yes

160 Main configuration (14)

in Local/Makefile, causes frozen messages and their message logs to be moved from the input and
msglog directories on the spool to Finput and Fmsglog, respectively. There is currently no support in
Exim or the standard utilities for handling such moved messages, and they do not show up in lists
generated by -bp or by the Exim monitor.

[mua_wrapper Use: main Type: boolean Defaullt: false|

Setting this option true causes Exim to run in a very restrictive mode in which it passes messages
synchronously to asmart host. Chapter 48 contains a full description of this facility.

|mysql_servers Use: main Type: string list Default: unset|

This option provides a list of MySQL servers and associated connection data, to be used in
conjunction with mysg|l lookups (see section 9.20). The option is available only if Exim has been built
with MySQL support.

[never_users Use: main Type: string listt Default: unset|

This option is expanded just once, at the start of Exim's processing. Local message deliveries are
normally run in processes that are setuid to the recipient, and remote deliveries are normally run under
Exim’s own uid and gid. It is usually desirable to prevent any deliveries from running as root, as a
safety precaution.

When Exim is built, an option called FIXED_NEVER_USERS can be set to a list of users that must
not be used for local deliveries. This list is fixed in the binary and cannot be overridden by the
configuration file. By default, it contains just the single user name “root”. The never_users runtime
option can be used to add more users to the fixed list.

If a message is to be delivered as one of the users on the fixed list or the never _users list, an error
occurs, and delivery isdeferred. A common exampleis

never _users = root:daenon: bin

Including root is redundant if it is also on the fixed list, but it does nho harm. This option overrides the
pipe_as creator option of the pipe transport driver.

loracle_servers Use: main Type: string list Default: unset|

This option provides a list of Oracle servers and associated connection data, to be used in conjunction
with oracle lookups (see section 9.20). The option is available only if Exim has been built with Oracle
support.

|per cent_hack_domains Use: main Type: domain listt Default: unset|

The “percent hack” is the convention whereby alocal part containing a percent sign is re-interpreted
as a new email address, with the percent replaced by @. This is sometimes called “source routing”,
though that term is also applied to RFC 2822 addresses that begin with an @ character. If this option
is set, Exim implements the percent facility for those domains listed, but no others. This happens
before an incoming SMTP address is tested against an ACL.

Warning: The “percent hack” has often been abused by people who are trying to get round relaying
restrictions. For this reason, it is best avoided if at all possible. Unfortunately, a number of less
security-conscious MTAs implement it unconditionally. If you are running Exim on a gateway host,
and routing mail through to internal MTAs without processing the local parts, it is a good idea to
reject recipient addresses with percent characters in their local parts. Exim's default configuration
doesthis.

[perl_at_start Use: main Type: boolean Default: false|

161 Main configuration (14)

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 12 for
details of its use.

|per|_startup Use: main Type: string Default: unset|

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 12 for
details of its use.

[pgsql_servers Use: main Type: string list Default: unset|

This option provides a list of PostgreSQL servers and associated connection data, to be used in
conjunction with pgsgl lookups (see section 9.20). The option is available only if Exim has been built
with PostgreSQL support.

pid_file_path Use: main Type: stringt Default: set at compile
time

This option sets the name of the file to which the Exim daemon writes its process id. The string is
expanded, so it can contain, for example, references to the host name:

pid file_path = /var/log/ $pri mary_host nane/ exi m pid

If no path is set, the pid is written to the file exim-daemon.pid in Exim’s spool directory. The value set
by the option can be overridden by the -oP command line option. A pid file is not written if a
“non-standard” daemon is run by means of the -oX option, unless a path is explicitly supplied by -oP.

[pipelining_advertise_hosts Use: main Type: host listt Default: * |

This option can be used to suppress the advertisement of the SMTP PIPELINING extension to
specific hosts. When PIPELINING is not advertised and smtp_enforce _sync is true, an Exim server
enforces strict synchronization for each SMTP command and response. When PIPELINING is
advertised, Exim assumes that clients will use it; “out of order” commands that are “expected” do not
count as protocol errors (see smtp_max_synprot_errors).

[preserve_message_logs Use: main Type: boolean Default: false|

If this option is set, message log files are not deleted when messages are completed. Instead, they are
moved to a sub-directory of the spool directory called msglog.OLD, where they remain available for
statistical or debugging purposes. This is a dangerous option to set on systems with any appreciable
volume of mail. Use with care!

|primary_hostname Use: main Type: string Default: see below|

This specifies the name of the current host. It is used in the default EHLO or HELO command for
outgoing SMTP messages (changeable via the helo_data option in the smtp transport), and as the
default for qualify_domain. The valueis also used by default in some SMTP response messages from
an Exim server. This can be changed dynamically by setting smtp_active_hostname.

If primary_hostname is not set, Exim calls uname() to find the host name. If this fails, Exim panics
and dies. If the name returned by uname() contains only one component, Exim passes it to
gethostbyname() (or getipnodebyname() when available) in order to obtain the fully qualified version.
The variable $primary_hostname contains the host name, whether set explicitly by this option, or
defaulted.

[print_topbitchars Use: main Type: boolean Default: false|

By default, Exim considers only those characters whose codes lie in the range 32—-126 to be printing

162 Main configuration (14)

characters. In a number of circumstances (for example, when writing log entries) non-printing
characters are converted into escape sequences, primarily to avoid messing up the layout. If print_
topbitcharsis set, code values of 128 and above are also considered to be printing characters.

This option also affects the header syntax checks performed by the autor eply transport, and whether
Exim uses RFC 2047 encoding of the user's full name when constructing From: and Sender:
addresses (as described in section 44.18). Setting this option can cause Exim to generate eight bit
message headers that do not conform to the standards.

|process_log_path Use: main Type: string Default: unset|

This option sets the name of the file to which an Exim process writes its “process log” when sent a
USR1 signa. This is used by the exiwhat utility script. If this option is unset, the file called
exim-process.info in Exim’s spool directory is used. The ability to specify the name explicitly can be
useful in environments where two different Exims are running, using different spool directories.

[prod_requires_admin Use: main Type: boolean Defaullt: true|

The -M, -R, and -g command-line options require the caller to be an admin user unless prod_
requires admin is set false. See also queue list_requires admin.

[qualify_domain Use: main Type: string Default: see below|

This option specifies the domain name that is added to any envelope sender addresses that do not have
a domain qualification. It aso applies to recipient addresses if qualify_ recipient is not set.
Unqualified addresses are accepted by default only for locally-generated messages. Qudlification is
also applied to addresses in header lines such as From: and To: for locally-generated messages, unless
the -bng command line option is used.

M essages from external sources must always contain fully qualified addresses, unless the sending host
matches sender _unqualified_hosts or recipient_unqualified_hosts (as appropriate), in which case
incoming addresses are qualified with qualify_domain or qualify_recipient as necessary. Internaly,
Exim always works with fully qualified envelope addresses. If qualify _domain is not set, it defaults
to the primary_hostname value.

[qualify_recipient Use: main Type: string Default: see below|

This option allows you to specify a different domain for qualifying recipient addresses to the one that
is used for senders. See qualify_domain above.

|queue_domains Use: main Type: domain listt Default: unset|

This option lists domains for which immediate delivery is not required. A delivery process is started
whenever a message is received, but only those domains that do not match are processed. All other
deliveries wait until the next queue run. See also hold_domains and queue_smtp_domains.

|queue_list_requires admin Use: main Type: boolean Defaullt: true|

The -bp command-line option, which lists the messages that are on the queue, requires the caller to be
an admin user unless queue list_requires admin is set false. See also prod_requires_admin.

|queue_only Use: main Type: boolean Defaullt: false|

If queue_only is set, a delivery process is not automatically started whenever a message is received.
Instead, the message waits on the queue for the next queue run. Even if queue_only isfalse, incoming
messages may not get delivered immediately when certain conditions (such as heavy load) occur.

The -odg command line has the same effect as queue_only. The -odb and -odi command line options

163 Main configuration (14)

override queue_only unless queue_only_override is set false. See aso queue_only_file, queue
only load, and smtp_accept_queue.

[queue_only_file Use: main Type: string Default: unset|

This option can be set to a colon-separated list of absolute path names, each one optionally preceded
by “smtp”. When Exim is receiving a message, it tests for the existence of each listed path using a call
to stat(). For each path that exists, the corresponding queuing option is set. For paths with no prefix,
gueue_only is set; for paths prefixed by “smtp”, queue_smtp_domains is set to match all domains.
So, for example,

gueue only file = sntp/sone/file

causes Exim to behave asif queue_smtp_domains were set to “*” whenever /someffile exists.

|queue only_load Use: main Type: fixed-point Defaullt: unset|

If the system load average is higher than this value, incoming messages from all sources are queued,
and no automatic deliveries are started. If this happens during local or remote SMTP input, all
subsequent messages on the same connection are queued. Deliveries will subsequently be performed
by queue runner processes. This option has no effect on ancient operating systems on which Exim
cannot determine the load average. See also deliver _queue load_max and smtp_load_reserve.

[queue_only_override Use: main Type: boolean Defaullt: true|

When this option is true, the -odx command line options override the setting of queue_only or
gueue_only_file in the configuration file. If queue_only override is set fase, the -odx options
cannot be used to override; they are accepted, but ignored.

[queue_run_in_order Use: main Type: boolean Default: false|

If this option is set, queue runs happen in order of message arrival instead of in an arbitrary order. For
this to happen, a complete list of the entire queue must be set up before the deliveries start. When the
gueueis all held in asingle directory (the default), asingle list is created for both the ordered and the
non-ordered cases. However, if split_spool_directory is set, asingle list is not created when queue
run_in_order is fase. In this case, the sub-directories are processed one at a time (in a random
order), and this avoids setting up one huge list for the whole queue. Thus, setting queue_run_in_
order with split_spool_directory may degrade performance when the queue is large, because of the
extrawork in setting up the single, large list. In most situations, queue_run_in_order should not be
Set.

|queue_run_max Use: main Type: integer Default: 5]

This controls the maximum number of queue runner processes that an Exim daemon can run
simultaneously. This does not mean that it starts them all at once, but rather that if the maximum
number are still running when the time comes to start another one, it refrains from starting another
one. This can happen with very large queues and/or very sluggish deliveries. This option does not,
however, interlock with other processes, so additional queue runners can be started by other means, or
by killing and restarting the daemon.

Setting this option to zero does not suppress queue runs; rather, it disables the limit, allowing any
number of simultaneous queue runner processes to be run. If you do not want queue runs to occur,
omit the -gxx setting on the daemon’s command line.

|queue_smtp_domains Use: main Type: domain listt Default: unset|

When this option is set, a delivery process is started whenever a message is received, routing is
performed, and local deliveries take place. However, if any SMTP deliveries are required for domains

164 Main configuration (14)

that match queue_smtp_domains, they are not immediately delivered, but instead the message waits
on the queue for the next queue run. Since routing of the message has taken place, Exim knows to
which remote hosts it must be delivered, and so when the queue run happens, multiple messages for
the same host are delivered over a single SMTP connection. The -odgs command line option causes
all SMTP deliveries to be queued in this way, and is equivalent to setting queue_smtp_domains to
“*" Seedso hold_domainsand queue_domains.

[receive_timeout Use: main Type: time Default: Os|

This option sets the timeout for accepting a non-SMTP message, that is, the maximum time that Exim
waits when reading a message on the standard input. If the value is zero, it will wait for ever. This
setting is overridden by the -or command line option. The timeout for incoming SMTP messages is
controlled by smtp_receive timeout.

[received_header _text Use: main Type: string? Default: see below|

This string defines the contents of the Received: message header that is added to each message, except
for the timestamp, which is automatically added on at the end (preceded by a semicolon). The string is
expanded each time it is used. If the expansion yields an empty string, no Received: header line is
added to the message. Otherwise, the string should start with the text “Received:” and conform to the
RFC 2822 specification for Received: header lines. The default setting is:

recei ved_header text = Received: \
${if def:sender_rcvhost {from $sender_rcvhost\n\t}\
{${if def:sender _ident \
{from ${quote_| ocal part: $sender _ident} }}\
${i f def:sender_hel o_nanme {(hel o=$sender_hel o_name)\n\t}}}}\
by $pri mary_host nane \
${if def:received_protocol {with $received_protocol}} \
${if def:tls_cipher {($tls_cipher)\n\t}}\
(Exi m $versi on_nunber)\ n\t\
${if def:sender_address \
{(envel ope-from <$sender _address>)\n\t}}\
Id $nessage_exi m i d\
${if def:received for {\n\tfor $received for}}

The reference to the TLS cipher is omitted when Exim is built without TLS support. The use of
conditional expansions ensures that this works for both locally generated messages and messages
received from remote hosts, giving header lines such as the following:

Recei ved: from scrooge. carol . exanple ([192.168.12.25] ident=root)
by marl ey. carol.exanple with esnmtp (Exi m4.00)

(envel ope-from <bob@ar ol . exanpl e>)

id 161 OMa- 00019l - 00

for chas@li ckens. exanpl e; Tue, 25 Dec 2001 14:43:44 +0000

Recei ved: by scrooge. carol.exanple with |l ocal (Exim4.00)

id 161 OV 000083-00; Tue, 25 Dec 2001 14:43:41 +0000

Until the body of the message has been received, the timestamp is the time when the message started
to be received. Once the body has arrived, and all policy checks have taken place, the timestamp is
updated to the time at which the message was accepted.

[received_headers max Use: main Type: integer Default: 30|

When a message is to be delivered, the number of Received: headers is counted, and if it is greater
than this parameter, amail loop is assumed to have occurred, the delivery is abandoned, and an error
message is generated. This appliesto both local and remote deliveries.

[recipient_unqualified_hosts Use: main Type: host listt Default: unset|

This option lists those hosts from which Exim is prepared to accept unqualified recipient addresses in

165 Main configuration (14)

message envelopes. The addresses are made fully qualified by the addition of the qualify_recipient
value. This option also affects message header lines. Exim does not reject unqualified recipient
addresses in headers, but it qualifies them only if the message came from a host that matches
recipient_unqualified_hosts, or if the message was submitted locally (not using TCP/IP), and the
-bng option was not set.

[recipients_max Use: main Type: integer Default: O]

If this option is set greater than zero, it specifies the maximum number of original recipients for any
message. Additional recipients that are generated by aliasing or forwarding do not count. SMTP
messages get a 452 response for all recipients over the limit; earlier recipients are delivered as normal.
Non-SM TP messages with too many recipients are failed, and no deliveries are done.

Note: The RFCs specify that an SMTP server should accept at least 100 RCPT commands in asingle
message.

[recipients_max_rgject Use: main Type: boolean Default: false|

If this option is set true, Exim rejects SMTP messages containing too many recipients by giving 552
errors to the surplus RCPT commands, and a 554 error to the eventual DATA command. Otherwise
(the default) it gives a 452 error to the surplus RCPT commands and accepts the message on behalf of
the initial set of recipients. The remote server should then re-send the message for the remaining
recipients at alater time.

[remote_max_par allel Use: main Type: integer Default: 2|

This option controls parallel delivery of one message to a number of remote hosts. If the value is less
than 2, parallel delivery is disabled, and Exim does al the remote deliveries for a message one by one.
Otherwise, if a single message has to be delivered to more than one remote host, or if several copies
have to be sent to the same remote host, up to remote_max_ parallel deliveries are done
simultaneoudly. If more than remote_max_parallel deliveries are required, the maximum number of
processes are started, and as each one finishes, another is begun. The order of starting processes s the
same as if sequential delivery were being done, and can be controlled by the remote_sort_domains
option. If paralel delivery takes place while running with debugging turned on, the debugging output
from each delivery processistagged with its processid.

This option controls only the maximum number of parallel deliveries for one message in one Exim
delivery process. Because Exim has no central queue manager, there is no way of controlling the total
number of simultaneous deliveries if the configuration allows a delivery attempt as soon as a message
isreceived.

If you want to control the total number of deliveries on the system, you need to set the queue_only
option. This ensures that all incoming messages are added to the queue without starting a delivery
process. Then set up an Exim daemon to start queue runner processes at appropriate intervals
(probably fairly often, for example, every minute), and limit the total number of queue runners by
setting the queue_run_max parameter. Because each queue runner delivers only one message a a
time, the maximum number of deliveries that can then take place at once is queue run_max
multiplied by remote_max_paralldl.

If it is purely remote deliveries you want to control, use queue_smtp_domains instead of queue_
only. This has the added benefit of doing the SMTP routing before queuing, so that several messages
for the same host will eventually get delivered down the same connection.

[remote_sort_domains Use: main Type: domain listt Default: unset|

When there are a number of remote deliveries for a message, they are sorted by domain into the order
given by thislist. For example,

renote _sort_domains = *.cam ac. uk: *. uk

166 Main configuration (14)

would attempt to deliver to all addresses in the cam.ac.uk domain first, then to those in the uk
domain, then to any others.

[retry_data_expire Use: main Type: time Default: 7d|

This option sets a “use before” time on retry information in Exim’s hints database. Any older retry
dataisignored. This meansthat, for example, once a host has not been tried for 7 days, Exim behaves
asif it has no knowledge of past failures.

[retry_interval_max Use: main Type: time Default: 24h|

Chapter 32 describes Exim's mechanisms for controlling the intervals between delivery attempts for
messages that cannot be delivered straight away. This option sets an overall limit to the length of time
between retries. It cannot be set greater than 24 hours; any attempt to do so forces the default value.

[return_path_remove Use: main Type: boolean Defallt: true|

RFC 2821, section 4.4, states that an SMTP server must insert a Return-path: header line into a
message when it makes a “final delivery”. The Return-path: header preserves the sender address as
received in the MAIL command. This description implies that this header should not be present in an
incoming message. If return_path_remove is true, any existing Return-path: headers are removed
from messages at the time they are received. Exim’s transports have options for adding Return-path:
headers at the time of delivery. They are normally used only for final local deliveries.

[return_size limit Use: main Type: integer Default: 100K

This option is an obsolete synonym for bounce return_size limit.

[rfc1413 hosts Use: main Type: host listt Default: * |

RFC 1413 identification calls are made to any client host which matches an item in the list.

[rfc1413 query_timeout Use: main Type: time Default: 5s]

This sets the timeout on RFC 1413 identification calls. If it is set to zero, no RFC 1413 calls are ever
made.

|sender_unqualified_hosts Use: main Type: host listt Default: unset|

This option lists those hosts from which Exim is prepared to accept unqualified sender addresses. The
addresses are made fully qualified by the addition of qualify_domain. This option also affects
message header lines. Exim does not reject unqualified addresses in headers that contain sender
addresses, but it qualifies them only if the message came from a host that matches sender_
unqualified_hosts, or if the message was submitted locally (not using TCP/IP), and the -bnq option
was not set.

[smtp_accept_keepalive Use: main Type: boolean Defallt: true|

This option controls the setting of the SO_ KEEPALIVE option on incoming TCP/IP socket
connections. When set, it causes the kernel to probe idle connections periodically, by sending packets
with “old” sequence numbers. The other end of the connection should send an acknowledgement if
the connection is still okay or areset if the connection has been aborted. The reason for doing thisis
that it has the beneficial effect of freeing up certain types of connection that can get stuck when the
remote host is disconnected without tidying up the TCP/IP call properly. The keepalive mechanism
takes several hours to detect unreachable hosts.

167 Main configuration (14)

[smtp_accept_max Use: main Type: integer Default: 20|

This option specifies the maximum number of simultaneous incoming SMTP calls that Exim will
accept. It applies only to the listening daemon; there is no control (in Exim) when incoming SMTP is
being handled by inetd. If the value is set to zero, no limit is applied. However, it is required to be
non-zero if either smtp_accept_max_per_host or smtp_accept_queueis set. See also smtp_accept_
reserve.

[smtp_accept_max_nonmail Use: main Type: integer Default: 10|

Exim counts the number of “non-mail” commands in an SMTP session, and drops the connection if
there are too many. This option defines “too many”. The check catches some denial-of-service
attacks, repeated failing AUTHS, or a mad client looping sending EHL O, for example. The check is
applied only if the client host matches smtp_accept_max_nonmail_hosts.

When a new message is expected, one occurrence of RSET is not counted. This allows aclient to send
one RSET between messages (this is not necessary, but some clients do it). Exim also allows one
uncounted occurence of HELO or EHLO, and one occurrence of STARTTLS between messages.
After starting up a TLS session, another EHLO is expected, and so it too is not counted. The first
occurrence of AUTH in a connection, or immediately following STARTTLS is not counted.
Otherwise, all commands other than MAIL, RCPT, DATA, and QUIT are counted.

[smtp_accept_max_nonmail_hosts Use: main Type: host listt Default: * |

You can control which hosts are subject to the smtp_accept_max_nonmail check by setting this
option. The default value makes it apply to al hosts. By changing the value, you can exclude any
badly-behaved hosts that you have to live with.

[smtp_accept_max_per_connection Use: main Type: integer Default: 1000|

The value of this option limits the number of MAIL commands that Exim is prepared to accept over a
single SMTP connection, whether or not each command results in the transfer of a message. After the
limit is reached, a 421 response is given to subsequent MAIL commands. This limit is a safety
precaution against a client that goes mad (incidents of this type have been seen).

[smtp_accept_max_per _host Use: main Type: string? Default: unset|

This option restricts the number of simultaneous IP connections from a single host (strictly, from a
single IP address) to the Exim daemon. The option is expanded, to enable different limits to be
applied to different hosts by reference to $sender_host_address. Once the limit is reached, additional
connection attempts from the same host are rejected with error code 421. The default value of zero
imposes no limit. If this option is set, it is required that smtp_accept_max be non-zero.

Warning: When setting this option you should not use any expansion constructions that take an
appreciable amount of time. The expansion and test happen in the main daemon loop, in order to
reject additional connections without forking additional processes (otherwise a denial-of-service
attack could cause a vast number or processes to be created). While the daemon is doing this
processing, it cannot accept any other incoming connections.

|smtp_accept_queue Use: main Type: integer Default: 0|

If the number of simultaneous incoming SMTP calls handled via the listening daemon exceeds this
value, messages received by SMTP are just placed on the queue; no delivery processes are started
automatically. A value of zero implies no limit, and clearly any non-zero value is useful only if it is
less than the smtp_accept_max value (unless that is zero). See also queue _only, queue only_load,
gueue_smtp_domains, and the various -odx command line options.

168 Main configuration (14)

[smtp_accept_queue_per_connection Use: main Type: integer Default: 10|

This option limits the number of delivery processes that Exim starts automatically when receiving
messages via SM TP, whether via the daemon or by the use of -bs or -bS. If the value of the option is
greater than zero, and the number of messages received in a single SMTP session exceeds this
number, subsequent messages are placed on the queue, but no delivery processes are started. This
helps to limit the number of Exim processes when a server restarts after downtime and thereis alot of
mail waiting for it on other systems. On large systems, the default should probably be increased, and
on dial-in client systems it should probably be set to zero (that is, disabled).

[smtp_accept_reserve Use: main Type: integer Default: 0|

When smtp_accept_max is set greater than zero, this option specifies a number of SMTP connections
that are reserved for connections from the hosts that are specified in smtp_reserve_hosts. The value
set in smtp_accept_max includes this reserve pool. The specified hosts are not restricted to this
number of connections; the option specifies a minimum number of connection slots for them, not a
maximum. It is a guarantee that that group of hosts can always get at least smtp_accept_reserve
connections.

For example, if smtp_accept_max is set to 50 and smtp_accept_reserveis set to 5, once there are 45
active connections (from any hosts), new connections are accepted only from hosts listed in smtp_
reserve hosts. Seealso smtp_accept_max_per _host.

|smtp_active_hostname Use: main Type: string? Default: unset|

This option is provided for multi-homed servers that want to masquerade as several different hosts. At
the start of an incoming SMTP connection, its value is expanded and used instead of the value of
$primary_hostname in SMTP responses. For example, it is used as domain name in the response to an
incoming HELO or EHL O command.

The active hostname is placed in the $smtp_active _hostname variable, which is saved with any
messages that are received. It istherefore available for use in routers and transports when the message
islater delivered.

If this option is unset, or if its expansion is forced to fail, or if the expansion results in an empty
string, the value of $primary_hostname is used. Other expansion failures cause a message to be
written to the main and panic logs, and the SMTP command receives atemporary error. Typically, the
value of smtp_active_hostname depends on the incoming interface address. For example:

sntp_active_hostname = ${if eq{$received_ip_address}{10.0.0. 1}\
{cox. nydomai n} { box. nydonai n}}

Although $smtp_active_hostname is primarily concerned with incoming messages, it is also used as
the default for HELO commands in callout verification if there is no remote transport from which to
obtain ahelo_data value.

[smtp_banner Use: main Type: string? Default: see below|

This string, which is expanded every time it is used, is output as the initial positive response to an
SMTP connection. The default setting is:

snt p_banner = $sntp_active_hostnane ESMIP Exi m\
$version_nunber $tod full

Failure to expand the string causes a panic error. If you want to create a multiline response to the
initial SMTP connection, use “\n” in the string at appropriate points, but not at the end. Note that the
220 code is not included in this string. Exim adds it automatically (severa times in the case of a
multiline response).

169 Main configuration (14)

|smtp_check_spool_space Use: main Type: boolean Defaullt: true|

When this option is set, if an incoming SMTP session encounters the SIZE option on a MAIL
command, it checks that there is enough space in the spool directory’ s partition to accept a message of
that size, while till leaving free the amount specified by check _spool _space (even if that value is
zero). If thereisn’t enough space, atemporary error code is returned.

[smtp_connect_backlog Use: main Type: integer Default: 20|

This option specifies a maximum number of waiting SM TP connections. Exim passes this value to the
TCP/IP system when it sets up its listener. Once this number of connections are waiting for the
daemon'’s attention, subsequent connection attempts are refused at the TCP/IP level. At least, that is
what the manuals say; in some circumstances such connection attempts have been observed to time
out instead. For large systemsit is probably a good idea to increase the value (to 50, say). It also gives
some protection against denial-of-service attacks by SYN flooding.

[smtp_enforce_sync Use: main Type: boolean Defaullt: true|

The SMTP protocol specification requires the client to wait for a response from the server at certain
points in the dialogue. Without PIPELINING these synchronization points are after every command;
with PIPELINING they are fewer, but they still exist.

Some spamming sites send out a complete set of SMTP commands without waiting for any response.
Exim protects against this by rejecting a message if the client has sent further input when it should not
have. The error response “554 SMTP synchronization error” is sent, and the connection is dropped.
Testing for this error cannot be perfect because of transmission delays (unexpected input may be on
its way but not yet received when Exim checks). However, it does detect many instances.

The check can be globally disabled by setting smtp_enforce _sync false. If you want to disable the
check selectively (for example, only for certain hosts), you can do so by an appropriate use of a
control modifier in an ACL (see section 40.19). See aso pipelining_advertise hosts.

[smtp_etrn_command Use: main Type: string? Default: unset|

If thisoption is set, the given command is run whenever an SMTP ETRN command is received from a
host that is permitted to issue such commands (see chapter 40). The string is split up into separate
arguments which are independently expanded. The expansion variable $domain is set to the argument
of the ETRN command, and no syntax checking is done on it. For example:

smp_etrn_command = /etc/etrn_comrand $donai n \
$sender _host _address

A new process is created to run the command, but Exim does not wait for it to complete.
Consequently, its status cannot be checked. If the command cannot be run, a line is written to the
panic log, but the ETRN caller still receives a 250 success response. Exim is normally running under
its own uid when receiving SMTP, so it is not possible for it to change the uid before running the
command.

|smtp_etrn_serialize Use: main Type: boolean Defalllt: true|

When this option is set, it prevents the simultaneous execution of more than one identical command as
aresult of ETRN in an SMTP connection. See section 45.8 for details.

[smtp_load_reserve Use: main Type: fixed-point Default: unset|

If the system load average ever gets higher than this, incoming SMTP calls are accepted only from
those hosts that match an entry in smtp_reserve hosts. If smtp_reserve hosts is not set, no
incoming SMTP calls are accepted when the load is over the limit. The option has no effect on ancient

170 Main configuration (14)

operating systems on which Exim cannot determine the load average. See also deliver_queue load_
max and queue_only_load.

[smtp_max_synprot_errors Use: main Type: integer Default: 3]

Exim rejects SMTP commands that contain syntax or protocol errors. In particular, a syntactically
invalid email address, asin this command:

RCPT TGO <abc xyz@. b. c>

causes immediate rejection of the command, before any other tests are done. (The ACL cannot be run
if thereis no valid address to set up for it.) An example of a protocol error is receiving RCPT before
MAIL. If there are too many syntax or protocol errors in one SMTP session, the connection is
dropped. The limit is set by this option.

When the PIPELINING extension to SMTP is in use, some protocol errors are “expected”, for
instance, a RCPT command after a rejected MAIL command. Exim assumes that PIPELINING will
be used if it advertisesit (see pipelining_advertise_hosts), and in this situation, “expected” errors do
not count towards the limit.

[smtp_max_unknown_commands Use: main Type: integer Default: 3|

If there are too many unrecoghized commands in an incoming SMTP session, an Exim server drops
the connection. This is a defence against some kinds of abuse that subvert web clients into making
connections to SMTP ports; in these circumstances, a number of non-SMTP command lines are sent
first.

[smtp_ratelimit_hosts Use: main Type: host listt Default: unset|

Some sites find it helpful to be able to limit the rate at which certain hosts can send them messages,
and the rate at which an individual message can specify recipients.

Exim has two rate-limiting facilities. This section describes the older facility, which can limit rates
within a single connection. The newer ratelimit ACL condition can limit rates across all connections.
See section 40.32 for details of the newer facility.

When a host matches smtp_ ratelimit_ hosts, the values of smtp_ratelimit_mail and smtp_
ratelimit_rcpt are used to control the rate of acceptance of MAIL and RCPT commands in asingle
SMTP session, respectively. Each option, if set, must contain a set of four comma-separated val ues:

* A threshold, before which thereis no rate limiting.

* An initia time delay. Unlike other times in Exim, numbers with decimal fractiona parts are
allowed here.

A factor by which to increase the delay each time.

* A maximum value for the delay. This should normally be less than 5 minutes, because after that
time, the client isliable to timeout the SMTP command.

For example, these settings have been used successfully at the site which first suggested this feature,
for controlling mail from their customers:

snp_ratelimt_mail
sntp_ratelimt_rcpt

2,0.5s,1.05,4m
4,0.25s,1.015,4m

The first setting specifies delays that are applied to MAIL commands after two have been received
over asingle connection. Theinitial delay is 0.5 seconds, increasing by afactor of 1.05 each time. The
second setting applies delaysto RCPT commands when more than four occur in a single message.

|smtp_ratelimit_mail Use: main Type: string Default: unset|

171 Main configuration (14)

See smtp_ratelimit_hosts above.

[smtp_ratelimit_rcpt Use: main Type: string Default: unset|

See smtp_ratelimit_hosts above.

|smtp_receive_timeout Use: main Type: time Default: 5m|

This sets a timeout value for SMTP reception. It applies to all forms of SMTP input, including batch
SMTP. If aline of input (either an SMTP command or a data line) is not received within this time, the
SMTP connection is dropped and the message is abandoned. A line is written to the log containing
one of the following messages:

SMIP conmmand ti neout on connection from..
SMIP data ti neout on connection from..

The former means that Exim was expecting to read an SMTP command; the latter means that it wasin
the DATA phase, reading the contents of a message.

The value set by this option can be overridden by the -os command-line option. A setting of zero time
disables the timeout, but this should never be used for SMTP over TCP/IP. (It can be useful in some
cases of local input using -bs or -bS.) For non-SMTP input, the reception timeout is controlled by
receive_timeout and -or.

[smtp_reserve_hosts Use: main Type: host listt Default: unset|

This option defines hosts for which SMTP connections are reserved; see smtp_accept_reserve and
smtp_load_reserve above.

[smtp_return_error_details Use: main Type: boolean Default: false|

In the default state, Exim uses bland messages such as “Administrative prohibition” when it rejects
SMTP commands for policy reasons. Many sysadmins like this because it gives away little
information to spammers. However, some other syadmins who are applying strict checking policies
want to give out much fuller information about failures. Setting smtp_return_error_details true
causes Exim to be more forthcoming. For example, instead of “ Administrative prohibition”, it might
give:

550- Rej ected after DATA: '>' nmissing at end of address:
550 failing address in "Fronl header is: <user@om ain

|spamd_address Use: main Type: string Default: see below|

This option is available when Exim is compiled with the content-scanning extension. It specifies how
Exim connects to SpamAssassin’s spamd daemon. The default valueis

127.0.0.1 783
See section 41.2 for more details.

|split_spool_directory Use: main Type: boolean Default: false|

If thisoption is set, it causes Exim to split its input directory into 62 subdirectories, each with asingle
alphanumeric character asits name. The sixth character of the message id is used to allocate messages
to subdirectories; thisisthe least significant base-62 digit of the time of arrival of the message.

Splitting up the spooal in this way may provide better performance on systems where there are long
mail queues, by reducing the number of filesin any one directory. The msglog directory is also split
up in asimilar way to the input directory; however, if preserve _message logsis set, all old msglog

172 Main configuration (14)

filesare still placed in the single directory msglog.OLD.

It is not necessary to take any special action for existing messages when changing split_spool
directory. Exim notices messages that are in the “wrong” place, and continues to process them. If the
option is turned off after a period of being on, the subdirectories will eventually empty and be
automatically deleted.

When split_spool directory is set, the behaviour of queue runner processes changes. Instead of
creating a list of al messages in the queue, and then trying to deliver each one in turn, it constructs a
list of those in one sub-directory and tries to deliver them, before moving on to the next sub-directory.
The sub-directories are processed in a random order. This spreads out the scanning of the input
directories, and uses less memory. It is particularly beneficial when there are lots of messages on the
gqueue. However, if queue _run_in_order is set, none of this new processing happens. The entire
gueue has to be scanned and sorted before any deliveries can start.

spool_directory Use: main Type: stringt Default: set at compile
time

This defines the directory in which Exim keeps its spool, that is, the messages it is waiting to deliver.
The default value is taken from the compile-time configuration setting, if there is one. If not, this
option must be set. The string is expanded, so it can contain, for example, a reference to $primary
hostname.

If the spool directory name s fixed on your installation, it is recommended that you set it at build time
rather than from this option, particularly if the log files are being written to the spool directory (see
log_file_path). Otherwise log files cannot be used for errors that are detected early on, such as
failluresin the configuration file.

By using this option to override the compiled-in path, it is possible to run tests of Exim without using
the standard spool.

|sglite_lock _timeout Use: main Type: time Default: 5s]

This option controls the timeout that the sglite lookup uses when trying to access an SQL ite database.
See section 9.24 for more details.

strict_acl_vars Use: main Type: boolean Default: false|

This option controls what happensif a syntactically valid but undefined ACL variable is referenced. If
it is false (the default), an empty string is substituted; if it is true, an error is generated. See section
40.16 for details of ACL variables.

|strip_excess_angle_brackets Use: main Type: boolean Default: false|

If this option is set, redundant pairs of angle brackets round “route-addr” items in addresses are
stripped. For example, <<xxx@a.b.c.d>> is treated as <xxx@a.b.c.d>. If thisis in the envelope and
the message is passed on to another MTA, the excess angle brackets are not passed on. If this optionis
not set, multiple pairs of angle brackets cause a syntax error.

[strip_trailing_dot Use: main Type: boolean Default: false|

If this option is set, a trailing dot at the end of a domain in an address is ignored. If this is in the
envel ope and the message is passed on to another MTA, the dot is not passed on. If this option is not
set, adot at the end of adomain causes a syntax error. However, addresses in header lines are checked
only when an ACL requests header syntax checking.

|syslog_duplication Use: main Type: boolean Defaullt: true|

173 Main configuration (14)

When Exim is logging to syslog, it writes the log lines for its three separate logs at different syslog
priorities so that they can in principle be separated on the logging hosts. Some installations do not
require this separation, and in those cases, the duplication of certain log linesis a nuisance. If syslog
duplication is set false, only one copy of any particular log line is written to syslog. For lines that
normally go to both the main log and the regject log, the reject log version (possibly containing
message header lines) is written, at LOG_NOTICE priority. Lines that normally go to both the main
and the panic log are written at the LOG_ALERT priority.

|syslog_facility Use: main Type: string Default: unset|

This option sets the syslog “facility” name, used when Exim is logging to syslog. The value must be
one of the strings “mail”, “user”, “news’, “uucp”, “daemon”, or “localx” where x is a digit between 0O
and 7. If this option is unset, “mail” is used. See chapter 49 for details of Exim’slogging.

|syslog_pr ocessname Use: main Type: string Default: exi m

This option sets the syslog “ident” name, used when Exim is logging to syslog. The value must be no
longer than 32 characters. See chapter 49 for details of Exim’slogging.

|syslog_timestamp Use: main Type: boolean Defaullt: true|

If syslog_timestamp is set false, the timestamps on Exim's log lines are omitted when these lines are
sent to syslog. See chapter 49 for details of Exim'’s logging.

|system_filter Use: main Type: string? Default: unset|

This option specifies an Exim filter file that is applied to al messages at the start of each delivery
attempt, before any routing is done. System filters must be Exim filters; they cannot be Sieve filters. If
the system filter generates any ddliveries to files or pipes, or any new mail messages, the appropriate
system_filter_..._transport option(s) must be set, to define which transports are to be used. Details of
thisfacility are given in chapter 43.

|system_filter_directory_transport Use: main Type: string? Default: unset|

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path ending in “/”, implying delivery of each message into a separate file in
some directory. During the delivery, the variable $address file contains the path name.

|system_filter _file_transport Use: main Type: string? Default: unset|

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path not ending in “/”. During the delivery, the variable $address file
contains the path name.

|system_filter _group Use: main Type: string Default: unset|

This option is used only when system_filter _user is also set. It sets the gid under which the system
filter is run, overriding any gid that is associated with the user. The value may be numerical or
symbolic.

|system_filter _pipe_transport Use: main Type: string? Default: unset|

This specifies the transport driver that is to be used when a pipe command is used in a system filter.
During the delivery, the variable $address _pipe contains the pipe command.

174 Main configuration (14)

[system_filter _reply_transport Use: main Type: stringt Default: unset|

This specifies the transport driver that is to be used when amail command is used in a system filter.

|system_filter _user Use: main Type: string Default: unset|

If this option is not set, the system filter is run in the main Exim delivery process, as root. When the
option is set, the system filter runs in a separate process, as the given user. Unless the string consists
entirely of digits, it is looked up in the password data. Failure to find the named user causes a
configuration error. The gid is either taken from the password data, or specified by system_filter
group. When the uid is specified numerically, system_filter_group is required to be set.

If the system filter generates any pipe, file, or reply deliveries, the uid under which the filter isrun is
used when transporting them, unless a transport option overrides. Normally you should set system
filter_user if your system filter generates these kinds of delivery.

[tcp_nodelay Use: main Type: boolean Defaullt: true|

If thisoption is set false, it stops the Exim daemon setting the TCP_NODELAY option on its listening
sockets. Setting TCP_NODELAY turns off the “Nagle algorithm”, which is a way of improving
network performance in interactive (character-by-character) situations. Turning it off should improve
Exim'’s performance a bit, so that is what happens by default. However, it appears that some broken
clients cannot cope, and time out. Hence this option. It affects only those sockets that are set up for
listening by the daemon. Sockets created by the smtp transport for delivering mail always set TCP_
NODELAY.

[timeout_frozen_after Use: main Type: time Default: Os|

If timeout_frozen_after is set to atime greater than zero, a frozen message of any kind that has been
on the queue for longer than the given time is automatically cancelled at the next queue run. If the
frozen message is a bounce message, it isjust discarded; otherwise, abounce is sent to the sender, in a
similar manner to cancellation by the -M g command line option. If you want to timeout frozen bounce
messages earlier than other kinds of frozen message, seeignore _bounce errors after.

Note: the default value of zero means no timeouts; with this setting, frozen messages remain on the
gueue forever (except for any frozen bounce messages that are released by ignore_bounce_errors_
after).

[timezone Use: main Type: string Default: unset|

The value of timezone is used to set the environment variable TZ while running Exim (if it is
different on entry). This ensures that all timestamps created by Exim are in the required timezone. If
you want all your timestampsto bein UTC (aka GMT) you should set

ti mezone = UTC

The default value is taken from TIMEZONE _DEFAULT in Local/Makefile, or, if that is not set, from
the value of the TZ environment variable when Exim is built. If timezone is set to the empty string,
either at build or run time, any existing TZ variable is removed from the environment when Exim
runs. This is appropriate behaviour for obtaining wall-clock time on some, but unfortunately not all,
operating systems.

[tls_advertise_hosts Use: main Type: host listt Default: unset|

When Exim is built with support for TLS encrypted connections, the availability of the STARTTLS
command to set up an encrypted session is advertised in response to EHLO only to those client hosts
that match this option. See chapter 39 for details of Exim’s support for TLS.

175 Main configuration (14)

[tls_certificate Use: main Type: string? Default: unset|

The value of this option is expanded, and must then be the absolute path to a file which contains the
server's certificates. The server's private key is aso assumed to be in this file if tls_privatekey is
unset. See chapter 39 for further details.

Note: The certificates defined by this option are used only when Exim is receiving incoming
messages as a server. |f you want to supply certificates for use when sending messages as aclient, you
must set the tls_certificate option in the relevant smtp transport.

[tls crl Use: main Type: string? Default: unset|

This option specifies a certificate revocation list. The expanded value must be the name of a file that
containsa CRL in PEM format.

|tls_dhparam Use: main Type: string? Default: unset|

The value of this option is expanded, and must then be the absolute path to a file which contains the
server’s DH parameter values. This is used only for OpenSSL. When Exim is linked with GnuTLS,
this option isignored. See section 39.2 for further details.

|tls_on_connect_ports Use: main Type: string list Default: unset|

This option specifies a list of incoming SSMTP (aka SMTPS) ports that should operate the obsolete
SSMTP (SMTPS) protocol, where a TLS session is immediately set up without waiting for the client
toissue a STARTTLS command. For further details, see section 13.4.

|tls_privatekey Use: main Type: string? Default: unset|

The value of this option is expanded, and must then be the absolute path to a file which contains the
server’s private key. If this option is unset, or if the expansion is forced to fail, or the result is an
empty string, the private key is assumed to be in the same file as the server’s certificates. See chapter
39 for further details.

[tls_remember_esmtp Use: main Type: boolean Default: false|

If this option is set true, Exim violates the RFCs by remembering that it is in “esmtp” state after
successfully negotiating a TLS session. This provides support for broken clients that fail to send a
new EHLO after startinga TL S session.

tls_require_ciphers Use: main Type: string? Default: unset|

This option controls which ciphers can be used for incoming TLS connections. The smtp transport
has an option of the same name for controlling outgoing connections. This option is expanded for
each connection, so can be varied for different clients if required. The value of this option must be a
list of permitted cipher suites. The OpenSSL and GnuTLS libraries handle cipher control in somewhat
different ways. If GnuTLS is being used, the client controls the preference order of the available
ciphers. Details are given in sections 39.4 and 39.5.

|tls_try_verify_hosts Use: main Type: host listt Default: unset|

Seetls verify_hosts below.

|tls_verify_certificates Use: main Type: stringt Default: unset|

176 Main configuration (14)

The value of this option is expanded, and must then be the absolute path to afile containing permitted
certificates for clients that match tls_verify _hosts or tIs try verify hosts. Alternatively, if you are
using OpenSSL, you can set tls verify certificates to the name of a directory containing certificate
files. This does not work with GnuTLS; the option must be set to the name of asingle file if you are
using GnuTLS.

|tls_verify_hosts Use: main Type: host listt Default: unset|

This option, along with tls _try verify hosts, controls the checking of certificates from clients. The
expected certificates are defined by tls verify certificates, which must be set. A configuration error
occursif either tls verify _hostsor tls try verify hostsisset and tls verify certificatesisnot set.

Any client that matches tls_verify _hosts is constrained by tls verify certificates. The client must
present one of the listed certificates. If it does not, the connection is aborted.

A weaker form of checking is provided by tls try verify_hosts. If a client matches this option (but
not tls_verify _hosts), Exim requests a certificate and checks it against tIs_verify certificates, but
does not abort the connection if there is no certificate or if it does not match. This state can be
detected in an ACL, which makes it possible to implement policies such as “accept for relay only if a
verified certificate has been received, but accept for local delivery if encrypted, even without a
verified certificate”.

Client hosts that match neither of these lists are not asked to present certificates.

[trusted_groups Use: main Type: string listt Default: unset|

This option is expanded just once, at the start of Exim’s processing. If this option is set, any process
that is running in one of the listed groups, or which has one of them as a supplementary group, is
trusted. The groups can be specified numerically or by name. See section 5.2 for details of what
trusted callers are permitted to do. If neither trusted_groups nor trusted_users is set, only root and
the Exim user are trusted.

[trusted_users Use: main Type: string listT Default: unset|

This option is expanded just once, at the start of Exim’s processing. If this option is set, any process
that is running as one of the listed usersis trusted. The users can be specified numerically or by name.
See section 5.2 for details of what trusted callers are permitted to do. If neither trusted_groups nor
trusted_usersis set, only root and the Exim user are trusted.

[unknown_login Use: main Type: string? Default: unset|

This is a specialized feature for use in unusua configurations. By default, if the uid of the caller of
Exim cannot be looked up using getpwuid(), Exim gives up. The unknown_login option can be used
to set alogin name to be used in this circumstance. It is expanded, so values like user $caller _uid can
be set. When unknown_login is used, the value of unknown_username is used for the user’s real
name (gecos field), unless this has been set by the -F option.

lunknown_username Use: main Type: string Default: unset|

See unknown_login.

luntrusted_set_sender Use: main Type: addresslistt Default: unset|

When an untrusted user submits a message to Exim using the standard input, Exim normally creates
an envelope sender address from the user’s login and the default qualification domain. Data from the
-f option (for setting envelope senders on non-SM TP messages) or the SMTP MAIL command (if -bs
or -bSisused) isignored.

177 Main configuration (14)

However, untrusted users are permitted to set an empty envelope sender address, to declare that a
message should never generate any bounces. For example:

exim-f '<>' user @onai n. exanpl e

The untrusted_set_sender option alows you to permit untrusted users to set other envelope sender
addresses in a controlled way. When it is set, untrusted users are alowed to set envelope sender
addresses that match any of the patterns in the list. Like all address lists, the string is expanded. The
identity of the user isin $sender_ident, so you can, for example, restrict users to setting senders that
start with their login ids followed by a hyphen by a setting like this:

untrusted_set _sender = "$sender _ident -

If you want to allow untrusted users to set envel ope sender addresses without restriction, you can use

untrusted set sender = *

The untrusted_set _sender option applies to all forms of local input, but only to the setting of the
envelope sender. It does not permit untrusted users to use the other options which trusted user can use
to override message parameters. Furthermore, it does not stop Exim from removing an existing
Sender: header in the message, or from adding a Sender: header if necessary. See local _sender
retain and local_from_check for ways of overriding these actions. The handling of the Sender:
header is also described in section 44.16.

The log line for a message’s arrival shows the envelope sender following “<=". For local messages,
the user’s login always follows, after “U=". In -bp displays, and in the Exim monitor, if an untrusted
user sets an envelope sender address, the user’ s login is shown in parentheses after the sender address.

[uucp_from_pattern Use: main Type: string Default: see below|

Some applications that pass messages to an MTA via a command line interface use an initia line
starting with “From ” to pass the envelope sender. In particular, thisis used by UUCP software. Exim
recognizes such a line by means of aregular expression that is set in uucp_from_pattern. When the
pattern matches, the sender address is constructed by expanding the contents of uucp_from_sender,
provided that the caller of Exim is atrusted user. The default pattern recognizes lines in the following
two forms:

From phl0 Fri Jan 5 12:35 GVI 1996
From ph10 Fri, 7 Jan 97 14:00: 00 GVI

The pattern can be seen by running

exim-bP uucp _frompattern

It checks only up to the hours and minutes, and allows for a 2-digit or 4-digit year in the second case.
The first word after “From ” is matched in the regular expression by a parenthesized subpattern. The
default value for uucp_from_sender is “$1”, which therefore just uses this first word (“ph10” in the
example above) as the message’ s sender. See dlso ignore_fromline_hosts.

[uucp_from_sender Use: main Type: stringt Default: $1|

See uucp_from_pattern above.

|warn_message file Use: main Type: string Default: unset]

This option defines a template file containing paragraphs of text to be used for constructing the
warning message which is sent by Exim when a message has been on the queue for a specified
amount of time, as specified by delay_warning. Details of the file's contents are given in chapter 46.
See also bounce _message file.

178 Main configuration (14)

lwrite_rejectlog Use: main Type: boolean Defaullt: true|

If thisoption is set false, Exim no longer writes anything to the reject 1og. See chapter 49 for details of
what Exim writesto itslogs.

179 Main configuration (14)

15. Generic options for routers

This chapter describes the generic options that apply to al routers. Those that are preconditions are
marked with 1 in the “use” field.

For a general description of how a router operates, see sections 3.10 and 3.12. The latter specifies the
order in which the preconditions are tested. The order of expansion of the options that provide datafor
atransportis: errors to, headers add, headers remove, transport.

|address_data Use: routers Type: string? Default: unset|

The string is expanded just before the router is run, that is, after all the precondition tests have
succeeded. If the expansion is forced to fail, the router declines, the value of address_data remains
unchanged, and the mor e option controls what happens next. Other expansion failures cause delivery
of the address to be deferred.

When the expansion succeeds, the value is retained with the address, and can be accessed using the
variable $address_data in the current router, subseguent routers, and the eventual transport.

Warning: If the current or any subsequent router is aredirect router that runs a user’s filter file, the
contents of $address_data are accessible in the filter. This is not normally a problem, because such
datais usually either not confidential or it “belongs’ to the current user, but if you do put confidential
datainto $address _data you need to remember this point.

Even if the router declines or passes, the value of $address_data remains with the address, though it
can be changed by another address data setting on a subsequent router. If a router generates child
addresses, the value of $address_data propagates to them. This also applies to the special kind of
“child” that is generated by arouter with the unseen option.

The idea of address data is that you can use it to look up alot of datafor the address once, and then
pick out parts of the data later. For example, you could use a single LDAP lookup to return a string of
the form

ui d=1234 gi d=5678 mai | box=/nmai |l / xyz forward=/hone/ xyz/.forward
In the transport you could pick out the mailbox by a setting such as
file = ${extract{mail box}{$address_dat a}}

This makes the configuration file less messy, and also reduces the number of lookups (though Exim
does cache lookups).

The address_data facility is also useful as a means of passing information from one router to another,
and from arouter to atransport. In addition, if

When $address_data is set by a router when verifying a recipient address from an ACL, it remains
available for use in the rest of the ACL statement. After verifying a sender, the value is transferred to
$sender_address_data.

|address test Use: routerst Type: boolean Defaullt: true|

If this option is set false, the router is skipped when routing is being tested by means of the -bt
command line option. This can be a convenience when your first router sends messages to an external
scanner, because it saves you having to set the “aready scanned” indicator when testing real address
routing.

[cannot_route_message Use: routers Type: string Default: unset]

This option specifies a text message that is used when an address cannot be routed because Exim has
run out of routers. The default message is “Unrouteable address’. This option is useful only on routers

180 Generic options for routers (15)

that have mor e set false, or on the very last router in a configuration, because the value that is used is
taken from the last router that is considered. This includes a router that is skipped because its
preconditions are not met, as well as a router that declines. For example, using the default
configuration, you could put:

cannot _route_nessage = Renote domain not found in DNS

on thefirst router, which is adnslookup router with mor e set false, and

cannot _rout e_nmessage = Unknown | ocal user

on the final router that checks for local users. If string expansion fails for this option, the default
message is used. Unless the expansion failure was explicitly forced, a message about the failure is
written to the main and panic logs, in addition to the norma message about the routing failure.

|caseful_local_part Use: routers Type: boolean Default: false|

By default, routers handle the local parts of addresses in a case-insensitive manner, though the actual
caseis preserved for transmission with the message. If you want the case of letters to be significant in
arouter, you must set this option true. For individual router options that contain address or local part
lists (for example, local_parts), case-sensitive matching can be turned on by “+caseful” as alist item.
See section 10.19 for more details.

The value of the $local_part variable is forced to lower case while arouter is running unless caseful _
local_part is set. When a router assigns an address to a transport, the value of $local_part when the
transport runsis the same as it was in the router. Similarly, when arouter generates child addresses by
aliasing or forwarding, the values of $original_local _part and $parent_local_part are those that were
used by the redirecting router.

This option applies to the processing of an address by a router. When a recipient address is being
processed in an ACL, there is a separate control maodifier that can be used to specify case-sensitive
processing within the ACL (see section 40.19).

|check _local_user Use: routerst Type: boolean Default: false|

When this option is true, Exim checks that the local part of the recipient address (with affixes
removed if relevant) is the name of an account on the local system. The check is done by calling the
getpwnam() function rather than trying to read /etc/passwd directly. This means that other methods of
holding password data (such as NIS) are supported. If the local part is alocal user, $home is set from
the password data, and can be tested in other preconditions that are evaluated after this one (the order
of evaluation is given in section 3.12). However, the value of $home can be overridden by router _
home directory. If theloca part is not alocal user, the router is skipped.

If you want to check that the local part is either the name of aloca user or matches something else,
you cannot combine check_local_user with a setting of local_parts, because that specifies the logical
and of the two conditions. However, you can use a passwd lookup in alocal_parts setting to achieve
this. For example:

| ocal _parts = passwd; $l ocal _part : |search;/etc/other/users

Note, however, that the side effects of check _local _user (such as setting up a home directory) do not
occur when a passwd lookup isused in alocal_parts (or any other) precondition.

[condition Use: routerst Type: string Defauilt: unset|

This option specifies a general precondition test that has to succeed for the router to be caled. The
condition option is the last precondition to be evaluated (see section 3.12). The string is expanded,
and if the result is a forced failure, or an empty string, or one of the strings “0” or “no” or “false”
(checked without regard to the case of the letters), the router is skipped, and the address is offered to
the next one.

181 Generic options for routers (15)

If the result is any other value, the router is run (as thisis the last precondition to be evaluated, all the
other preconditions must be true).

The condition option provides a means of applying custom conditions to the running of routers. Note
that in the case of a simple conditional expansion, the default expansion values are exactly what is
wanted. For example:

condition = ${if >{$nmessage_age}{600}}
Because of the default behaviour of the string expansion, thisis equivalent to
condition = ${if >{$nmessage_age}{600}{true}{}}

If the expansion fails (other than forced failure) delivery is deferred. Some of the other precondition
options are common special cases that could in fact be specified using condition.

|debug_print Use: routers Type: string? Default: unset|

If this option is set and debugging is enabled (see the -d command line option), the string is expanded
and included in the debugging output. If expansion of the string fails, the error message is written to
the debugging output, and Exim carries on processing. This option is provided to help with checking
out the values of variables and so on when debugging router configurations. For example, if a
condition option appears not to be working, debug_print can be used to output the variables it
references. The output happens after checks for domains, local_parts, and check_local_user but
before any other preconditions are tested. A newline is added to the text if it does not end with one.

|disable_logging Use: routers Type: boolean Default: false|

If this option is set true, nothing is logged for any routing errors or for any deliveries caused by this
router. Y ou should not set this option unless you redly, really know what you are doing. See also the
generic transport option of the same name.

|domains Use: routerst Type: domain listt Default: unset|

If this option is set, the router is skipped unless the current domain matches the list. If the match is
achieved by means of a file lookup, the data that the lookup returned for the domain is placed in
$domain_data for use in string expansions of the driver’s private options. See section 3.12 for alist of
the order in which preconditions are eval uated.

[driver Use: routers Type: string Default: unset|

This option must always be set. It specifies which of the available routersis to be used.

lerrors_to Use: routers Type: stringt Default: unset|

If arouter successfully handles an address, it may assign the address to a transport for delivery or it
may generate child addresses. In both cases, if there is a delivery problem during later processing, the
resulting bounce message is sent to the address that results from expanding this string, provided that
the address verifies successfully. The errors_to option is expanded before headers add, headers
remove, and transport.

The errors_to setting associated with an address can be overridden if it subsequently passes through
other routers that have their own errors_to settings, or if the message is delivered by a transport with
areturn_path setting.

If errors tois unset, or the expansion is forced to fail, or the result of the expansion fails to verify,
the errors address associated with the incoming address is used. At top level, this is the envelope
sender. A non-forced expansion failure causes delivery to be deferred.

182 Generic options for routers (15)

If an address for which errors_to has been set ends up being delivered over SMTP, the envelope
sender for that delivery isthe errors _to value, so that any bounces that are generated by other MTAs
on the delivery route are also sent there. You can set errors_to to the empty string by either of these
settings:

errors_to
errors_to

nn

An expansion item that yields an empty string has the same effect. If you do this, a locally detected
delivery error for addresses processed by this router no longer gives rise to a bounce message; the
error is discarded. If the address is delivered to a remote host, the return path is set to <>, unless
overridden by the return_path option on the transport.

If for some reason you want to discard local errors, but use a non-empty MAIL command for remote
delivery, you can preserve the original return path in $address_data in the router, and reinstate it in
the transport by setting return_path.

The most common use of errors_to is to direct mailing list bounces to the manager of the list, as
described in section 47.2, or to implement VERP (Variable Envelope Return Paths) (see section 47.6).

[expn Use: routerst Type: boolean Defaullt: true|

If this option is turned off, the router is skipped when testing an address as a result of processing an
SMTP EXPN command. You might, for example, want to turn it off on a router for users .forward
files, while leaving it on for the system dlias file. See section 3.12 for a list of the order in which
preconditions are eval uated.

The use of the SMTP EXPN command is controlled by an ACL (see chapter 40). When Exim is
running an EXPN command, it is similar to testing an address with -bt. Compare VRFY, whose
counterpart is -bv.

[fail _verify Use: routers Type: boolean Default: false|

Setting this option has the effect of setting both fail_verify_sender and fail_verify_recipient to the
same value.

|fail_verify_recipient Use: routers Type: boolean Default: false|

If this option is true and an address is accepted by this router when verifying a recipient, verification
fails.

|fail_verify_sender Use: routers Type: boolean Defaullt: false|

If this option is true and an address is accepted by this router when verifying a sender, verification
fails.

|fallback_hosts Use: routers Type: string list Default: unset|

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses. The list separator can be changed (see section 6.19), and a port can be
specified with each name or address. In fact, the format of each item is exactly the same as defined for
the list of hostsin a manualroute router (see section 20.5).

If arouter queues an address for a remote transport, this host list is associated with the address, and
used instead of the transport’s fallback host list. If hosts randomize is set on the transport, the order
of the list is randomized for each use. See the fallback_hosts option of the smtp transport for further
details.

183 Generic options for routers (15)

[group Use: routers Type: string Default: see below]|

When a router queues an address for a transport, and the transport does not specify a group, the group
given here is used when running the delivery process. The group may be specified numerically or by
name. If expansion fails, the error is logged and delivery is deferred. The default is unset, unless
check_local _user is set, when the default is taken from the password information. See also
initgroups and user and the discussion in chapter 23.

[headers_add Use: routers Type: stringt Default: unset|

This option specifies a string of text that is expanded at routing time, and associated with any
addresses that are accepted by the router. However, this option has no effect when an address is just
being verified. The way in which the text is used to add header lines at transport time is described in
section 44.17. New header lines are not actually added until the message is in the process of being
transported. This means that references to header lines in string expansions in the transport’s
configuration do not “see” the added header lines.

The headers_add option is expanded after errors_to, but before headers remove and transport. If
the expanded string is empty, or if the expansion is forced to fail, the option has no effect. Other
expansion failures are treated as configuration errors.

Warning 1: The headers_add option cannot be used for a redirect router that has the one_time
option set.

Warning 2: If the unseen option is set on the router, all header additions are deleted when the address
is passed on to subsequent routers.

|headers remove Use: routers Type: stringt Default: unset|

This option specifies a string of text that is expanded at routing time, and associated with any
addresses that are accepted by the router. However, this option has no effect when an address is just
being verified. The way in which the text is used to remove header lines at transport time is described
in section 44.17. Header lines are not actually removed until the message is in the process of being
transported. This means that references to header lines in string expansions in the transport’s
configuration still “see” the original header lines.

The headers remove option is expanded after errors to and headers add, but before transport. If
the expansion is forced to fail, the option has no effect. Other expansion failures are treated as
configuration errors.

Warning 1: The headers_remove option cannot be used for aredirect router that has the one_time
option set.

Warning 2: If the unseen option is set on the router, al header removal requests are deleted when the
address is passed on to subsequent routers.

lignore target_hosts Use: routers Type: host listt Default: unset|

Although this option is a host list, it should normally contain |P address entries rather than names. If
any host that is looked up by the router has an IP address that matches an item in this list, Exim
behaves asif that | P address did not exist. This option alows you to cope with rogue DNS entries like

renot e. domai n. example. A 127.0.0.1
by setting
ignore_target_hosts = 127.0.0.1

on the relevant router. If al the hosts found by a dnslookup router are discarded in this way, the
router declines. In a conventional configuration, an attempt to mail to such a domain would normally
provoke the “unrouteable domain” error, and an attempt to verify an address in the domain would fail.

184 Generic options for routers (15)

Similarly, if ignore_target_hosts is set on an ipliteral router, the router declines if presented with
one of the listed addresses.

You can use this option to disable the use of IPv4 or IPv6 for mail delivery by means of the first or
the second of the following settings, respectively:

i gnore_target_hosts 0.0.0.0/0
i gnore_target _hosts <; 0::0/0

The pattern in the first line matches all 1Pv4 addresses, whereas the pattern in the second line matches
al IPv6 addresses.

This option may also be useful for ignoring link-local and site-local 1Pv6 addresses. Because, like all
host lists, the value of ignore_target_hosts is expanded before use as a ligt, it is possible to make it
dependent on the domain that is being routed.

During its expansion, $host_addressis set to the | P address that is being checked.

[initgroups Use: routers Type: boolean Default: false|

If the router queues an address for a transport, and this option is true, and the uid supplied by the
router is not overridden by the transport, the initgroups() function is called when running the transport
to ensure that any additional groups associated with the uid are set up. See aso group and user and
the discussion in chapter 23.

[local_part_prefix Use: routerst Type: string list Defauilt: unset|

If this option is set, the router is skipped unless the local part starts with one of the given strings, or
local_part_prefix_optional istrue. See section 3.12 for alist of the order in which preconditions are
evaluated.

The list is scanned from left to right, and the first prefix that matches is used. A limited form of
wildcard is available; if the prefix begins with an asterisk, it matches the longest possible sequence of
arbitrary characters at the start of the local part. An asterisk should therefore aways be followed by
some character that does not occur in normal local parts. Wildcarding can be used to set up multiple
user mailboxes, as described in section 47.8.

During the testing of the local _parts option, and while the router is running, the prefix is removed
from the local part, and is available in the expansion variable $local_part_prefix. When a message is
being delivered, if the router accepts the address, this remains true during subsequent delivery by a
transport. In particular, the local part that is transmitted in the RCPT command for LM TP, SMTP, and
BSMTP deliveries has the prefix removed by default. This behaviour can be overridden by setting
rcpt_include affixes true on the relevant transport.

When an address is being verified, local_part_prefix affects only the behaviour of the router. If the
calout feature of verification is in use, this means that the full address, including the prefix, will be
used during the callout.

The prefix facility is commonly used to handle local parts of the form owner-something. Another
common use is to support local parts of the form real-username to bypass a user’s .forward file —
helpful when trying to tell a user their forwarding is broken — by placing a router like this one
immediately before the router that handles .forward files:

real | ocal user:
driver = accept
| ocal _part_prefix = real -
check | ocal user
transport = |ocal delivery

If both local_part_prefix and local_part_suffix are set for a router, both conditions must be met if
not optional. Care must be taken if wildcards are used in both a prefix and a suffix on the same router.
Different separator characters must be used to avoid ambiguity.

185 Generic options for routers (15)

[local_part_prefix_optional Use: routers Type: boolean Default: false|

Seelocal_part_prefix above.

[local_part_suffix Use: routerst Type: string list Default: unset|

This option operates in the same way aslocal_part_prefix, except that the local part must end (rather
than start) with the given string, the local_part_suffix_optional option determines whether the suffix
is mandatory, and the wildcard * character, if present, must be the last character of the suffix. This
option facility is commonly used to handle local parts of the form something-request and multiple
user mailboxes of the form user name-foo.

[local_part_suffix_optional Use: routers Type: boolean Default: false|

Seelocal_part_suffix above.

local_parts Use: routerst Type: local part Default: unset
listt

The router isrun only if the local part of the address matches the list. See section 3.12 for alist of the
order in which preconditions are evaluated, and section 10.20 for a discussion of local part lists.
Because the string is expanded, it is possible to make it depend on the domain, for example:

| ocal _parts = dbm/usr/local/special s/ $donmain

If the match is achieved by a lookup, the data that the lookup returned for the local part is placed in
the variable $local_part_data for use in expansions of the router’s private options. Y ou might use this
option, for example, if you have a large number of local virtual domains, and you want to send all
postmaster mail to the same place without having to set up an aliasin each virtual domain:

post mast er:
driver = redirect
| ocal _parts = postmaster
data = postnmaster @eal . domai n. exanpl e

[log_as local Use: routers Type: boolean Default: see below|

Exim has two logging styles for delivery, the idea being to make local deliveries stand out more
visibly from remote ones. In the “local” style, the recipient address is given just as the local part,
without a domain. The use of this style is controlled by this option. It defaults to true for the accept
router, and false for al the others. This option applies only when a router assigns an address to a
transport. It has no effect on routers that redirect addresses.

more Use: routers Type: booleant Defallt: true|

The result of string expansion for this option must be a valid boolean value, that is, one of the strings
“yes’, “no”, “true’, or “false’. Any other result causes an error, and delivery is deferred. If the
expansion is forced to fail, the default value for the option (true) is used. Other failures cause delivery

to be deferred.

If this option is set false, and the router declines to handle the address, no further routers are tried,
routing fails, and the address is bounced. However, if the router explicitly passes an address to the
following router by means of the setting

sel f = pass

or otherwise, the setting of more isignored. Also, the setting of mor e does not affect the behaviour if
one of the precondition tests fails. In that case, the address is always passed to the next router.

186 Generic options for routers (15)

Note that address_data is not considered to be a precondition. If its expansion is forced to fail, the
router declines, and the value of mor e controls what happens next.

[pass_on_timeout Use: routers Type: boolean Default: false|

If a router times out during a host lookup, it normally causes deferral of the address. If pass on_
timeout is set, the address is passed on to the next router, overriding no_more. This may be helpful
for systems that are intermittently connected to the Internet, or those that want to pass to a smart host
any messages that cannot immediately be delivered.

There are occasional other temporary errors that can occur while doing DNS lookups. They are
treated in the same way as a timeout, and this option applies to all of them.

|pass_router Use: routers Type: string Default: unset|

When a router returns “pass’, the address is normally handed on to the next router in sequence. This
can be changed by setting pass_router to the name of another router. However (unlike redirect_
router) the named router must be below the current router, to avoid loops. Note that this option
applies only to the special case of “pass’. It does not apply when arouter returns “decling”.

[redirect_router Use: routers Type: string Default: unset|

Sometimes an administrator knows that it is pointless to reprocess addresses generated from alias or
forward files with the same router again. For example, if an alias file trandates real names into login
ids there is no point searching the alias file a second time, especiadly if it isalargefile.

Theredirect_router option can be set to the name of any router instance. It causes the routing of any
generated addresses to start at the named router instead of at the first router. This option has no effect
if the router in which it is set does not generate new addresses.

[require files Use: routerst Type: string listt Default: unset|

This option provides a general mechanism for predicating the running of a router on the existence or
non-existence of certain files or directories. Before running a router, as one of its precondition tests,
Exim worksits way through the require_fileslist, expanding each item separately.

Because the list is split before expansion, any colons in expansion items must be doubled, or the
facility for using a different list separator must be used. If any expansion is forced to fail, the item is
ignored. Other expansion failures cause routing of the address to be deferred.

If any expanded string is empty, it isignored. Otherwise, except as described below, each string must
be afully qualified file path, optionally preceded by “!”. The paths are passed to the stat() function to
test for the existence of the files or directories. The router is skipped if any paths not preceded by “!”
do not exist, or if any paths preceded by “!” do exist.

If stat() cannot determine whether a file exists or not, delivery of the message is deferred. This can
happen when NFS-mounted filesystems are unavailable.

This option is checked after the domains, local_parts, and sender s options, so you cannot use it to
check for the existence of afile in which to look up a domain, local part, or sender. (See section 3.12
for a full list of the order in which preconditions are evaluated.) However, as these options are all
expanded, you can use the exists expansion condition to make such tests. The require files option is
intended for checking files that the router may be going to use internally, or which are needed by a
transport (for example .procmailrc).

During delivery, the stat() function is run as root, but there is a facility for some checking of the
accessibility of afile by another user. Thisisnot a proper permissions check, but just a“rough” check
that operates as follows:

If anitem in arequire files list does not contain any forward slash characters, it is taken to be the

187 Generic options for routers (15)

user (and optional group, separated by a comma) to be checked for subsequent files in the list. If no
group is specified but the user is specified symbolically, the gid associated with the uid is used. For
example:

mail :/sone/file
$l ocal _part: $hone/ . procmailrc

require_files
require_files

If auser or group namein arequire fileslist does not exist, the require files condition fails.

Exim performs the check by scanning along the components of the file path, and checking the access
for the given uid and gid. It checksfor “Xx” access on directories, and “r” access on the final file. Note
that this means that file access control lists, if the operating system has them, are ignored.

Warning 1. When the router is being run to verify addresses for an incoming SMTP message, Exim
is not running as root, but under its own uid. This may affect the result of arequire_files check. In
particular, stat() may yield the error EACCES (“Permission denied”). This means that the Exim user
is not permitted to read one of the directories on thefile's path.

Warning 2: Even when Exim is running as root while delivering a message, stat() can yield EACCES
for afilein an NFS directory that is mounted without root access. In this case, if a check for access by
a particular user is requested, Exim creates a subprocess that runs as that user, and tries the check
again in that process.

The default action for handling an unresolved EACCES is to consider it to be caused by a
configuration error, and routing is deferred because the existence or non-existence of the file cannot
be determined. However, in some circumstances it may be desirable to treat this condition asif the file
did not exist. If the file name (or the exclamation mark that precedes the file name for non-existence)
is preceded by aplus sign, the EACCES error istreated asif the file did not exist. For example:

require_files = +/sone/file

If the router is not an essential part of verification (for example, it handles users' .forward files),
another solution isto set the verify option false so that the router is skipped when verifying.

[retry_use local_part Use: routers Type: boolean Default: see below|

When a delivery suffers atemporary routing failure, aretry record is created in Exim’s hints database.
For addresses whose routing depends only on the domain, the key for the retry record should not
involve the local part, but for other addresses, both the domain and the local part should be included.
Usually, remote routing is of the former kind, and local routing is of the latter kind.

This option controls whether the local part is used to form the key for retry hints for addresses that
suffer temporary errors while being handled by this router. The default value istrue for any router that
has check _local_user set, and false otherwise. Note that this option does not apply to hints keys for
transport delays; they are controlled by a generic transport option of the same name.

The setting of retry _use local _part applies only to the router on which it appears. If the router
generates child addresses, they are routed independently; this setting does not become attached to
them.

[router_home_directory Use: routers Type: stringt Defauilt: unset|

This option sets a home directory for use while the router is running. (Compare transport_home
directory, which sets a home directory for later transporting.) In particular, if used on a redirect
router, this option sets a value for $home while a filter is running. The value is expanded; forced
expansion failure causes the option to be ignored — other failures cause the router to defer.

Expansion of router__home_directory happens immediately after the check local_user test (if
configured), before any further expansions take place. (See section 3.12 for alist of the order in which
preconditions are evaluated.) While the router is running, router_home_directory overrides the value
of $home that came from check_local_user.

188 Generic options for routers (15)

When a router accepts an address and assigns it to a local transport (including the cases when a
redirect router generates a pipe, file, or autoreply delivery), the home directory setting for the
transport is taken from the first of these valuesthat is set:

» The home_directory option on the transport;

» Thetransport_home_directory option on the router;

» The password dataif check_local _user isset on the router;
» Therouter_home_directory option on the router.

In other words, router_home_directory overrides the password data for the router, but not for the
transport.

|self Use: routers Type: string Defaullt: freeze|

This option applies to those routers that use a recipient address to find a list of remote hosts.
Currently, these are the dnslookup, ipliteral, and manualroute routers. Certain configurations of the
gueryprogram router can also specify alist of remote hosts. Usually such routers are configured to
send the message to a remote host via an smtp transport. The self option specifies what happens when
the first host on the list turns out to be the local host. The way in which Exim checks for the local host
is described in section 13.8.

Normally this situation indicates either an error in Exim's configuration (for example, the router
should be configured not to process this domain), or an error in the DNS (for example, the MX should
not point to this host). For this reason, the default action is to log the incident, defer the address, and
freeze the message. The following alternatives are provided for use in special cases:

defer
Delivery of the message istried again later, but the message is not frozen.

reroute: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed by
the routers. No rewriting of headers takes place. This behaviour is essentially aredirection.

reroute: rewrite: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed by
the routers. Any headers that contain the original domain are rewritten.

pass
The router passes the address to the next router, or to the router named in the pass_router option
if it is set. This overrides no_more. During subsequent routing and delivery, the variable $self
hostname contains the name of the local host that the router encountered. This can be used to
distinguish between different cases for hosts with multiple names. The combination

sel f = pass
no_nor e

ensures that only those addresses that routed to the local host are passed on. Without no_more,
addresses that were declined for other reasons would also be passed to the next router.

fail
Delivery fails and an error report is generated.

send
The anomaly is ignored and the address is queued for the transport. This setting should be used
with extreme caution. For an smtp transport, it makes sense only in cases where the program that

is listening on the SMTP port is not this version of Exim. That is, it must be some other MTA, or
Exim with adifferent configuration file that handles the domain in another way.

|senders Use:routerst Type: addresslistt Default: unset|

189 Generic options for routers (15)

If this option is set, the router is skipped unless the message' s sender address matches something on
the list. See section 3.12 for alist of the order in which preconditions are eval uated.

There are issues concerning verification when the running of routers is dependent on the sender.
When Exim is verifying the address in an errors_to setting, it sets the sender to the null string. When
using the -bt option to check a configuration file, it is necessary also to use the -f option to set an
appropriate sender. For incoming mail, the sender is unset when verifying the sender, but is available
when verifying any recipients. If the SMTP VRFY command is enabled, it must be used after MAIL
if the sender address matters.

[trandlate_ip_address Use: routers Type: string? Default: unset|

There exist some rare networking situations (for example, packet radio) where it is helpful to be able
to trandate IP addresses generated by normal routing mechanisms into other IP addresses, thus
performing a kind of manual IP routing. This should be done only if the normal IP routing of the
TCP/IP stack is inadequate or broken. Because this is an extremely uncommon requirement, the code
to support this option is not included in the Exim binary unless SUPPORT_TRANSLATE_IP_
ADDRESS=yes is set in Local/Makefile.

The trandate_ip_address string is expanded for every |P address generated by the router, with the
generated address set in $host_address. If the expansion is forced to fail, no action is taken. For any
other expansion error, delivery of the message is deferred. If the result of the expansion is an IP
address, that replaces the original address; otherwise the result is assumed to be a host name — thisis
looked up using gethostbyname() (or getipnodebyname() when available) to produce one or more
replacement IP addresses. For example, to subvert al IP addresses in some specific networks, this
could be added to arouter:

translate_ i p_address =\
${| ookup{ ${ mask: $host _address/ 26} } I search{/sone/fil e}\
{$val ue}fail}}

The file would contain lines like

10.2.3.128/ 26 some. host
10. 8. 4. 34/ 26 10. 44. 8. 15

Y ou should not make use of this facility unless you really understand what you are doing.

[transport Use: routers Type: stringt Default: unset|

This option specifies the transport to be used when a router accepts an address and sets it up for
delivery. A transport is never needed if arouter is used only for verification. The value of the option is
expanded at routing time, after the expansion of errors_to, headers _add, and headers remove, and
result must be the name of one of the configured transports. If it is not, delivery is deferred.

Thetransport option is not used by the redirect router, but it does have some private options that set
up transports for pipe and file deliveries (see chapter 22).

[transport_current_directory Use: routers Type: string? Default: unset|

This option associates a current directory with any address that is routed to alocal transport. This can
happen either because a transport is explicitly configured for the router, or because it generates a
delivery to afile or apipe. During the delivery process (that is, at transport time), this option string is
expanded and is set as the current directory, unless overridden by a setting on the transport. If the
expansion fails for any reason, including forced failure, an error is logged, and delivery is deferred.
See chapter 23 for details of the local delivery environment.

[transport_home_directory Use: routers Type: string? Default: see below|

This option associates a home directory with any address that is routed to alocal transport. This can

190 Generic options for routers (15)

happen either because a transport is explicitly configured for the router, or because it generates a
delivery to afile or a pipe. During the delivery process (that is, at transport time), the option string is
expanded and is set as the home directory, unless overridden by a setting of home_directory on the
transport. If the expansion fails for any reason, including forced failure, an error is logged, and
delivery is deferred.

If the transport does not specify a home directory, and transport_home_directory is not set for the
router, the home directory for the tranport is taken from the password data if check _local_user is set
for the router. Otherwise it istaken from router_home _directory if that option is set; if not, no home
directory is set for the transport.

See chapter 23 for further details of the local delivery environment.

lunseen Use: routers Type: booleant Default: false|

The result of string expansion for this option must be a valid boolean value, that is, one of the strings
“yes’, “no”, “true’, or “fase’. Any other result causes an error, and delivery is deferred. If the
expansion is forced to fail, the default value for the option (false) is used. Other failures cause
delivery to be deferred.

When this option is set true, routing does not cease if the router accepts the address. Instead, a copy of
the incoming address is passed to the next router, overriding a false setting of more. There is little
point in setting more false if unseen is aways true, but it may be useful in cases when the value of
unseen contains expansion items (and therefore, presumably, is sometimes true and sometimes fal se).

The unseen option can be used to cause copies of messages to be delivered to some other destination,
while also carrying out a normal delivery. In effect, the current address is made into a “parent” that
has two children — one that is delivered as specified by this router, and a clone that goes on to be
routed further. For this reason, unseen may not be combined with the one_time option in aredirect
router.

Warning: Header lines added to the address (or specified for removal) by this router or by previous
routers affect the “unseen” copy of the message only. The clone that continues to be processed by
further routers starts with no added headers and none specified for removal. However, any data that
was set by the address_data option in the current or previous routers is passed on. Setting the unseen
option has asimilar effect to the unseen command qualifier in filter files.

|user Use: routers Type: string? Default: see below|

When a router queues an address for a transport, and the transport does not specify a user, the user
given here is used when running the delivery process. The user may be specified numerically or by
name. If expansion fails, the error is logged and delivery is deferred. This user is also used by the
redirect router when running a filter file. The default is unset, except when check _local_user is set.
In this case, the default is taken from the password information. If the user is specified as a name, and
group is not set, the group associated with the user is used. See also initgroups and group and the
discussion in chapter 23.

|verify Use: routerst Type: boolean Defaullt: true|

Setting this option has the effect of setting verify _sender and verify_recipient to the same value.

|verify_only Use: routerst Type: boolean Default: false|

If this option is set, the router is used only when verifying an address or testing with the -bv option,
not when actually doing a delivery, testing with the -bt option, or running the SMTP EXPN
command. It can be further restricted to verifying only senders or recipients by means of verify
sender and verify_recipient.

Warning: When the router is being run to verify addresses for an incoming SMTP message, Exim is
not running as root, but under its own uid. If the router accesses any files, you need to make sure that

191 Generic options for routers (15)

they are accessible to the Exim user or group.

|verify_recipient Use: routerst Type: boolean Defalllt: true|

If this option is false, the router is skipped when verifying recipient addresses or testing recipient
verification using -bv. See section 3.12 for alist of the order in which preconditions are evaluated.

[verify_sender Use: routerst Type: boolean Defaullt: true|

If this option is false, the router is skipped when verifying sender addresses or testing sender
verification using -bvs. See section 3.12 for alist of the order in which preconditions are eval uated.

192 Generic options for routers (15)

16. The accept router

The accept router has no private options of its own. Unlessit isbeing used purely for verification (see
verify_only) atransport is required to be defined by the generic transport option. If the preconditions
that are specified by generic options are met, the router accepts the address and queuesiit for the given
transport. The most common use of this router is for setting up deliveries to local mailboxes. For
example:

| ocal users:
driver = accept
domai ns = nydonai n. exanpl e
check_| ocal _user
transport = | ocal _delivery

The domains condition in this example checks the domain of the address, and check_local _user
checks that the local part is the login of alocal user. When both preconditions are met, the accept
router runs, and queues the address for the local_delivery transport.

193 The accept router (16)

17. The dnslookup router

The dndookup router looks up the hosts that handle mail for the recipient’s domain in the DNS. A
transport must always be set for thisrouter, unless verify_only is set.

If SRV support is configured (see check_srv below), Exim first searches for SRV records. If none are
found, or if SRV support is not configured, MX records are looked up. If no MX records exist,
address records are sought. However, mx_domains can be set to disable the direct use of address
records.

MX records of equal priority are sorted by Exim into a random order. Exim then looks for address
records for the host names obtained from MX or SRV records. When a host has more than one IP
address, they are sorted into a random order, except that |Pv6 addresses are always sorted before |Pv4
addresses. If al the IP addresses found are discarded by a setting of the ignore _target _hosts generic
option, the router declines.

Unless they have the highest priority (lowest MX value), MX records that point to the local host, or to
any host name that matches hosts treat_as local, are discarded, together with any other MX records
of equal or lower priority.

If the host pointed to by the highest priority M X record, or looked up as an address record, is the local
host, or matches hosts treat_as local, what happensis controlled by the generic self option.

17.1 Problems with DNS lookups

There have been problems with DNS servers when SRV records are looked up. Some mis-behaving
servers return a DNS error or timeout when a non-existent SRV record is sought. Similar problems
have in the past been reported for MX records. The global dns_again_means_nonexist option can
help with this problem, but it is heavy-handed because it is a global option.

For this reason, there are two options, srv_fail _domains and mx_fail _domains, that control what
happens when a DNS lookup in a dnslookup router resultsin a DNS failure or a“try again” response.
If an attempt to look up an SRV or MX record causes one of these results, and the domain matches the
relevant list, Exim behaves as if the DNS had responded “no such record”. In the case of an SRV
lookup, this means that the router proceeds to look for MX records; in the case of an MX lookup, it
proceeds to look for A or AAAA records, unless the domain matches mx_domains, in which case
routing fails.

17.2 Private options for dnslookup
The private options for the dnslookup router are as follows:

|check_secondary_mx Use: dnslookup Type: boolean Default: false|

If this option is set, the router declines unless the local host is found in (and removed from) the list of
hosts obtained by MX lookup. This can be used to process domains for which the loca host is a
secondary mail exchanger differently to other domains. The way in which Exim decides whether a
host isthe local host is described in section 13.8.

[check_srv Use: dnslookup Type: string? Default: unset|

The dnslookup router supports the use of SRV records (see RFC 2782) in addition to MX and
address records. The support is disabled by default. To enable SRV support, set the check _srv option
to the name of the service required. For example,

check_srv = sntp

looks for SRV records that refer to the normal smtp service. The option is expanded, so the service
name can vary from message to message or address to address. This might be helpful if SRV records
are being used for a submission service. If the expansion is forced to fail, the check_srv option is
ignored, and the router proceedsto look for MX records in the normal way.

194 The dnslookup router (17)

When the expansion succeeds, the router searches first for SRV records for the given service (it
assumes TCP protocol). A single SRV record with a host name that consists of just a single dot
indicates “no such service for thisdomain”; if thisis encountered, the router declines. If other kinds of
SRV record are found, they are used to construct a host list for delivery according to the rules of RFC
2782. MX records are not sought in this case.

When no SRV records are found, MX records (and address records) are sought in the traditional way.
In other words, SRV records take precedence over MX records, just as MX records take precedence
over address records. Note that this behaviour is not sanctioned by RFC 2782, though a previous draft
RFC defined it. It is apparently believed that MX records are sufficient for email and that SRV
records should not be used for this purpose. However, SRV records have an additional “weight”
feature which some people might find useful when trying to split an SMTP load between hosts of
different power.

See section 17.1 above for adiscussion of Exim'’'s behaviour when thereis a DNS lookup error.

|mx_domains Use dnslookup ~ Type: domain listt Default: unset|

A domain that matches mx_domains is required to have either an MX or an SRV record in order to
be recognised. (The name of this option could be improved.) For example, if all the mail hosts in
fict.example are known to have M X records, except for those in discworld.fict.example, you could use
this setting:

mK_domains = ! *.discworld.fict.exanple : *.fict.exanple

This specifies that messages addressed to a domain that matches the list but has no MX record should
be bounced immediately instead of being routed using the address record.

|mx_fail_domains Use: dndookup Type: domain listt Default: unset|

If the DNS lookup for MX records for one of the domains in this list causes a DNS lookup error,
Exim behaves asif no M X records were found. See section 17.1 for more discussion.

[qualify_single Use: dnslookup Type: boolean Defaullt: true|

When this option is true, the resolver option RES_DEFNAMES is set for DNS lookups. Typically,
but not standardly, this causes the resolver to qualify single-component names with the default
domain. For example, on a machine called dictionary.ref.example, the domain thesaurus would be
changed to thesaurus.ref.example inside the resolver. For details of what your resolver actually does,
consult your man pages for resolver and resolv.conf.

[rewrite_headers Use: dnslookup Type: boolean Defaullt: true|

If the domain name in the address that is being processed is not fully qualified, it may be expanded to
its full form by a DNS lookup. For example, if an address is specified as dormouse@teaparty, the
domain might be expanded to teaparty.wonderland.fict.example. Domain expansion can also occur as
a result of setting the widen_domains option. If rewrite_headers is true, al occurrences of the
abbreviated domain name in any Bcc:, Cc:, From:, Reply-to:, Sender:, and To: header lines of the
message are rewritten with the full domain name.

This option should be turned off only when it is known that no message is ever going to be sent
outside an environment where the abbreviation makes sense.

When an MX record is looked up in the DNS and matches a wildcard record, name servers normally
return arecord containing the name that has been looked up, making it impossible to detect whether a
wildcard was present or not. However, some name servers have recently been seen to return the
wildcard entry. If the name returned by a DNS lookup begins with an asterisk, it is not used for header
rewriting.

195 The dnslookup router (17)

|[same_domain_copy_routing Use: dnslookup Type: boolean Default: false|

Addresses with the same domain are normally routed by the dnslookup router to the same list of
hosts. However, this cannot be presumed, because the router options and preconditions may refer to
the local part of the address. By default, therefore, Exim routes each address in a message
independently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and in
any case, personal messages rarely have more than a few recipients.

If you are running mailing lists with large numbers of subscribers at the same domain, and you are
using a dnslookup router which is independent of the local part, you can set same_domain_copy_
routing to bypass repeated DNS lookups for identical domains in one message. In this case, when
dnslookup routes an address to a remote transport, any other unrouted addresses in the message that
have the same domain are automatically given the same routing without processing them
independently, provided the following conditions are met:

* No router that processed the address specified headers_add or headers_remove.

» Therouter did not change the address in any way, for example, by “widening” the domain.

|search_parents Use: dnslookup Type: boolean Default: false|

When this option is true, the resolver option RES_DNSRCH is set for DNS lookups. Thisis different
from the qualify_single option in that it applies to domains containing dots. Typically, but not
standardly, it causes the resolver to search for the name in the current domain and in parent domains.
For example, on a machine in the fict.example domain, if looking up teaparty.wonderland failed, the
resolver would try teaparty.wonderland.fict.example. For details of what your resolver actually does,
consult your man pages for resolver and resolv.conf.

Setting this option true can cause problems in domains that have a wildcard MX record, because any
domain that does not have its own MX record matches the local wildcard.

|srv_fail_domains Use: dndookup Type: domain listt Default: unset|

If the DNS lookup for SRV records for one of the domains in this list causes a DNS lookup error,
Exim behaves asif no SRV records were found. See section 17.1 for more discussion.

|widen_domains Use: dnslookup Type: string list Default: unset|

If a DNS lookup fails and this option is set, each of its strings in turn is added onto the end of the
domain, and the lookup is tried again. For example, if

wi den_domai ns = fict.exanpl e:ref.exanple

is set and alookup of klingon.dictionary fails, klingon.dictionary.fict.example is looked up, and if this
fails, klingon.dictionary.ref.example is tried. Note that the qualify_single and search_ parents
options can cause some widening to be undertaken inside the DNS resolver. widen_domains is not
applied to sender addresses when verifying, unlessrewrite_headersisfalse (not the default).

17.3 Effect of qualify_single and search_parents

When a domain from an envelope recipient is changed by the resolver as aresult of the qualify_single
or search_parents options, Exim rewrites the corresponding address in the message’s header lines
unlessrewrite headersis set false. Exim then re-routes the address, using the full domain.

These two options affect only the DNS lookup that takes place inside the router for the domain of the
address that is being routed. They do not affect lookups such as that implied by

domai ns = @mx_any

that may happen while processing a router precondition before the router is entered. No widening ever

196 The dnslookup router (17)

takes place for these lookups.

197 The dnslookup router (17)

18. The ipliteral router

This router has no private options. Unless it is being used purely for verification (see verify_only) a
transport is required to be defined by the generic transport option. The router accepts the address if
its domain part takes the form of an RFC 2822 domain literal. For example, the ipliteral router
handles the address

root @ 192. 168. 1. 1]

by setting up delivery to the host with that 1P address. IPv4 domain literals consist of an IPv4 address
enclosed in sgquare brackets. |Pv6 domain literals are similar, but the address is preceded by i pv6: .
For example:

postmaster @i pv6: f e80:: a00: 20f f: f e86: a061. 5678]

Exim alows i pv4: before IPv4 addresses, for consistency, and on the grounds that sooner or later
somebody will try it.

If the IP address matches something in ignore_target_hosts, the router declines. If an IP literal turns
out to refer to the local host, the generic self option determines what happens.

The RFCs require support for domain literals; however, their use is controversial in today’s Internet.
If you want to use this router, you must also set the main configuration option allow_domain_
literals. Otherwise, Exim will not recognize the domain literal syntax in addresses.

198 Theipliteral router (18)

19. The iplookup router

The iplookup router was written to fulfil a specific requirement in Cambridge University (which in
fact no longer exists). For this reason, it is not included in the binary of Exim by default. If you want
toincludeit, you must set

ROUTER_| PLOCKUP=yes
in your Local/Makefile configuration file.

The iplookup router routes an address by sending it over a TCP or UDP connection to one or more
specific hosts. The host can then return the same or a different address — in effect rewriting the
recipient address in the message’ s envelope. The new address is then passed on to subsequent routers.
If this process fails, the address can be passed on to other routers, or delivery can be deferred. Since
iplookup isjust arewriting router, atransport must not be specified for it.

[hosts Use: iplookup Type: string Default: unset|

This option must be supplied. Its value is a colon-separated list of host names. The hosts are looked
up using gethostbyname() (or getipnodebyname() when available) and are tried in order until one
responds to the query. If none respond, what happensis controlled by optional.

|optional Use: iplookup Type: boolean Default: false|

If optional istrue, if no response is obtained from any host, the address is passed to the next router,
overriding no_more. If optional isfalse, delivery to the addressis deferred.

[port Use: iplookup Type: integer Default: 0]

This option must be supplied. It specifies the port number for the TCP or UDP call.

|protocol Use: iplookup Type: string Default: udp|

This option can be set to “udp” or “tcp” to specify which of the two protocolsisto be used.

query Use: iplookup Type: stringt Default:
$l ocal _part @donai n
$l ocal _part @donmai n

This defines the content of the query that is sent to the remote hosts. The repetition serves as a way of
checking that a response isto the correct query in the default case (see response pattern below).

[reroute Use: iplookup Type: string? Default: unset|

If this option is not set, the rerouted address is precisely the byte string returned by the remote host, up
to the first white space, if any. If set, the string is expanded to form the rerouted address. It can
include parts matched in the response by response pattern by means of numeric variables such as
$1, $2, etc. The variable $0 refers to the entire input string, whether or not a pattern isin use. In all
cases, the rerouted address must end up in the form local_part@domain.

[response_pattern Use: iplookup Type: string Defauilt: unset|

This option can be set to a regular expression that is applied to the string returned from the remote
host. If the pattern does not match the response, the router declines. If response pattern is not set, no
checking of the response is done, unless the query was defaulted, in which case there is a check that
the text returned after the first white space is the original address. This checks that the answer that has

199 The iplookup router (19)

been received isin response to the correct question. For example, if the responseisjust a new domain,
the following could be used:

response_pattern = "N(["@+) $
reroute = $l ocal _part @1

[timeout Use: iplookup Type: time Default: 55|

This specifies the amount of time to wait for a response from the remote machine. The same timeout
is used for the connect() function for a TCP call. It does not apply to UDP.

200 The iplookup router (19)

20. The manualroute router

The manualroute router is so-called because it provides a way of manualy routing an address
according to its domain. It is mainly used when you want to route addresses to remote hosts according
to your own rules, bypassing the normal DNS routing that looks up MX records. However,
manualroute can aso route to local transports, a facility that may be useful if you want to save
messages for dial-in hostsin local files.

The manualroute router compares a list of domain patterns with the domain it is trying to route. If
there is no match, the router declines. Each pattern has associated with it alist of hosts and some other
optional data, which may include a transport. The combination of a pattern and its data is called a
“routing rule’. For patterns that do not have an associated transport, the generic transport option
must specify atransport, unless the router is being used purely for verification (see verify_only).

In the case of verification, matching the domain pattern is sufficient for the router to accept the
address. When actually routing an address for delivery, an address that matches a domain pattern is
queued for the associated transport. If the transport is not a local one, a host list must be associated
with the pattern; IP addresses are looked up for the hosts, and these are passed to the transport along
with the mail address. For local transports, a host list is optional. If it is present, it is passed in $host
as asingle text string.

The list of routing rules can be provided as an inline string in route_list, or the data can be obtained
by looking up the domain in a file or database by setting route_data. Only one of these settings may
appear in any one instance of manualroute. The format of routing rulesis described below, following
the list of private options.

20.1 Private options for manualroute
The private options for the manualr oute router are as follows:

[host_find_failed Use: manualroute Type: string Defaullt: freeze|

This option controls what happens when manualroute tries to find an |P address for a host, and the
host does not exist. The option can be set to one of

decl i ne
def er
fail
freeze
pass

The default assumes that this state is a serious configuration error. The difference between “pass’ and
“decling” is that the former forces the address to be passed to the next router (or the router defined by
pass_router), overriding no_more, whereas the latter passes the address to the next router only if
moreistrue.

This option applies only to a definite “does not exist” state; if a host lookup gets a temporary error,
delivery is deferred unless the generic pass_on_timeout option is set.

[hosts_randomize Use: manualroute Type: boolean Default: false|

If this option is set, the order of the itemsin a host list in arouting rule is randomized each time the
list is used, unless an option in the routing rule overrides (see below). Randomizing the order of a host
list can be used to do crude load sharing. However, if more than one mail address is routed by the
same router to the same host list, the host lists are considered to be the same (even though they may
be randomized into different orders) for the purpose of deciding whether to batch the deliveriesinto a
single SMTP transaction.

When hosts _randomize is true, a host list may be split into groups whose order is separately
randomized. This makes it possible to set up MX-like behaviour. The boundaries between groups are
indicated by an item that isjust + in the host list. For example:

201 The manualroute router (20)

route list = * host1l: host2: host 3: +: host 4: host 5

The order of the first three hosts and the order of the last two hosts is randomized for each use, but the
first three always end up before the last two. If hosts randomize is not set, a + item in the list is
ignored. If a randomized host list is passed to an smtp transport that also has hosts_randomize set,
the list is not re-randomized.

[route_data Use: manualroute Type: string? Default: unset|

If this option is set, it must expand to yield the data part of a routing rule. Typically, the expansion
string includes a lookup based on the domain. For example:

route_data = ${| ookup{$dorai n} dbn{/etc/routes}}

If the expansion is forced to fail, or the result is an empty string, the router declines. Other kinds of
expansion failure cause delivery to be deferred.

[route_list Use: manualroute Type: Defaullt: string]

This string is alist of routing rules, in the form defined below. Note that, unlike most string lists, the
items are separated by semicolons. Thisis so that they may contain colon-separated host lists.

|[same_domain_copy_routing Use: manualroute Type: boolean Default: false|

Addresses with the same domain are normally routed by the manualroute router to the same list of
hosts. However, this cannot be presumed, because the router options and preconditions may refer to
the local part of the address. By default, therefore, Exim routes each address in a message
independently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and in
any case, personal messages rarely have more than a few recipients.

If you are running mailing lists with large numbers of subscribers at the same domain, and you are
using a manualr oute router which is independent of the local part, you can set same_domain_copy_
routing to bypass repeated DNS lookups for identical domains in one message. In this case, when
manualroute routes an address to a remote transport, any other unrouted addresses in the message
that have the same domain are automatically given the same routing without processing them
independently. However, thisis only doneif headers add and headers remove are unset.

20.2 Routing rules in route_list

The value of route list is astring consisting of a sequence of routing rules, separated by semicolons.
If asemicolonisneeded in arule, it can be entered as two semicolons. Alternatively, the list separator
can be changed as described (for colon-separated lists) in section 6.19. Empty rules are ignored. The
format of each ruleis

<domain pattern> <list of hosts> <options>
The following example contains two rules, each with a simple domain pattern and no options:

route list =\
dict.ref.exanple mail-1l.ref.exanple:mil-2.ref.exanple ; \
thes.ref.exanmple nmil-3.ref.exanple:nail-4.ref.exanple

The three parts of arule are separated by white space. The pattern and the list of hosts can be enclosed
in quotes if necessary, and if they are, the usua quoting rules apply. Each rule in a route_list must
start with a single domain pattern, which is the only mandatory item in the rule. The pattern isin the
same format as one item in a domain list (see section 10.8), except that it may not be the name of an
interpolated file. That is, it may be wildcarded, or a regular expression, or a file or database lookup
(with semicolons doubled, because of the use of semicolon as a separator in aroute_list).

Therulesinroute_list are searched in order until one of the patterns matches the domain that is being
routed. The list of hosts and then options are then used as described below. If there is no match, the

202 The manualroute router (20)

router declines. When route list isset, route_data must not be set.

20.3 Routing rules in route_data

The use of route _list is convenient when there are only a small number of routing rules. For larger
numbers, it is easier to use afile or database to hold the routing information, and use the route_data
option instead. The value of route_data is a list of hosts, followed by (optional) options. Most
commonly, route _data is set as a string that contains an expansion lookup. For example, suppose we
place two routing rulesin afile like this:

dict.ref.exanple: mail-1.ref.exanple: mail
thes.ref.exanmple: mail-3.ref.exanpl e: mail

2.ref. exanpl e
4. ref.exanpl e

This data can be accessed by setting

route_data = ${| ookup{$domai n}| search{/the/fil e/ nane}}

Failure of the lookup results in an empty string, causing the router to decline. However, you do not
have to use alookup in route_data. The only requirement is that the result of expanding the string is
a list of hosts, possibly followed by options, separated by white space. The list of hosts must be
enclosed in quotesiif it contains white space.

20.4 Format of the list of hosts

A list of hosts, whether obtained viaroute data or route list, is dways separately expanded before
use. If the expansion fails, the router declines. The result of the expansion must be a colon-separated
list of names and/or | P addresses, optionally also including ports. The format of each itemin thelistis
described in the next section. The list separator can be changed as described in section 6.19.

If the list of hosts was obtained from a route_list item, the following variables are set during its
expansion:

* If the domain was matched against a regular expression, the numeric variables $1, $2, etc. may be
set. For example:

route_|list = ~domain(\d+) host - $1. t ext . exanpl e
e $0isaways set to the entire domain.
» $1isalso set when partial matching is donein afile lookup.

« If the pattern that matched the domain was a lookup item, the data that was looked up is available
in the expansion variable $value. For example:

route list = Isearch;;/sone/file.routes $val ue

Note the doubling of the semicolon in the pattern that is necessary because semicolon is the default
route list separator.

20.5 Format of one host item

Each item in the list of hosts is either a host name or an IP address, optionally with an attached port
number. When no port is given, an IP address is not enclosed in brackets. When a port is specified, it
overrides the port specification on the transport. The port is separated from the name or address by a
colon. This leads to some complications:

» Because colon is the default separator for the list of hosts, either the colon that specifies a port must
be doubled, or the list separator must be changed. The following two examples have the same
effect:

* "hostl1l.tld::1225 : host2.tld::1226"
* "<+ hostl.tld: 1225 + host2.tld: 1226"

route |ist
route |ist

» When IPv6 addresses are involved, it gets worse, because they contain colons of their own. To
make this case easier, it is permitted to enclose an |P address (either v4 or v6) in square brackets if

203 The manualroute router (20)

aport number follows. For example:
route_list =* "</ [10.1.1.1]:1225 / [::1]:1226"

20.6 How the list of hosts is used

When an address is routed to an smtp transport by manualroute, each of the hosts is tried, in the
order specified, when carrying out the SMTP delivery. However, the order can be changed by setting
the hosts_randomize option, either on the router (see section 20.1 above), or on the transport.

Hosts may be listed by name or by IP address. An unadorned namein the list of hostsisinterpreted as
a host name. A name that is followed by / MX is interpreted as an indirection to a sublist of hosts
obtained by looking up M X recordsin the DNS. For example:

route list =* x.y.z:p.g.r/Me.f.g
If this feature is used with a port specifier, the port must come last. For example:

route list = * donl.tld/ nk::1225

If the hosts_randomize option is set, the order of the items in the list is randomized before any
lookups are done. Exim then scans the list; for any name that is not followed by / MX it looks up an IP
address. If this turns out to be an interface on the local host and the item is not the first in the list,
Exim discards it and any subsequent items. If it isthe first item, what happens is controlled by the self
option of the router.

A name on the list that is followed by / MX is replaced with the list of hosts obtained by looking up
MX records for the name. Thisis always a DNS lookup; the bydns and byname options (see section
20.7 below) are not relevant here. The order of these hosts is determined by the preference values in
the MX records, according to the usual rules. Because randomizing happens before the MX lookup, it
does not affect the order that is defined by MX preferences.

If the local host is present in the sublist obtained from MX records, but is not the most preferred host
inthat list, it and any equally or less preferred hosts are removed before the sublist is inserted into the
main list.

If the local host is the most preferred host in the MX list, what happens depends on where in the
origina list of hosts the/ MX item appears. If it is not the first item (that is, there are previous hostsin
the main list), Exim discards this name and any subsequent itemsin the main list.

If the MX itemisfirst in the list of hosts, and the local host is the most preferred host, what happensis
controlled by the self option of the router.

DNS failures when lookup up the MX records are treated in the same way as DNS failures when
looking up IP addresses: pass_on_timeout and host_find_failed are used when relevant.

The generic ignore_target_hosts option applies to all hosts in the list, whether obtained from an MX
lookup or not.

20.7 How the options are used

The options are a sequence of words; in practice no more than three are ever present. One of the
words can be the name of a transport; this overrides the transport option on the router for this
particular routing rule only. The other words (if present) control randomization of the list of hosts on a
per-rule basis, and how the IP addresses of the hosts are to be found when routing to a remote
transport. These options are as follows:

» randomize: randomize the order of the hosts in thislist, overriding the setting of hosts randomize
for thisrouting rule only.

* no_randomize: do not randomize the order of the hosts in thislist, overriding the setting of hosts
randomize for this routing rule only.

* byname: use getipnodebyname() (gethostbyname() on older systems) to find IP addresses. This

204 The manualroute router (20)

function may ultimately cause a DNS lookup, but it may also ook in /etc/hosts or other sources of
information.

» bydns: look up address records for the hosts directly in the DNS; fail if no address records are
found. If there is atemporary DNS error (such as atimeout), delivery is deferred.

For example:

route_list = domainl host1:host2:host3 random ze bydns;\
domai n2 host 4: host 5

If neither byname nor bydnsis given, Exim behaves as follows: First, a DNS lookup is done. If this
yields anything other than HOST_NOT_FOUND, that result is used. Otherwise, Exim goeson to try a
call to getipnodebyname() or gethostbyname(), and the result of the lookup is the result of that call.

Warning: It has been discovered that on some systems, if a DNS lookup called via
getipnodebyname() times out, HOST_NOT_FOUND is returned instead of TRY_AGAIN. That is
why the default action isto try a DNS lookup first. Only if that gives a definite “no such host” is the
local function called.

If no IP address for a host can be found, what happens is controlled by the host_find_failed option.

When an address is routed to a local transport, |P addresses are not looked up. The host list is passed
to the transport in the $host variable.

20.8 Manualroute examples

In some of the examples that follow, the presence of the remote_smtp transport, as defined in the
default configuration file, is assumed:

» The manualroute router can be used to forward all external mail to a smart host. If you have set
up, in the main part of the configuration, a named domain list that contains your local domains, for
example:

domai nli st | ocal _domai ns = ny. domai n. exanpl e

You can arrange for al other domains to be routed to a smart host by making your first router
something like this:

smart_route:
driver = manual route
domai ns = !+l ocal _donai ns
transport = renote_sntp
route list = * smarthost.ref. exanpl e

This causes all non-local addresses to be sent to the single host smarthost.ref.example. If a
colon-separated list of smart hosts is given, they are tried in order (but you can use hosts_
randomizeto vary the order each time). Another way of configuring the same thing isthis:

smart_route:
driver = manual route
transport = renote_sntp
route |ist = !+l ocal _donmains smarthost.ref.exanple

There is no difference in behaviour between these two routers as they stand. However, they behave
differently if no_more is added to them. In the first example, the router is skipped if the domain
does not match the domains precondition; the following router is always tried. If the router runs, it
always matches the domain and so can never decline. Therefore, no_mor e would have no effect. In
the second case, the router is never skipped; it always runs. However, if it doesn't match the
domain, it declines. In this case no_mor e would prevent subsequent routers from running.

* A mail hub is a host which receives mail for a number of domains viaMX records in the DNS and
deliversit viaits own private routing mechanism. Often the final destinations are behind a firewall,
with the mail hub being the one machine that can connect to machines both inside and outside the

205 The manualroute router (20)

firewall. The manualroute router is usually used on a mail hub to route incoming messages to the
correct hosts. For a small number of domains, the routing can be inline, using the route_list option,
but for alarger number afile or database |ookup is easier to manage.

If the domain names are in fact the names of the machines to which the mail is to be sent by the
mail hub, the configuration can be quite simple. For example:

hub_route:
driver = manual route
transport = renote_sntp
route_list = *.rhodes.tvs.exanple $domain

This configuration routes domains that match *. r hodes. t vs. exanpl e to hosts whose names
are the same as the mail domains. A similar approach can be taken if the host name can be obtained
from the domain name by a string manipulation that the expansion facilities can handle. Otherwise,
alookup based on the domain can be used to find the host:

through firewall:
driver = manual route
transport = renote_sntp
route_data = ${1 ookup {$dommi n} cdb {/internal/host/routes}}

The result of the lookup must be the name or |P address of the host (or hosts) to which the address
is to be routed. If the lookup fails, the route data is empty, causing the router to decline. The
address then passes to the next router.

You can use manualroute to deliver messages to pipes or files in batched SMTP format for
onward transportation by some other means. This is one way of storing mail for adial-up host when
it is not connected. The route list entry can be as simple as a single domain name in a configuration
like this:

save_in_file:
driver = manual route
transport = batchsntp_appendfile
route |ist = saved. donai n. exanpl e

though often a pattern is used to pick up more than one domain. If there are several domains or
groups of domains with different transport requirements, different transports can be listed in the
routing information:

save_in_file:
driver = manual route
route list =\
*. saved. domai nl. exanpl e $domain batch_appendfile; \
* saved. domai n2. exanple \
${| ookup{ $domai n} don{/ domai n2/ host s} {$val ue}fail} \
bat ch_pi pe

The first of these just passes the domain in the $host variable, which doesn’t achieve much (since it
is also in $domain), but the second does a file lookup to find a value to pass, causing the router to
decline to handle the address if the lookup fails.

Routing mail directly to UUCP software is a specific case of the use of manualroute in a gateway
to another mail environment. Thisis an example of one way it can be done:

Transport
uucp:
driver = pipe
user = nobody
conmmand = /usr/local /bin/uux -r - \
${substr_-5:8%host}!rmail ${local part}
return_fail _output = true

Router
uucphost:

206 The manualroute router (20)

transport = uucp
driver = manual route
route data =\
${| ookup{ $dormi n} | search{/ usr/ | ocal / exi ml uucphost s}}

The file /usr/local/exim/uucphosts contains entries like
darksi te. et hereal . exanpl e: dar ksi t e. UUCP

It can be set up more simply without adding and removing “.UUCP” but this way makes clear the
distinction between the domain name darksite.ether eal .exampl e and the UUCP host name darksite.

207 The manualroute router (20)

21. The queryprogram router

The queryprogram router routes an address by running an external command and acting on its
output. Thisis an expensive way to route, and is intended mainly for use in lightly-loaded systems, or
for performing experiments. However, if it is possible to use the precondition options (domains,
local_parts, etc) to skip this router for most addresses, it could sensibly be used in special cases, even
on abusy host. There are the following private options:

|[command Use: queryprogram Type: stringt Default: unset|

This option must be set. It specifies the command that is to be run. The command is split up into a
command name and arguments, and then each is expanded separately (exactly as for a pipe transport,
described in chapter 29).

|[command_group Use: queryprogram Type: string Default: unset|

This option specifies a gid to be set when running the command while routing an address for deliver.
It must be set if command_user specifies a numerical uid. If it begins with adigit, it isinterpreted as
the numerical value of the gid. Otherwise it islooked up using getgrnam).

|[command_user Use: queryprogram Type: string Default: unset|

This option must be set. It specifies the uid which is set when running the command while routing an
address for delivery. If the value begins with a digit, it isinterpreted as the numerical value of the uid.
Otherwise, it is looked up using getpwnam() to obtain a value for the uid and, if command_group is
not set, avalue for the gid also.

Warning: Changing uid and gid is possible only when Exim is running as root, which it does during a
normal delivery in a conventional configuration. However, when an address is being verified during
message reception, Exim is usually running as the Exim user, not as raot. If the queryprogram router
is caled from a non-root process, Exim cannot change uid or gid before running the command. In this
circumstance the command runs under the current uid and gid.

lcurrent_directory Use: queryprogram Type: string Defaullt: /|

This option specifies an absolute path which is made the current directory before running the
command.

[timeout Use: queryprogram Type: time Default: 1h|

If the command does not complete within the timeout period, its process group is killed and the
message is frozen. A value of zero time specifies no timeout.

The standard output of the command is connected to a pipe, which is read when the command
terminates. It should consist of a single line of output, containing up to five fields, separated by white
space. The maximum length of the line is 1023 characters. Longer lines are silently truncated. The
first field is one of the following words (case-insensitive):

» Accept: routing succeeded; the remaining fields specify what to do (see below).
» Decline: the router declines; pass the address to the next router, unlessno_moreis set.

* Fail: routing failed; do not pass the address to any more routers. Any subsequent text on thelineis
an error message. If the router is run as part of address verification during an incoming SMTP
message, the message isincluded in the SMTP response.

» Defer: routing could not be completed at this time; try again later. Any subsequent text on the line
isan error message which islogged. It is not included in any SMTP response.

208 The queryprogram router (21)

* Freeze: the same as defer, except that the message is frozen.

» Pass: pass the address to the next router (or the router specified by pass_router), overriding no_
more.

» Redirect: the message is redirected. The remainder of the line is alist of new addresses, which are
routed independently, starting with the first router, or the router specified by redirect_router, if
Set.

When the first word is accept, the remainder of the line consists of a number of keyed data values, as
follows (split into two lines here, to fit on the page):

ACCEPT TRANSPORT=<transport> HOSTS=<Iist of hosts>
LOOKUP=bynane| bydns DATA=<t ext >

The data items can be given in any order, and al are optional. If no transport is included, the transport
specified by the generic transport option is used. The list of hosts and the lookup type are needed
only if the transport is an smtp transport that does not itself supply alist of hosts.

The format of the list of hosts is the same as for the manualroute router. As well as host names and
I P addresses with optional port numbers, as described in section 20.5, it may contain names followed
by / MX to specify sublists of hosts that are obtained by looking up MX records (see section 20.6).

If the lookup type is not specified, Exim behaves as follows when trying to find an | P address for each
host: First, a DNS lookup is done. If this yields anything other than HOST_NOT_FOUND, that result
is used. Otherwise, Exim goesonto try acall to getipnodebyname() or gethostbyname(), and the result
of the lookup is the result of that call.

If the DATA field is set, its value is placed in the $address_data variable. For example, this return
line

accept hosts=x1.y.exanpl e: x2.y. exanpl e data="rul el"

routes the address to the default transport, passing a list of two hosts. When the transport runs, the
string “rulel” isin $address_data.

209 The queryprogram router (21)

22. The redirect router

The redirect router handles several kinds of address redirection. Its most common uses are for
resolving local part aliases from a central aliasfile (usually called /etc/aliases) and for handling users
personal .forward files, but it has many other potential uses. The incoming address can be redirected
in several different ways:

* |t can be replaced by one or more new addresses which are themselves routed independently.
* It can berouted to be delivered to a given file or directory.

* It can be routed to be delivered to a specified pipe command.

* It can cause an automatic reply to be generated.

* It can be forced to fail, with a custom error message.

* It can be temporarily deferred.

* It can be discarded.

The generic transport option must not be set for redirect routers. However, there are some private
options which define transports for delivery to files and pipes, and for generating autoreplies. See the
file_transport, pipe_transport and reply_transport descriptions below.

22.1 Redirection data

The router operates by interpreting a text string which it obtains either by expanding the contents of
the data option, or by reading the entire contents of a file whose name is given in the file option.
These two options are mutually exclusive. The first is commonly used for handling system aliases, in
aconfiguration like this:

system al i ases:
driver = redirect
data = ${| ookup{$l ocal part}lsearch{/etc/aliases}}

If the lookup fails, the expanded string in this example is empty. When the expansion of data results
in an empty string, the router declines. A forced expansion failure also causes the router to decline;
other expansion failures cause delivery to be deferred.

A configuration using file is commonly used for handling users' .forward files, like this:

user f orwar d:
driver = redirect
check_| ocal _user
file = $hone/.forward
no_verify

If the file does not exist, or causes no action to be taken (for example, it is empty or consists only of
comments), the router declines. Warning: This is not the case when the file contains syntactically
valid items that happen to yield empty addresses, for example, items containing only RFC 2822
address comments.

22.2 Forward files and address verification

It is usual to set no_verify on redirect routers which handle users .forward files, as in the example
above. There are two reasons for this:

* When Exim is receiving an incoming SMTP message from a remote host, it is running under the
Exim uid, not as root. Exim is unable to change uid to read the file as the user, and it may not be
abletoread it asthe Exim user. So in practice the router may not be able to operate.

» However, even when the router can operate, the existence of a .forward file is unimportant when
verifying an address. What should be checked is whether the local part is avalid user name or not.

210 Theredirect router (22)

Cutting out the redirection processing saves some resources.

22.3 Interpreting redirection data

The contents of the data string, whether obtained from data or file, can be interpreted in two different
ways:

 If the allow_filter option is set true, and the data begins with the text “#Exim filter” or “#Sieve
filter”, it isinterpreted as a list of filtering instructions in the form of an Exim or Sieve filter file,
respectively. Details of the syntax and semantics of filter files are described in a separate document
entitled Exim’ sinterfaces to mail filtering; this document is intended for use by end users.

» Otherwise, the data must be a comma-separated list of redirection items, as described in the next
section.

When amessage is redirected to afile (a“mail folder”), the file name given in a non-filter redirection
list must always be an absolute path. A filter may generate a relative path — how this is handled
depends on the transport’s configuration. See section 26.1 for a discussion of this issue for the
appendfile transport.

22.4 ltems in a non-filter redirection list

When the redirection datais not an Exim or Sieve filter, for example, if it comes from a conventional
dias or forward file, it consists of alist of addresses, file names, pipe commands, or certain specia
items (see section 22.6 below). The special items can be individually enabled or disabled by means of
options whose names begin with allow_or forbid_, depending on their default values. The items in
the list are separated by commas or newlines. If acomma is required in an item, the entire item must
be enclosed in double quotes.

Lines starting with a # character are comments, and are ignored, and # may also appear following a
comma, in which case everything between the # and the next newline character isignored.

If an item is entirely enclosed in double quotes, these are removed. Otherwise double quotes are
retained because some forms of mail address require their use (but never to enclose the entire
address). In the following description, “item” refers to what remains after any surrounding double
guotes have been removed.

Warning: If you use an Exim expansion to construct a redirection address, and the expansion
contains areference to $local _part, you should make use of the quote _local_part expansion operator,
in case the local part contains specia characters. For example, to redirect all mail for the domain
obsolete.example, retaining the existing local part, you could use this setting:

data = ${quote_l ocal _part: $l ocal _part} @ewdonai n. exanpl e

22.5 Redirecting to a local mailbox

A redirection item may safely be the same as the address currently under consideration. This does not
cause a routing loop, because a router is automatically skipped if any ancestor of the address that is
being processed is the same as the current address and was processed by the current router. Such an
address is therefore passed to the following routers, so it is handled as if there were no redirection.
When making this loop-avoidance test, the complete local part, including any prefix or suffix, is used.

Specifying the same local part without a domain is a common usage in personal filter files when the
user wants to have messages delivered to the loca mailbox and also forwarded elsewhere. For
example, the user whose login is cleo might have a .forward file containing this:

cl eo, cl eopatra@gypt. exanpl e

For compatibility with other MTAS, such unqualified local parts may be preceeded by “\", but thisis
not a requirement for loop prevention. However, it does make a difference if more than one domain is
being handled synonymously.

If an item begins with “\” and the rest of the item parses as a valid RFC 2822 address that does not
include a domain, the item is qualified using the domain of the incoming address. In the absence of a

211 Theredirect router (22)

leading “\”, unqualified addresses are qualified using the value in qualify_recipient, but you can
force the incoming domain to be used by setting qualify_preserve_domain.

Care must be taken if there are alias names for local users. Consider an MTA handling a single local
domain where the system alias file contains:

Sam Reman: spqr

Now suppose that Sam (whose login id is spgr) wantsto save copies of messages in the local mailbox,
and also forward copies elsewhere. He creates this forward file:

Sam Reman, spqgr @ ene. el sewher e. exanpl e

With these settings, an incoming message addressed to Sam.Reman fails. The redirect router for
system aliases does not process Sam.Reman the second time round, because it has previously routed
it, and the following routers presumably cannot handle the alias. The forward file should realy
contain

spqr, spgr @ ene. el sewher e. exanpl e

but because this is such a common error, the check_ancestor option (see below) exists to provide a
way to get round it. Thisis normally set on aredirect router that is handling users’ .forward files.

22.6 Special items in redirection lists

In addition to addresses, the following types of item may appear in redirection lists (that is, in
non-filter redirection data):

* Anitem istreated as a pipe command if it begins with “|” and does not parse as a valid RFC 2822
address that includes a domain. A transport for running the command must be specified by the
pipe_transport option. Normally, either the router or the transport specifies a user and a group
under which to run the delivery. The default isto use the Exim user and group.

Single or double gquotes can be used for enclosing the individual arguments of the pipe command;
no interpretation of escapesis done for single quotes. If the command contains a comma character,
it is necessary to put the whole item in double quotes, for example:

"|/some/ conmand r eady, st eady, go"

since items in redirection lists are terminated by commas. Do not, however, quote just the
command. Anitem such as

| "/ some/ command ready, st eady, go"
isinterpreted as a pipe with arather strange command name, and no arguments.

» Anitemisinterpreted as a path name if it begins with “/” and does not parse as avalid RFC 2822
address that includes a domain. For example,

/ hone/ wor | d/ m nbari

istreated as a file name, but

/ s=nol ari / o=babyl on/ @400gat e. way

is treated as an address. For a file name, a transport must be specified using the file_transport
option. However, if the generated path name ends with aforward slash character, it is interpreted as
adirectory name rather than afile name, and directory_transport is used instead.

Normally, either the router or the transport specifies a user and a group under which to run the
delivery. The default isto use the Exim user and group.

However, if aredirection item isthe path /devinull, delivery to it is bypassed at a high level, and the
log entry shows “**bypassed**” instead of a transport name. In this case the user and group are not
used.

212 Theredirect router (22)

e |f anitemisof theform

;i nclude: <pat h nane>

alist of further items is taken from the given file and included at that point. Note: Such afile can
not be a filter file; it is just an out-of-line addition to the list. The items in the included list are
separated by commas or newlines and are not subject to expansion. If this is the first item in an
alias list in an Isearch file, a colon must be used to terminate the alias name. This example is
incorrect:

listl cinclude:/opt/lists/listl

It must be given as

listl: cinclude:/opt/lists/listl

» Sometimes you want to throw away mail to a particular local part. Making the data option expand
to an empty string does not work, because that causes the router to decline. Instead, the alias item

: bl ackhol e:

can be used. It does what its name implies. No delivery is done, and no error message is generated.
This has the same effect as specifing /dev/null, but can be independently disabled.

Warning: If : bl ackhol e: appears anywhere in a redirection list, no delivery is done for the
original local part, even if other redirection items are present. If you are generating a multi-item list
(for example, by reading a database) and need the ability to provide a no-op item, you must use
/devinull.

» An attempt to deliver a particular address can be deferred or forced to fail by redirection items of
the form

sdefer:
cfail:

respectively. When a redirection list contains such an item, it applies to the entire redirection; any
other items in the list are ignored (:blackhole: is different). Any text following :fail: or :defer: is
placed in the error text associated with the failure. For example, an alias file might contain:

X. Enpl oyee: :fail: Gone away, no forwardi ng address

In the case of an address that is being verified from an ACL or as the subject of aVRFY command,
the text isincluded in the SMTP error response by default. The text is not included in the response
to an EXPN command. In non-SMTP cases the text is included in the error message that Exim
generates.

By default, Exim sends a 451 SMTP code for a:defer:, and 550 for :fail:. However, if the message
starts with three digits followed by a space, optionally followed by an extended code of the form
n.n.n, also followed by a space, and the very first digit is the same as the default error code, the
code from the message is used instead. If the very first digit isincorrect, a panic error islogged, and
the default code is used. You can suppress the use of the supplied code in a redirect router by
setting the forbid_smtp_code option true. In this case, any SMTP code is quietly ignored.

In an ACL, an explicitly provided message overrides the default, but the default message is
available in the variable $acl_verify_message and can therefore be included in a custom message if
thisisdesired.

Normally the error text is the rest of the redirection list — a comma does not terminate it — but a
newline does act as a terminator. Newlines are not normally present in alias expansions. In Isearch
lookups they are removed as part of the continuation process, but they may exist in other kinds of
lookup and in :include; files.

During routing for message delivery (as opposed to verification), a redirection containing :fail:
causes an immediate failure of the incoming address, whereas :defer: causes the message to remain

213 Theredirect router (22)

on the queue so that a subsequent delivery attempt can happen at a later time. If an address is
deferred for too long, it will ultimately fail, because the normal retry rules still apply.

» Sometimes it is useful to use a single-key search type with a default (see chapter 9) to look up
aliases. However, there may be a need for exceptions to the default. These can be handled by
aliasing them to

:unknown:

This differs from :fail: in that it causes the redirect router to decline, whereas :fail: forces routing
tofail. A lookup which resultsin an empty redirection list has the same effect.

22.7 Duplicate addresses

Exim removes duplicate addresses from the list to which it is delivering, so as to deliver just one copy
to each address. This does not apply to deliveries routed to pipes by different immediate parent
addresses, but an indirect aliasing scheme of the type

pi pe: | / sone/ command $l ocal _part
| ocal part1l: pipe
| ocal part2: pipe

does not work with a message that is addressed to both local parts, because when the second is aliased
to the intermediate local part “pipe’ it gets discarded as being the same as a previousy handled
address. However, a scheme such as

| ocal part1l: |/some/commuand $| ocal _part
| ocal part2: |/sonme/ command $l ocal _part

does result in two different pipe deliveries, because the immediate parents of the pipes are distinct.

22.8 Repeated redirection expansion

When a message cannot be delivered to al of its recipients immediately, leading to two or more
delivery attempts, redirection expansion is carried out afresh each time for those addresses whose
children were not al previoudly delivered. If redirection is being used as amailing list, this can lead to
new members of the list receiving copies of old messages. The one_time option can be used to avoid
this.

22.9 Errors in redirection lists

If skip_syntax_errorsis set, a maformed address that causes a parsing error is skipped, and an entry
is written to the main log. This may be useful for mailing lists that are automatically managed.
Otherwise, if an error is detected while generating the list of new addresses, the original address is
deferred. See also syntax_errors to.

22.10 Private options for the redirect router
The private options for the redir ect router are as follows:

|allow_defer Use: redirect Type: boolean Default: false|

Setting this option allows the use of :defer: in non-filter redirection data, or the defer command in an
Exim filter file.

lallow_fail Use: redirect Type: boolean Default: false|

If this option is true, the :fail: item can be used in a redirection list, and the fail command may be
used in an Exim filter file.

[allow_filter Use: redirect Type: boolean Default: false|

214 Theredirect router (22)

Setting this option allows Exim to interpret redirection data that starts with “#Exim filter” or “#Sieve
filter” as a set of filtering instructions. There are some features of Exim filter files that some
administrators may wish to lock out; seethe forbid_filter xxx options below.

It is aso possible to lock out Exim filters or Sieve filters while allowing the other type; see forbid_
exim_filter and forbid_sieve filter.

The filter is run using the uid and gid set by the generic user and group options. These take their
defaults from the password data if check _local _user is set, so in the normal case of users personal
filter files, the filter is run as the relevant user. When allow_filter is set true, Exim insists that either
check _local_user or user is set.

|allow_freeze Use: redirect Type: boolean Default: false|

Setting this option allows the use of the freeze command in an Exim filter. This command is more
normally encountered in system filters, and is disabled by default for redirection filters because it isn't
something you usually want to let ordinary users do.

|check_ancestor Use: redirect Type: boolean Default: false|

This option is concerned with handling generated addresses that are the same as some address in the
list of redirection ancestors of the current address. Although it is turned off by default in the code, itis
set in the default configuration file for handling users' .forward files. It is recommended for this use
of theredirect router.

When check _ancestor is set, if a generated address (including the domain) is the same as any
ancestor of the current address, it is replaced by a copy of the current address. This helps in the case
where local part A isaliased to B, and B has a .forward file pointing back to A. For example, within a
single domain, the local part “Joe.Bloggs’ isaliased to “jb” and jb/.forward contains:

\ Joe. Bl oggs, <other iten(s)>

Without the check _ancestor setting, either local part (“jb” or “joe.bloggs’) gets processed once by
each router and so ends up as it was originaly. If “jb” is the real mailbox name, mail to “jb” gets
delivered (having been turned into “joe.bloggs’ by the .forward file and back to “jb” by the alias), but
mail to “joe.bloggs’ fails. Setting check_ancestor on the redirect router that handles the .forward file
prevents it from turning “jb” back into “joe.bloggs’ when that was the original address. See also the
repeat_use option below.

[check_group Use: redirect Type: boolean Default: see below|

When the file option is used, the group owner of the file is checked only when this option is set. The
permitted groups are those listed in the owngroups option, together with the user’s default group if
check_local_user is set. If the file has the wrong group, routing is deferred. The default setting for
thisoption istrueif check _local _user is set and the modemask option permits the group write bit, or
if the owngroups option is set. Otherwiseiit is false, and no group check occurs.

|check_owner Use: redirect Type: boolean Default: see below|

When the file option is used, the owner of the file is checked only when this option is set. If check_
local_user is set, the local user is permitted; otherwise the owner must be one of those listed in the
owners option. The default value for this option is true if check local user or owners is set.
Otherwise the default is false, and no owner check occurs.

|data Use: redirect Type: stringt Default: unset|

This option is mutually exclusive with file. One or other of them must be set, but not both. The
contents of data are expanded, and then used as the list of forwarding items, or as a set of filtering

215 Theredirect router (22)

instructions. If the expansion is forced to fail, or the result is an empty string or a string that has no
effect (consists entirely of comments), the router declines.

When filtering instructions are used, the string must begin with “#Exim filter”, and all comments in
the string, including thisinitial one, must be terminated with newline characters. For example:

data = #Eximfilter\n\
if $h_to: contains Exi mthen save $hone/ mail/exi mendif

If you are reading the data from a database where newlines cannot be included, you can use the ${sg}
expansion item to turn the escape string of your choice into anewline.

[directory_transport Use: redirect Type: stringt Default: unset|

A redirect router sets up a direct delivery to a directory when a path name ending with a dash is
specified as a new “address’. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport. This should normally be an appendfile transport.

[file Use: redirect Type: stringt Default: unset|

This option specifies the name of afile that contains the redirection data. It is mutually exclusive with
the data option. The string is expanded before use; if the expansion is forced to fail, the router
declines. Other expansion failures cause delivery to be deferred. The result of a successful expansion
must be an absolute path. The entire file is read and used as the redirection data. If the data is an
empty string or a string that has no effect (consists entirely of comments), the router declines.

If the attempt to open the file fails with a“does not exist” error, Exim runs a check on the containing
directory, unlessignore_enotdir istrue (see below). If the directory does not appear to exist, delivery
is deferred. This can happen when users' .forward files are in NFS-mounted directories, and thereisa
mount problem. If the containing directory does exist, but the file does not, the router declines.

[file_transport Use: redirect Type: string?t Default: unset|

A redirect router sets up adirect delivery to a file when a path name not ending in adlash is specified
asanew “address’. The transport used is specified by this option, which, after expansion, must be the
name of a configured transport. This should normally be an appendfile transport. When it is running,
thefile nameisin $address file.

[filter_prepend_home Use: redirect Type: boolean Defaullt: true|

When this option is true, if a save command in an Exim filter specifies a relative path, and $home is
defined, it is automatically prepended to the relative path. If this option is set false, this action does
not happen. The relative path is then passed to the transport unmodified.

[forbid_blackhole Use: redirect Type: boolean Default: false|

If this option istrue, the :blackhole: item may not appear in aredirection list.

[forbid_exim_filter Use: redirect Type: boolean Default: false|

If this option is set true, only Sieve filters are permitted when allow_filter istrue.

[forbid_file Use: redirect Type: boolean Defaullt: false|

If this option is true, this router may not generate a new address that specifies delivery to alocal file
or directory, either from afilter or from a conventional forward file. This option is forced to be true if
one_timeisset. It appliesto Sievefilters as well as to Exim filters, but if true, it locks out the Sieve's
“keep” facility.

216 Theredirect router (22)

[forbid_filter _dlfunc Use: redirect Type: boolean Default: false|

If this option is true, string expansions in Exim filters are not allowed to make use of the dlfunc
expansion facility to run dynamically loaded functions.

[forbid_filter_existstest Use: redirect Type: boolean Default: false|

If this option is true, string expansions in Exim filters are not allowed to make use of the exists
condition or the stat expansion item.

[forbid_filter _logwrite Use: redirect Type: boolean Defaullt: false|

If this option is true, use of the logging facility in Exim filtersis not permitted. Logging isin any case
available only if the filter is being run under some unprivileged uid (which is normally the case for
ordinary users .forward files).

[forbid_filter _lookup Use: redirect Type: boolean Defaullt: false|

I this option is true, string expansions in Exim filter files are not alowed to make use of lookup
items.

[forbid_filter_perl Use: redirect Type: boolean Default: false|

This option has an effect only if Exim is built with embedded Perl support. If it is true, string
expansionsin Exim filter files are not allowed to make use of the embedded Perl support.

[forbid_filter_readfile Use: redirect Type: boolean Defaullt: false|

If this option is true, string expansions in Exim filter files are not allowed to make use of readfile
items.

[forbid_filter_readsocket Use: redirect Type: boolean Default: false|

If this option is true, string expansions in Exim filter files are not allowed to make use of readsocket
items.

[forbid_filter_reply Use: redirect Type: boolean Default: false|

If this option is true, this router may not generate an automatic reply message. Automatic replies can
be generated only from Exim or Sieve filter files, not from traditional forward files. This option is
forced to be trueif one_timeis set.

[forbid_filter_run Use: redirect Type: boolean Default: false|

If thisoption istrue, string expansions in Exim filter files are not allowed to make use of run items.

[forbid_include Use: redirect Type: boolean Default: false|

If this option istrue, items of the form

;i nclude: <pat h nane>

are not permitted in non-filter redirection lists.

217 Theredirect router (22)

[forbid_pipe Use: redirect Type: boolean Defaullt: false|

If this option is true, this router may not generate a new address which specifies delivery to a pipe,
either from an Exim filter or from a conventional forward file. This option is forced to be true if one
timeis set.

[forbid_sieve filter Use: redirect Type: boolean Defaullt: false|

If this option is set true, only Exim filters are permitted when allow_filter istrue.

[forbid_smtp_code Use: redirect Type: boolean Default: false|

If this option is set true, any SMTP error codes that are present at the start of messages specified for
cdefer: or:fail: are quietly ignored, and the default codes (451 and 550, respectively) are
always used.

[hide_child_in_errmsg Use: redirect Type: boolean Default: false|

If this option is true, it prevents Exim from quoting a child address if it generates a bounce or delay
message for it. Instead it says “an address generated from <the top level address>". Of course, this
applies only to bounces generated locally. If a message is forwarded to another host, its bounce may
well quote the generated address.

lignore_eacces Use: redirect Type: boolean Default: false|

If this option is set and an attempt to open a redirection file yields the EACCES error (permission
denied), the redir ect router behaves asif the file did not exist.

lignore_enotdir Use: redirect Type: boolean Default: false|

If this option is set and an attempt to open a redirection file yields the ENOTDIR error (something on
the path is not a directory), the redir ect router behaves asif the file did not exist.

Setting ignore_enotdir has another effect as well: When aredirect router that has the file option set
discovers that the file does not exist (the ENOENT error), it tries to stat() the parent directory, as a
check against unmounted NFS directories. If the parent can not be statted, delivery is deferred.
However, it seems wrong to do this check when ignore_enotdir is set, because that option tells Exim
to ignore “something on the path is not a directory” (the ENOTDIR error). This is a confusing area,
because it seems that some operating systems give ENOENT where others give ENOTDIR.

linclude_directory Use: redirect Type: string Defaullt: unset|

If this option is set, the path names of any :include: items in a redirection list must start with this
directory.

|modemask Use: redirect Type: octal integer Default: 022

This specifies mode bits which must not be set for a file specified by the file option. If any of the
forbidden bits are set, delivery is deferred.

lone_time Use: redirect Type: boolean Default: false|

Sometimes the fact that Exim re-eval uates aliases and reprocesses redirection files each time it tries to
deliver a message causes a problem when one or more of the generated addresses fails be delivered at
the first attempt. The problem is not one of duplicate delivery — Exim is clever enough to handle that
— but of what happens when the redirection list changes during the time that the message is on Exim’'s

218 Theredirect router (22)

gueue. This is particularly true in the case of mailing lists, where new subscribers might receive
copies of messages that were posted before they subscribed.

If one_time is set and any addresses generated by the router fail to deliver at the first attempt, the
failing addresses are added to the message as “top level” addresses, and the parent address that
generated them is marked “delivered”. Thus, redirection does not happen again at the next delivery
attempt.

Warning 1: Any header line addition or removal that is specified by this router would be lost if
delivery did not succeed at the first attempt. For this reason, the headers add and headers remove
generic options are not permitted when one_timeis set.

Warning 2: To ensure that the router generates only addresses (as opposed to pipe or file deliveries or
auto-replies) forbid_file, forbid_pipe, and forbid_filter_reply are forced to be true when one_time
iSset.

Warning 3: The unseen generic router option may not be set with one_time.
The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a

difference to the log only if all_parentslog selector is set. It is expected that one_time will typically
be used for mailing lists, where there is normally just one level of expansion.

lowners Use: redirect Type: string list Default: unset|

This specifies a list of permitted owners for the file specified by file. This list is in addition to the
local user when check _local _user is set. See check _owner above.

[owngroups Use: redirect Type: string list Default: unset|

This specifies alist of permitted groups for the file specified by file. Thelist is in addition to the local
user’s primary group when check_local_user is set. See check _group above.

|pipe_transport Use: redirect Type: string? Default: unset|

A redirect router sets up a direct delivery to a pipe when a string starting with a vertical bar character
is specified as a new “address’. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport. This should normally be a pipe transport. When the
transport is run, the pipe command isin $address pipe.

[qualify_domain Use: redirect Type: string? Default: unset|

If this option is set, and an unqualified address (one without a domain) is generated, and that address
would normally be qualified by the global setting in qualify_recipient, it isinstead qualified with the
domain specified by expanding this string. If the expansion fails, the router declines. If you want to
revert to the default, you can have the expansion generate $qualify_recipient.

This option applies to all unqualified addresses generated by Exim filters, but for traditional .forward
files, it applies only to addresses that are not preceded by a backslash. Sieve filters cannot generate
unqualified addresses.

[qualify_preserve domain Use: redirect Type: boolean Defaullt: false|

If this option is set, the router’s local qualify _domain option must not be set (a configuration error
occurs if it is). If an unqualified address (one without a domain) is generated, it is qualified with the
domain of the parent address (the immediately preceding ancestor) instead of the global qualify_
recipient value. In the case of a traditional .forward file, this applies whether or not the address is
preceded by a backsash.

219 Theredirect router (22)

[repeat_use Use: redirect Type: boolean Defaullt: true|

If thisoption is set false, the router is skipped for a child address that has any ancestor that was routed
by this router. This test happens before any of the other preconditions are tested. Exim's default
anti-looping rules skip only when the ancestor is the same as the current address. See also check_
ancestor above and the generic redirect_router option.

[reply_transport Use: redirect Type: string? Default: unset|

A redirect router sets up an automatic reply when amail or vacation command is used in afilter file.
The transport used is specified by this option, which, after expansion, must be the name of a
configured transport. This should normally be an autor eply transport. Other transports are unlikely to
do anything sensible or useful.

[rewrite Use: redirect Type: boolean Defaullt: true|

If this option is set false, addresses generated by the router are not subject to address rewriting.
Otherwise, they are treated like new addresses and are rewritten according to the global rewriting
rules.

|sieve_subaddress Use: redirect Type: string Default: unset|

The value of thisoption is passed to a Sieve filter to specify the :subaddress part of an address.

|sieve_useraddress Use: redirect Type: stringt Default: unset|

The value of thisoption is passed to a Sieve filter to specify the :user part of an address. However, if it
isunset, the entire original local part (including any prefix or suffix) is used for ;user.

|sieve_vacation_directory Use: redirect Type: string? Default: unset|

To enable the “vacation” extension for Sieve filters, you must set sieve_vacation_directory to the
directory where vacation databases are held (do not put anything else in that directory), and ensure
that the reply_transport option refers to an autor eply transport. Each user needs their own directory;
Exim will createit if necessary.

[skip_syntax_errors Use: redirect Type: boolean Defaullt: false|

If skip_syntax_errors is set, syntactically malformed addresses in non-filter redirection data are
skipped, and each failing address is logged. If syntax_errors to is set, a message is sent to the
address it defines, giving details of the failures. If syntax_errors_text is set, its contents are expanded
and placed at the head of the error message generated by syntax_errors_to. Usually it is appropriate
to set syntax_errors_to to be the same address as the generic errors_to option. The skip_syntax_
errorsoption is often used when handling mailing lists.

If al the addresses in a redirection list are skipped because of syntax errors, the router declines to
handle the original address, and it is passed to the following routers.

If skip_syntax_errorsis set when an Exim filter is interpreted, any syntax error in the filter causes
filtering to be abandoned without any action being taken. The incident is logged, and the router
declines to handle the address, so it is passed to the following routers.

Syntax errors in a Sieve filter file cause the “keep” action to occur. This action is specified by RFC
3028. The values of skip_syntax_errors, syntax_errors_to, and syntax_errors_text are not used.

skip_syntax_errors can be used to specify that errorsin users’ forward lists or filter files should not
prevent delivery. The syntax_errors_to option, used with an address that does not get redirected, can
be used to notify users of these errors, by means of arouter like this:

220 Theredirect router (22)

user f orwar d:
driver = redirect
allow filter
check | ocal user
file = $hone/.forward
file_transport = address_file
pi pe_transport = address_pi pe

reply transport = address_reply

no_verify
ski p_syntax_errors

syntax_errors_to = real - $l ocal _part @donai n

syntax_errors_text =\

This is an automatically generated nessage. An error has\n\

been found in your .forward file.

Details of the error are\n\

reported below. While this error persists, you will receive\n\
a copy of this nmessage for every nessage that is addressed\n\
to you. If your .forward file is a filter file, or if it is\n\
a non-filter file containing no valid forwarding addresses, \n\
a copy of each incoming nessage will be put in your normal\n\
mai | box. If a non-filter file contains at |east one valid\n\
forwardi ng address, forwarding to the valid addresses wl|\n\
happen, and those will be the only deliveries that occur.

You also need a router to ensure that local addresses that are prefixed by r eal - are recognized, but
not forwarded or filtered. For example, you could put this immediately before the userforward

router:

real | ocal user:
driver = accept
check | ocal _user
| ocal _part_prefix = real -

transport = | ocal _delivery
[syntax_errors_text Use: redirect Type: stringt Default: unset|
See skip_syntax_errorsabove.
[syntax_errors _to Use: redirect Type: string Default: unset|
See skip_syntax_errorsabove.
221 Theredirect router (22)

23. Environment for running local transports

Local transports handle deliveries to files and pipes. (The autoreply transport can be thought of as
similar to a pipe.) Exim aways runs transports in subprocesses, under specified uids and gids. Typical
deliveriesto local mailboxes run under the uid and gid of the local user.

Exim also sets a specific current directory while running the transport; for some transports a home
directory setting is aso relevant. The pipe transport is the only one that sets up environment variables;
see section 29.4 for details.

The values used for the uid, gid, and the directories may come from several different places. In many
cases, the router that handles the address associates settings with that address as a result of its check
local_user, group, or user options. However, values may also be given in the transport’s own
configuration, and these override anything that comes from the router.

23.1 Concurrent deliveries

If two different messages for the same local recpient arrive more or less simultaneously, the two
delivery processes are likely to run concurrently. When the appendfile transport is used to write to a
file, Exim applies locking rules to stop concurrent processes from writing to the same file at the same
time.

However, when you use a pipe transport, it is up to you to arrange any locking that is needed. Hereis
asilly example:

my_transport:
driver = pipe
command = /bin/sh -c 'cat >>/sonme/file'

This is supposed to write the message at the end of the file. However, if two messages arrive at the
same time, the file will be scrambled. Y ou can use the exim_lock utility program (see section 50.15)
to lock afile using the same algorithm that Exim itself uses.

23.2 Uids and gids

All transports have the options group and user. If group is set, it overrides any group that the router
set in the address, even if user is not set for the transport. This makes it possible, for example, to run
local mail delivery under the uid of the recipient (set by the router), but in a special group (set by the
transport). For example:

Routers ...
User/group are set by check |ocal _user in this router
| ocal _users:

driver = accept

check_| ocal _user

transport = group_delivery

Transports ...
This transport overrides the group
group_delivery:
driver = appendfile
file = /var/spool/nail/$l ocal part
group = mail

If user is set for a transport, its value overrides what is set in the address by the router. If user is
non-numeric and group is not set, the gid associated with the user is used. If user is numeric, group
must be set.

When the uid is taken from the transport’s configuration, the initgroups() function is called for the
groups associated with that uid if the initgroups option is set for the transport. When the uid is not
specified by the transport, but is associated with the address by a router, the option for calling
initgroups() is taken from the router configuration.

The pipe transport contains the specia option pipe_as creator. If thisis set and user is not set, the

222 Environment for local transports (23)

uid of the process that called Exim to receive the message is used, and if group is not set, the
corresponding original gid is also used.

Thisisthe detailed preference order for obtaining a gid; the first of the following that is set is used:
* A group setting of the transport;
» A group setting of the router;

* A gid associated with a user setting of the router, either as a result of check_local_user or an
explicit non-numeric user setting;

» The group associated with a non-numeric user setting of the transport;
» Inapipetransport, the creator’ s gid if deliver_as creator is set and the uid isthe creator’ s uid;
e The Exim gid if the Exim uid is being used as a defaullt.

If, for example, the user is specified numerically on the router and there are no group settings, no gid
isavailable. In this situation, an error occurs. Thisis different for the uid, for which there alwaysis an
ultimate default. The first of the following that is set is used:

e A user setting of the transport;

* Inapipetransport, the creator’ s uid if deliver_as creator is set;

» A user setting of the router;

» A check_local_user setting of the router;

* The Exim uid.

Of course, an error will still occur if the uid that is chosen is on the never_userslist.

23.3 Current and home directories

Routers may set current and home directories for local transports by means of the transport_
current_directory and transport_home_directory options. However, if the transport’s current_
directory or home_directory options are set, they override the router’s values. In detail, the home
directory for alocal transport is taken from the first of these valuesthat is set:

» Thehome_directory option on the transport;

e Thetransport_home_directory option on the router;

» The password dataif check _local _user is set on the router;

» Therouter_home directory option on the router.

The current directory is taken from the first of these values that is set:
» Thecurrent_directory option on the transport;

» Thetransport_current_directory option on the router.

If neither the router nor the transport sets a current directory, Exim uses the value of the home
directory, if it is set. Otherwise it sets the current directory to / before running alocal transport.

23.4 Expansion variables derived from the address

Normally alocal delivery is handling a single address, and in that case the variables such as $domain
and $local_part are set during local deliveries. However, in some circumstances more than one
address may be handled at once (for example, while writing batch SMTP for onward transmission by
some other means). In this case, the variables associated with the local part are never set, $domain is
set only if all the addresses have the same domain, and $original_domain is never set.

223 Environment for local transports (23)

24. Generic options for transports

The following generic options apply to all transports:

|body_only Use: transports Type: boolean Default: false|

If this option is set, the message’ s headers are not transported. It is mutually exclusive with headers
only. If it is used with the appendfile or pipe transports, the settings of message prefix and
message_suffix should be checked, because this option does not automatically suppress them.

|current_directory Use: transports Type: stringt Default: unset|

This specifies the current directory that is to be set while running the transport, overriding any value
that may have been set by the router. If the expansion fails for any reason, including forced failure, an
error islogged, and delivery is deferred.

|disable_logging Use: transports Type: boolean Default: false|

If this option is set true, nothing is logged for any ddiveries by the transport or for any transport
errors. You should not set this option unless you really, really know what you are doing.

|debug_print Use: transports Type: stringt Default: unset|

If this option is set and debugging is enabled (see the -d command line option), the string is expanded
and included in the debugging output when the transport is run. If expansion of the string fails, the
error message is written to the debugging output, and Exim carries on processing. This facility is
provided to help with checking out the values of variables and so on when debugging driver
configurations. For example, if a headers_add option is not working properly, debug_print could be
used to output the variables it references. A newline is added to the text if it does not end with one.

|delivery_date_add Use: transports Type: boolean Default: false|

If this option is true, a Delivery-date: header is added to the message. This gives the actual time the
delivery was made. Asthisis not a standard header, Exim has a configuration option (delivery_date
remove) which requests its removal from incoming messages, so that delivered messages can safely
be resent to other recipients.

[driver Use: transports Type: string Default: unset|

This specifies which of the available transport drivers is to be used. There is no default, and this
option must be set for every transport.

|envelope_to_add Use: transports Type: boolean Default: false|

If this option is true, an Envelope-to: header is added to the message. This gives the original
address(es) in the incoming envel ope that caused this delivery to happen. More than one address may
be present if the transport is configured to handle several addresses at once, or if more than one
original address was redirected to the same final address. Asthisis not a standard header, Exim has a
configuration option (envelope_to_remove) which requests its removal from incoming messages, so
that delivered messages can safely be resent to other recipients.

[group Use: transports Type: stringt Default: Exim group|

This option specifies a gid for running the transport process, overriding any value that the router
supplies, and also overriding any value associated with user (see below).

224 Generic options for transports (24)

[headers_add Use: transports Type: string? Default: unset|

This option specifies a string of text that is expanded and added to the header portion of a message as
it is transported, as described in section 44.17. Additional header lines can aso be specified by
routers. If the result of the expansion is an empty string, or if the expansion is forced to fail, no action
is taken. Other expansion failures are treated as errors and cause the delivery to be deferred.

|headers only Use: transports Type: boolean Default: false|

If this option is set, the message’ s body is not transported. It is mutually exclusive with body_only. If
it is used with the appendfile or pipe transports, the settings of message prefix and message _suffix
should be checked, since this option does not automatically suppress them.

|headers remove Use: transports Type: stringt Default: unset|

This option specifies a string that is expanded into a list of header names; these headers are omitted
from the message as it is transported, as described in section 44.17. Header remova can aso be
specified by routers. If the result of the expansion is an empty string, or if the expansion is forced to
fail, no action is taken. Other expansion failures are treated as errors and cause the delivery to be
deferred.

|headers rewrite Use: transports Type: string Default: unset|

This option alows addresses in header lines to be rewritten at transport time, that is, as the messageis
being copied to its destination. The contents of the option are a colon-separated list of rewriting rules.
Each rule is in exactly the same form as one of the general rewriting rules that are applied when a
message is received. These are described in chapter 31. For example,

headers rewite = a@ c@ f : \
X@ wa

changes a@b into c@d in From: header lines, and x@y into w@z in al address-bearing header lines.
The rules are applied to the header lines just before they are written out at transport time, so they
affect only those copies of the message that pass through the transport. However, only the message's
original header lines, and any that were added by a system filter, are rewritten. If arouter or transport
adds header lines, they are not affected by this option. These rewriting rules are not applied to the
envelope. You can change the return path using return_ path, but you cannot change envelope
recipients at thistime.

|[home_directory Use: transports Type: string? Defauilt: unset|

This option specifies a home directory setting for a local transport, overriding any value that may be
set by the router. The home directory is placed in $home while expanding the transport’s private
options. It is also used as the current directory if no current directory is set by the current_directory
option on the transport or the transport_current_directory option on the router. If the expansion
fails for any reason, including forced failure, an error islogged, and delivery is deferred.

[initgroups Use: transports Type: boolean Default: false|

If this option is true and the uid for the delivery process is provided by the transport, the initgroups()
function is called when running the transport to ensure that any additional groups associated with the
uid are set up.

|message_size limit Use: transports Type: string? Default: 0|

This option controls the size of messages passed through the transport. It is expanded before use; the
result of the expansion must be a sequence of decimal digits, optionally followed by K or M. If the

225 Generic options for transports (24)

expansion fails for any reason, including forced failure, or if the result is not of the required form,
delivery is deferred. If the value is greater than zero and the size of a message exceeds this limit, the
addressisfailed. If there is any chance that the resulting bounce message could be routed to the same
transport, you should ensure that return_size limit isless than the transport’s message size limit, as
otherwise the bounce message will fail to get delivered.

[rept_include_affixes Use: transports Type: boolean Default: false|

When this option is false (the default), and an address that has had any affixes (prefixes or suffixes)
removed from the local part is delivered by any form of SMTP or LM TP, the affixes are not included.
For example, if arouter that contains

| ocal _part_prefix = *-

routes the address abc-xyz@some.domain to an SMTP transport, the envelopeis delivered with
RCPT TO <xyz@one. domai n>

This is also the case when an ACL-time callout is being used to verify a recipient address. However,
if rept_include_affixes is set true, the whole local part is included in the RCPT command. This
option applies to BSMTP deliveries by the appendfile and pipe transports as well as to the Imtp and
smtp transports.

[retry_use local_part Use: transports Type: boolean Default: see below]|

When a delivery suffers a temporary failure, a retry record is created in Exim’s hints database. For
remote deliveries, the key for the retry record is based on the name and/or IP address of the failing
remote host. For local deliveries, the key is normally the entire address, including both the local part
and the domain. This is suitable for most common cases of loca delivery temporary failure — for
example, exceeding a mailbox quota should delay only deliveries to that mailbox, not to the whole
domain.

However, in some special cases you may want to treat a temporary local delivery as a failure
associated with the domain, and not with a particular local part. (For example, if you are storing all
mail for some domain in files.) You can do this by setting retry_use local_part false.

For al the local transports, its default value is true. For remote transports, the default value is false for
tidiness, but changing the value has no effect on a remote transport in the current implementation.

[return_path Use: transports Type: string? Default: unset|

If this option is set, the string is expanded at transport time and replaces the existing return path
(envelope sender) value in the copy of the message that is being delivered. An empty return path is
permitted. This feature is designed for remote deliveries, where the value of this option is used in the
SMTP MAIL command. If you set return_path for alocal transport, the only effect is to change the
address that is placed in the Return-path: header line, if one is added to the message (see the next
option).

Note: A changed return path is not logged unless you add return_path_on_delivery to the log
selector.

The expansion can refer to the existing value via $return_path. Thisis either the message’'s envelope
sender, or an address set by the errors_to option on a router. If the expansion is forced to fail, no
replacement occurs; if it fails for another reason, delivery is deferred. This option can be used to
support VERP (Variable Envelope Return Paths) — see section 47.6.

Note: If adelivery error is detected locally, including the case when a remote server rejects a message
a SMTP time, the bounce message is not sent to the value of this option. It is sent to the previously
set errors address. This defaults to the incoming sender address, but can be changed by setting
errors_toinarouter.

226 Generic options for transports (24)

[return_path_add Use: transports Type: boolean Default: false|

If this option is true, a Return-path: header is added to the message. Although the return path is
normally available in the prefix line of BSD mailboxes, this is commonly not displayed by MUAS,
and so the user does not have easy accessto it.

RFC 2821 states that the Return-path: header is added to a message “when the delivery SMTP server
makes the final delivery”. This implies that this header should not be present in incoming messages.
Exim has a configuration option, return_path_remove, which requests removal of this header from
incoming messages, so that delivered messages can safely be resent to other recipients.

[shadow_condition Use: transports Type: stringt Default: unset|

See shadow_transport below.

|shadow_transport Use: transports Type: string Default: unset|

A local transport may set the shadow_transport option to the name of another local transport.
Shadow remote transports are not supported.

Whenever a delivery to the main transport succeeds, and either shadow_condition is unset, or its
expansion does not result in the empty string or one of the strings “0” or “no” or “false”, the message
is also passed to the shadow transport, with the same delivery address or addresses. If expansion fails,
no action is taken except that non-forced expansion failures cause alog line to be written.

The result of the shadow transport is discarded and does not affect the subsequent processing of the
message. Only a single level of shadowing is provided; the shadow_transport option is ignored on
any transport when it is running as a shadow. Options concerned with output from pipes are also
ignored. The log line for the successful delivery has an item added on the end, of the form

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards. Shadow
transports can be used for a number of different purposes, including keeping more detailed log
information than Exim normally provides, and implementing automatic acknowledgement policies
based on message headers that some sitesinsist on.

[transport_filter Use: transports Type: stringt Default: unset|

This option sets up a filtering (in the Unix shell sense) process for messages at transport time. It
should not be confused with mail filtering as set up by individual users or via a system filter.

When the message is about to be written out, the command specified by transport_filter is started up
in a separate, parallel process, and the entire message, including the header lines, is passed to it on its
standard input (this in fact is done from a third process, to avoid deadlock). The command must be
specified as an absol ute path.

The lines of the message that are written to the transport filter are terminated by newline (“\n"). The
message is passed to the filter before any SMTP-specific processing, such as turning “\n” into “\r\n”
and escaping lines beginning with a dot, and also before any processing implied by the settings of
check_string and escape_string in the appendfile or pipe transports.

The standard error for the filter processis set to the same destination as its standard output; thisis read
and written to the message’ s ultimate destination. The process that writes the message to the filter, the
filter itself, and the original process that reads the result and delivers it are al run in paralel, like a
shell pipeline.

The filter can perform any transformations it likes, but of course should take care not to break RFC
2822 syntax. A demonstration Perl script is provided in util/transport-filter.pl; this makes a few
arbitrary modifications just to show the possibilities. Exim does not check the result, except to test for

227 Generic options for transports (24)

afinal newline when SMTPisin use. All messages transmitted over SMTP must end with a newline,
so Exim supplies oneif it ismissing.

A transport filter can be used to provide content-scanning on a per-user basis at delivery time if the
only required effect of the scan is to modify the message. For example, a content scan could insert a
new header line containing a spam score. This could be interpreted by afilter in the user’s MUA. It is
not possible to discard a message at this stage.

A problem might arise if the filter increases the size of a message that is being sent down an SMTP
connection. If the receiving SMTP server has indicated support for the SIZE parameter, Exim will
have sent the size of the message at the start of the SMTP session. If what is actualy sent is
substantially more, the server might reject the message. This can be worked round by setting the size
addition option on the smtp transport, either to allow for additions to the message, or to disable the
use of SIZE altogether.

The value of the transport_filter option is the command string for starting the filter, which is run
directly from Exim, not under a shell. The string is parsed by Exim in the same way as a command
string for the pipe transport: Exim breaks it up into arguments and then expands each argument
separately (see section 29.3). Any kind of expansion failure causes delivery to be deferred. The
special argument $pipe_addresses is replaced by a number of arguments, one for each address that
applies to this delivery. (This isn't an ideal name for this feature here, but as it was aready
implemented for the pipe transport, it seemed sensible not to change it.)

The expansion variables $host and $host_address are available when the transport is a remote one.
They contain the name and | P address of the host to which the message is being sent. For example:

transport filter = /sone/directory/transport-filter.pl \
$host $host _address $sender _address $pi pe_addresses

Two problems arise if you want to use more complicated expansion items to generate transport filter
commands, both of which due to the fact that the command is split up before expansion.

» If an expansion item contains white space, you must quote it, so that it is all part of the same
command item. If the entire option setting is one such expansion item, you have to take care what
kind of quoting you use. For example:

transport_filter = '/bin/cmd${if eq{$host}{a.b.c}{1}{2}}"

This runs the command /bin/cmd1 if the host name is a.b.c, and /bin/cmd?2 otherwise. If double
guotes had been used, they would have been stripped by Exim when it read the option’s value.
When the value is used, if the single quotes were missing, the line would be split into two items,
/bin/cmd${if andeq{$host}{a.b.c}{1}{2}, andan error would occur when Exim tried
to expand the first one.

» Except for the special case of $pipe_addresses that is mentioned above, an expansion cannot
generate multiple arguments, or acommand name followed by arguments. Consider this example:

transport_filter = ${| ookup{$host}Ilsearch{/sonme/file}\
{$val ue}{/bin/cat}}

The result of the lookup is interpreted as the name of the command, even if it contains white space.
The simplest way round thisis to use a shell:

transport _filter = /bin/sh -c ${l ookup{$host}lsearch{/sone/file}\
{$val ue}{/bin/cat}}

The filter processis run under the same uid and gid as the normal delivery. For remote deliveries this
is the Exim uid/gid by default. The command should normally yield a zero return code. Transport
filters are not supposed to fail. A non-zero code is taken to mean that the transport filter encountered
some serious problem. Delivery of the message is deferred; the message remains on the queue and is
tried again later. It is not possible to cause a message to be bounced from atransport filter.

If atransport filter is set on an autoreply transport, the original message is passed through the filter as
it is being copied into the newly generated message, which happens if the return_message option is

228 Generic options for transports (24)

set.

[transport_filter _timeout Use: transports Type: time Default: 5m|

When Exim is reading the output of a transport filter, it a applies a timeout that can be set by this
option. Exceeding the timeout is normally treated as a temporary delivery failure. However, if a
transport filter is used with a pipe transport, a timeout in the transport filter is treated in the same way
as a timeout in the pipe command itself. By default, a timeout is a hard error, but if the pipe
transport’ s timeout_defer option is set true, it becomes atemporary error.

[user Use: transports Type: string Default: Exim user |

This option specifies the user under whose uid the delivery process is to be run, overriding any uid
that may have been set by the router. If the user is given as a name, the uid is looked up from the
password data, and the associated group is taken as the value of the gid to be used if the group option
isnot set.

For deliveries that use local transports, a user and group are normally specified explicitly or implicitly
(for example, asaresult of check_local_user) by the router or transport.

For remote transports, you should leave this option unset unless you really are sure you know what
you are doing. When a remote transport is running, it needs to be able to access Exim's hints
databases, because each host may have its own retry data.

229 Generic options for transports (24)

25. Address batching in local transports

The only remote transport (smtp) is normally configured to handle more than one address at a time,
so that when several addresses are routed to the same remote host, just one copy of the message is
sent. Local transports, however, normally handle one address at atime. That is, a separate instance of
the transport is run for each address that is routed to the transport. A separate copy of the message is
delivered each time.

In special cases, it may be desirable to handle several addresses at once in a local transport, for
example:

 |n an appendfile transport, when storing messages in files for later delivery by some other means, a
single copy of the message with multiple recipients saves space.

* In an Imtp transport, when delivering over “loca SMTP” to some process, a single copy saves
time, and is the normal way LM TP is expected to work.

* In a pipe transport, when passing the message to a scanner program or to some other delivery
mechanism such as UUCP, multiple recipients may be acceptable.

These three local transports al have the same options for controlling multiple (“batched”) deliveries,
namely batch_max and batch_id. To save repeating the information for each transport, these options
are described here.

The batch_max option specifies the maximum number of addresses that can be delivered together in
a single run of the transport. Its default value is one (no batching). When more than one address is
routed to a transport that has a batch_max value greater than one, the addresses are delivered in a
batch (that is, in asingle run of the transport with multiple recipients), subject to certain conditions:

« If any of the transport’s options contain areference to $local_part, no batching is possible.

» If any of the transport’s options contain a reference to $domain, only addresses with the same
domain are batched.

o If batch_id isset, it is expanded for each address, and only those addresses with the same expanded
value are batched. This alows you to specify customized batching conditions. Failure of the
expansion for any reason, including forced failure, disables batching, but it does not stop the
delivery from taking place.

» Batched addresses must also have the same errors address (where to send delivery errors), the same
header additions and removals, the same user and group for the transport, and if a host list is
present, the first host must be the same.

In the case of the appendfile and pipe transports, batching applies both when the file or pipe
command is specified in the transport, and when it is specified by a redirect router, but al the
batched addresses must of course be routed to the same file or pipe command. These two transports
have an option called use _bsmtp, which causes them to deliver the message in “batched SMTP’
format, with the envelope represented as SMTP commands. The check _string and escape_string
options are forced to the values

n n

check_string =
escape_string = "..

n

when batched SMTP isin use. A full description of the batch SMTP mechanism is given in section
45.10. The Imtp transport does not have a use_bsmtp option, because it always delivers using the
SMTP protocol.

If the generic envelope_to_add option is set for a batching transport, the Envelope-to: header that is
added to the message contains all the addresses that are being processed together. If you are using a
batching appendfile transport without use_bsmtp, the only way to preserve the recipient addressesis
to set the envelope to_add option.

If you are using a pipe transport without BSMTP, and setting the transport’s command option, you

230 Address batching (25)

can include $pipe_addresses as part of the command. This is not a true variable; it is a bit of magic
that causes each of the recipient addresses to be inserted into the command as a separate argument.
This provides away of accessing all the addresses that are being delivered in the batch. Note: Thisis
not possible for pipe commands that are specififed by aredirect router.

231 Address batching (25)

26. The appendfile transport

The appendfile transport delivers a message by appending it to an existing file, or by creating an
entirely new file in a specified directory. Single files to which messages are appended can be in the
traditional Unix mailbox format, or optionally in the MBX format supported by the Pine MUA and
University of Washington IMAP daemon, inter alia. When each message is being delivered as a
separate file, “maildir” format can optionally be used to give added protection against failures that
happen part-way through the delivery. A third form of separate-file delivery known as “mailstore” is
also supported. For al file formats, Exim attempts to create as many levels of directory as necessary,
provided that create directory is set.

The code for the optiona formats is not included in the Exim binary by default. It is necessary to set
SUPPORT_MBX, SUPPORT_MAILDIR and/or SUPPORT_MAILSTORE in Local/Makefile to have
the appropriate code included.

Exim recognises system quota errors, and generates an appropriate message. Exim also supports its
own quota control within the transport, for use when the system facility is unavailable or cannot be
used for some reason.

If there is an error while appending to a file (for example, quota exceeded or partition filled), Exim
attempts to reset the file's length and last modification time back to what they were before. If thereis
an error while creating an entirely new file, the new fileis removed.

Before appending to a file, a number of security checks are made, and the file is locked. A detailed
description is given below, after the list of private options.

The appendfile transport is most commonly used for local deliveriesto users mailboxes. However, it
can also be used as a pseudo-remote transport for putting messages into files for remote delivery by
some means other than Exim. “Batch SMTP” format is often used in this case (see the use_bsmtp
option).

26.1 The file and directory options

The file option specifies a single file, to which the message is appended; the directory option
specifies a directory, in which a new file containing the message is created. Only one of these two
options can be set, and for normal deliveriesto mailboxes, one of them must be set.

However, appendfile is aso used for delivering messages to files or directories whose names (or
parts of names) are obtained from alias, forwarding, or filtering operations (for example, a save
command in a user's Exim filter). When such a transport is running, $local _part contains the local
part that was aliased or forwarded, and $address_file contains the name (or partial name) of the file or
directory generated by the redirection operation. There are two cases:

« |If neither file nor directory is set, the redirection operation must specify an absolute path (one that
begins with /). This is the most common case when users with local accounts use filtering to sort
mail into different folders. See for example, the address file transport in the default configuration.
If the path ends with a slash, it is assumed to be the name of a directory. A delivery to a directory
can also be forced by setting maildir_format or mailstore_format.

» If file or directory is set for a delivery from a redirection, it is used to determine the file or
directory name for the delivery. Normally, the contents of $address file are used in some way in
the string expansion.

As an example of the second case, consider an environment where users do not have home directories.
They may be permitted to use Exim filter commands of the form:

save fol der23

or Sieve filter commands of the form:

require "fileinto";
fileinto "fol der23";

232 The appendfile transport (26)

In this situation, the expansion of file or directory in the transport must transform the relative path
into an appropriate absolute file name. In the case of Sieve filters, the name inbox must be handled. It
is the name that is used as a result of a “keep” action in the filter. This example shows one way of
handling this requirement:

file = ${if eq{$address_file}{inbox} \
{/var/mail/$local part} \
{${if eq{P${substr_0_1:%address file}}{/} \
{$address_file} \
1 {$home/ mai | / $address_file} \
}

With this setting of file, inbox refers to the standard mailbox location, absolute paths are used without
change, and other folders are in the mail directory within the home directory.

Note 1: While processing an Exim filter, a relative path such as folder23 is turned into an absolute
path if a home directory is known to the router. In particular, this is the case if check_local _user is
set. If you want to prevent this happening at routing time, you can set router_home_directory empty.
Thisforces the router to pass the relative path to the transport.

Note 2: An absolute path in $address file is not treated specialy; the file or directory option is still
used if it is set.

26.2 Private options for appendfile

lallow_fifo Use: appendfile Type: boolean Default: false|

Setting this option permits delivery to named pipes (FIFOs) as well as to regular files. If no processis
reading the named pipe at delivery time, the delivery is deferred.

lallow_symlink Use: appendfile Type: boolean Default: false|

By default, appendfile will not deliver if the path name for the file is that of a symbolic link. Setting
this option relaxes that constraint, but there are security issues involved in the use of symbolic links.
Be sure you know what you are doing if you set this. Details of exactly what this option affects are
included in the discussion which follows this list of options.

|batch_id Use: appendfile Type: string? Default: unset|

See the description of local delivery batching in chapter 25. However, batching is automatically
disabled for appendfile deliveries that happen as aresult of forwarding or aliasing or other redirection
directly to afile.

[batch_max Use: appendfile Type: integer Default: 1]

See the description of local delivery batching in chapter 25.

[check_group Use: appendfile Type: boolean Default: false|

When this option is set, the group owner of the file defined by the file option is checked to see that it
is the same as the group under which the delivery process is running. The default setting is false
because the default file mode is 0600, which means that the group isirrelevant.

[check_owner Use: appendfile Type: boolean Defallt: true|

When this option is set, the owner of the file defined by the file option is checked to ensure that it is
the same as the user under which the delivery processis running.

233 The appendfile transport (26)

[check_string Use: appendfile Type: string Default: see below|

As appendfile writes the message, the start of each line is tested for matching check_string, and if it
does, the initial matching characters are replaced by the contents of escape string. The value of
check_string is a literal string, not a regular expression, and the case of any letters it contains is
significant.

If use bsmtp is set the values of check string and escape_string are forced to “.” and “..”
respectively, and any settings in the configuration are ignored. Otherwise, they default to “From ” and
“>From ” when the file option is set, and unset when any of the directory, maildir, or mailstore
options are set.

The default settings, along with message prefix and message suffix, are suitable for traditional
“BSD” mailboxes, where aline beginning with “From ” indicates the start of a new message. All four
options need changing if another format is used. For example, to deliver to mailboxes in MMDF
format:

check_string = "\1\1\ 1\ 1\ n"
escape_string = "\1I\1\1\1 \n"
nmessage_prefix = "\V1I\V1\ 1\ 1\ n"
message_suffix = "\1\1\ 1\ 1\ n"
[create directory Use: appendfile Type: boolean Defallt: true|

When this option is true, Exim attempts to create any missing superior directories for the file that it is
about to write. A created directory’s modeis given by the directory_mode option.

The group ownership of a newly created directory is highly dependent on the operating system (and
possibly the file system) that is being used. For example, in Solaris, if the parent directory has the
setgid bit set, its group is propagated to the child; if not, the currently set group is used. However, in
FreeBSD, the parent’ s group is always used.

[create file Use: appendfile Type: string Default: anywhere|

This option constrains the location of files and directories that are created by this transport. It applies
to files defined by the file option and directories defined by the directory option. In the case of
maildir delivery, it appliesto the top level directory, not the maildir directories beneath.

The option must be set to one of the words “anywhere’, “inhome”, or “belowhome”. In the second
and third cases, a home directory must have been set for the transport. This option is not useful when
an explicit file name is given for norma mailbox deliveries. It is intended for the case when file
names are generated from users' .forward files. These are usually handled by an appendfile transport
called address file. Seealsofile must_exist.

[directory Use: appendfile Type: string? Default: unset|

This option is mutually exclusive with the file option, but one of file or directory must be set, unless
the delivery isthe direct result of aredirection (see section 26.1).

When directory is set, the string is expanded, and the message is delivered into a new file or filesin
or below the given directory, instead of being appended to a single mailbox file. A number of
different formats are provided (see maildir_format and mailstore_format), and see section 26.4 for
further details of thisform of delivery.

directory file Use: appendfile Type: stringt Default:
q${ base62: $t od_epoch} - $i node

When directory is set, but neither maildir_format nor mailstore_format is set, appendfile delivers
each message into a file whose name is obtained by expanding this string. The default value generates

234 The appendfile transport (26)

a unique name from the current time, in base 62 form, and the inode of the file. The variable $inode is
available only when expanding this option.

|directory_mode Use: appendfile Type: octal integer Default: 0700|

If appendfile creates any directories as a result of the create_directory option, their mode is
specified by this option.

|escape_string Use: appendfile Type: string Default: see description|

See check_string above.

[file Use: appendfile Type: stringt Default: unset|

This option is mutually exclusive with the directory option, but one of file or directory must be set,
unless the delivery is the direct result of a redirection (see section 26.1). The file option specifies a
single file, to which the message is appended. One or more of use_fentl_lock, use flock lock, or
use lockfile must be set with file.

If you are using more than one host to deliver over NFS into the same mailboxes, you should always
use lock files.

The string value is expanded for each delivery, and must yield an absolute path. The most common
settings of this option are variations on one of these examples:

/ var/ spool / mai | / $l ocal _part
/ horre/ $l ocal _part/i nbox
$hone/ i nbox

— —h —h

@ DD
I

In the first example, all deliveries are done into the same directory. If Exim is configured to use lock
files (see use_lockfile below) it must be able to create afile in the directory, so the “sticky” bit must
be turned on for deliveries to be possible, or alternatively the group option can be used to run the
delivery under a group id which has write access to the directory.

[file_format Use: appendfile Type: string Default: unset|

This option requests the transport to check the format of an existing file before adding to it. The check
consists of matching a specific string at the start of the file. The value of the option consists of an even
number of colon-separated strings. The first of each pair is the test string, and the second is the name
of atransport. If the transport associated with a matched string is not the current transport, control is
passed over to the other transport. For example, suppose the standard local _delivery transport has this
added to it:

file format = "From . local _delivery :\
\INIV1V1\n : | ocal _mmdf _delivery"

Mailboxes that begin with “From™ are still handled by this transport, but if a mailbox begins with four
binary ones followed by a newline, control is passed to a transport caled local_mmdf_delivery,
which presumably is configured to do the delivery in MMDF format. If a mailbox does not exist or is
empty, it is assumed to match the current transport. If the start of a mailbox doesn’t match any string,
or if the transport named for a given string is not defined, delivery is deferred.

[file_must_exist Use: appendfile Type: boolean Default: false|

If this option istrue, the file specified by the file option must exist. A temporary error occurs if it does
not, causing delivery to be deferred. If this option isfalse, the fileis created if it does not exist.

[lock_fentl_timeout Use: appendfile Type: time Default: Os|

235 The appendfile transport (26)

By default, the appendfile transport uses non-blocking calls to fentl() when locking an open mailbox
file. If the call fails, the delivery process sleeps for lock_interval and tries again, up to lock_retries
times. Non-blocking calls are used so that the file is not kept open during the wait for the lock; the
reason for this is to make it as safe as possible for deliveries over NFS in the case when processes
might be accessing an NFS mailbox without using a lock file. This should not be done, but
misunderstandings and hence misconfigurations are not unknown.

On a busy system, however, the performance of a non-blocking lock approach is not as good as using
a blocking lock with a timeout. In this case, the waiting is done inside the system call, and Exim’s
delivery process acquires the lock and can proceed as soon as the previous lock holder releasesiit.

If lock_fentl_timeout is set to a non-zero time, blocking locks, with that timeout, are used. There
may still be some retrying: the maximum number of retriesis

(lock retries * lock interval) / lock fentl _tinmeout

rounded up to the next whole number. In other words, the total time during which appendfileistrying
to get alock isroughly the same, unlesslock_fentl_timeout is set very large.

Y ou should consider setting this option if you are getting a lot of delayed local deliveries because of
errors of theform

failed to lock mail box /sone/file (fcntl)

[lock_flock_timeout Use: appendfile Type: time Default: Os|

This timeout applies to file locking when using flock() (see use flock); the timeout operates in a
similar manner to lock_fcntl_timeout.

[lock_interval Use: appendfile Type: time Default: 3s]

This specifies the time to wait between attempts to lock the file. See below for details of locking.

[lock_retries Use: appendfile Type: integer Default: 10|

This specifies the maximum number of attempts to lock the file. A value of zero is treated as 1. See
below for details of locking.

[lockfile_mode Use: appendfile Type: octal integer Default: 0600

This specifies the mode of the created lock file, when a lock file is being used (see use_lockfile and
use_mbx_lock).

[lockfile_timeout Use: appendfile Type: time Default: 30m|

When a lock file is being used (see use_lockfile), if alock file already exists and is older than this
value, it is assumed to have been left behind by accident, and Exim attempts to remove it.

[mailbox_filecount Use: appendfile Type: string? Default: unset|

If thisoption is set, it is expanded, and the result is taken as the current number of files in the mailbox.
It must be a decimal number, optionally followed by K or M. This provides a way of obtaining this
information from an external source that maintains the data.

[mailbox_size Use: appendfile Type: string? Default: unset|

If this option is set, it is expanded, and the result is taken as the current size the mailbox. It must be a
decima number, optionaly followed by K or M. This provides a way of obtaining this information

236 The appendfile transport (26)

from an external source that maintains the data. This is likely to be helpful for maildir deliveries
where it is computationally expensive to compute the size of a mailbox.

[maildir_format Use: appendfile Type: boolean Default: false|

If this option is set with the directory option, the delivery isinto a new file, in the “maildir” format
that is used by other mail software. When the transport is activated directly from aredirect router (for
example, the address file transport in the default configuration), setting maildir_format causes the
path received from the router to be treated as a directory, whether or not it ends with / . This optionis
available only if SUPPORT_MAILDIR is present in Local/Makefile. See section 26.5 below for
further details.

[maildir_quota_directory_regex Use: appendfile Type: string Default: See below|

This option is relevant only when maildir_use_size file is set. It defines a regular expression for
specifying directories, relative to the quota directory (see quota_directory), that should be included
in the quota calculation. The default valueis:

mai | dir_quota_directory_regex = ~(?:cur|new\..*)$

This includes the cur and new directories, and any maildir++ folders (directories whose names begin
with a dot). If you want to exclude the Trash folder from the count (as some sites do), you need to
change this setting to

mai | dir_quota directory regex = ~(?:cur|new\.(?!' Trash).*)$

This uses a negative lookahead in the regular expression to exclude the directory whose name is
.Trash. When a directory is excluded from quota calculations, quota processing is bypassed for any
messages that are delivered directly into that directory.

[maildir_retries Use: appendfile Type: integer Default: 10|

This option specifies the number of times to retry when writing afile in “maildir’ format. See section
26.5 below.

[maildir_tag Use: appendfile Type: string? Default: unset|

This option applies only to deliveriesin maildir format, and is described in section 26.5 below.

[maildir_use_size file Use: appendfile Type: boolean Default: false|

Setting this option true enables support for maildirsize files. Exim creates a maildirsize file in a
maildir if one does not exist, taking the quota from the quota option of the transport. If quota is
unset, the value is zero. See maildir_quota_directory _regex above and section 26.5 below for
further details.

[maildirfolder _create regex Use: appendfile Type: string Default: unset|

The value of this option is a regular expression. If it is unset, it has no effect. Otherwise, before a
maildir delivery takes place, the pattern is matched against the name of the maildir directory, that is,
the directory containing the new and tmp subdirectories that will be used for the delivery. If thereisa
match, Exim checks for the existence of afile called maildirfolder in the directory, and creates it if it
does not exist. See section 26.5 for more details.

|mailstore_format Use: appendfile Type: boolean Default: false|

If this option is set with the directory option, the delivery isinto two new filesin “mailstore” format.
The option is available only if SUPPORT_MAILSTORE is present in Local/Makefile. See section

237 The appendfile transport (26)

26.4 below for further details.

[mailstore_prefix Use: appendfile Type: stringt Default: unset|

This option applies only to deliveries in mailstore format, and is described in section 26.4 below.

|mailstore_suffix Use: appendfile Type: stringt Default: unset|

This option applies only to deliveries in mailstore format, and is described in section 26.4 below.

|mbx_format Use: appendfile Type: boolean Default: false|

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile.
If mbx_format is set with the file option, the message is appended to the mailbox filein MBX format
instead of traditional Unix format. This format is supported by Pine4 and its associated IMAP and
POP daemons, by means of the c-client library that they all use.

Note: The message prefix and message _suffix options are not automatically changed by the use of
mbx_format. They should normally be set empty when using MBX format, so this option amost
always appears in this combination:

nmbx_format = true
nmessage_prefi x
nmessage_suffix

Innc

If none of the locking options are mentioned in the configuration, use_mbx_lock is assumed and the
other locking options default to false. It is possible to specify the other kinds of locking with mbx_
format, but use fentl lock and use_ mbx_lock are mutually exclusive. MBX locking interworks with
c-client, providing for shared access to the mailbox. It should not be used if any program that does not
use this form of locking is going to access the mailbox, nor should it be used if the mailbox file is
NFS mounted, because it works only when the mailbox is accessed from asingle host.

If you set use fentl_lock with an MBX-format mailbox, you cannot use the standard version of
c-client, because as long as it has a mailbox open (this means for the whole of a Pine or IMAP
session), Exim will not be able to append messages to it.

|message_prefix Use: appendfile Type: string? Default: see below|

The string specified here is expanded and output at the start of every message. The default is unset
unlessfileis specified and use_bsmtp isnot set, in which caseitis:

nmessage_prefix = "From ${i f def:return_path{$return_path}\
{ MAI LER- DAEMON} } $t od_bsdi nbox\ n"

|message_suffix Use: appendfile Type: string? Default: see below|

The string specified here is expanded and output at the end of every message. The default is unset
unless file is specified and use_bsmtp is not set, in which case it is a single newline character. The
suffix can be suppressed by setting

nmessage_suffix =

|mode Use: appendfile Type: octal integer Default: 0600

If the output file is created, it is given this mode. If it already exists and has wider permissions, they
are reduced to this mode. If it has narrower permissions, an error occurs unless mode_fail_narrower
is false. However, if the delivery is the result of a save command in afilter file specifing a particular
mode, the mode of the output fileis aways forced to take that value, and this option isignored.

238 The appendfile transport (26)

[mode_fail_narrower Use: appendfile Type: boolean Defallt: true|

This option applies in the case when an existing mailbox file has a narrower mode than that specified
by the mode option. If mode fail _narrower istrue, the delivery is deferred (“mailbox has the wrong
mode”); otherwise Exim continues with the delivery attempt, using the existing mode of thefile.

[notify_comsat Use: appendfile Type: boolean Default: false|

If this option is true, the comsat daemon is notified after every successful delivery to a user mailbox.
Thisisthe daemon that notifies logged on users about incoming mail.

[quota Use: appendfile Type: stringt Default: unset|

This option imposes a limit on the size of the file to which Exim is appending, or to the total space
used in the directory tree when the directory option is set. In the latter case, computation of the space
used is expensive, because all the files in the directory (and any sub-directories) have to be
individually inspected and their sizes summed. (See quota_size regex and maildir_use size filefor
ways to avoid this in environments where users have no shell access to their mailboxes).

Asthereis no interlock against two simultaneous deliveries into a multi-file mailbox, it is possible for
the quotato be overrun in this case. For single-file mailboxes, of course, an interlock is a necessity.

A file's size is taken as its used value. Because of blocking effects, this may be a lot less than the
actual amount of disk space allocated to the file. If the sizes of a number of files are being added up,
the rounding effect can become quite noticeable, especially on systems that have large block sizes.
Nevertheless, it seems best to stick to the used figure, because this is the obvious value which users
understand most easily.

The value of the option is expanded, and must then be a numerical value (decimal point allowed),
optionally followed by one of the letters K, M, or G, for kilobytes, megabytes, or gigabytes. If Eximis
running on a system with large file support (Linux and FreeBSD have this), mailboxes larger than 2G
can be handled.

Note: A value of zero isinterpreted as “no quota’.

The expansion happens while Exim is running as root, before it changes uid for the delivery. This
means that files that are inaccessible to the end user can be used to hold quota values that are looked
up in the expansion. When delivery fails because this quota is exceeded, the handling of the error is as
for system quotafailures.

By default, Exim’s gquota checking mimics system quotas, and restricts the mailbox to the specified
maximum size, though the value is not accurate to the last byte, owing to separator lines and
additional headers that may get added during message delivery. When a mailbox is nearly full, large
messages may get refused even though small ones are accepted, because the size of the current
message is added to the quota when the check is made. This behaviour can be changed by setting
guota is inclusive false. When this is done, the check for exceeding the quota does not include the
current message. Thus, deliveries continue until the quota has been exceeded; thereafter, no further
messages are delivered. See also quota_warn_threshold.

|quota_directory Use: appendfile Type: stringt Default: unset|

This option defines the directory to check for quota purposes when delivering into individual files.
The default is the delivery directory, or, if afile called maildirfolder existsin a maildir directory, the
parent of the delivery directory.

|quota_filecount Use: appendfile Type: stringt Default: 0|

This option applies when the directory option is set. It limits the total number of filesin the directory

239 The appendfile transport (26)

(compare the inode limit in system quotas). It can only be used if quota is aso set. The vaue is
expanded; an expansion failure causes delivery to be deferred. A value of zero is interpreted as “no
quota’.

[quota_is inclusive Use: appendfile Type: boolean Defaullt: true|
See quota above.
|quota_size regex Use: appendfile Type: string Default: unset|

This option applies when one of the delivery modes that writes a separate file for each message is
being used. When Exim wants to find the size of one of these files in order to test the quota, it first
checks quota_size regex. If thisis set to a regular expression that matches the file name, and it
captures one string, that string is interpreted as a representation of the file's size. The value of quota
size regex isnot expanded.

This feature is useful only when users have no shell access to their mailboxes — otherwise they could
defeat the quota simply by renaming the files. This facility can be used with maildir deliveries, by
setting maildir_tag to add the file length to the file name. For example:

mai | dir_tag = , S=$nessage_si ze
guota_si ze_regex =, S=(\d+)

An dternative to $message_size is $message_linecount, which contains the number of lines in the
message.

The regular expression should not assume that the length is at the end of the file name (even though
maildir_tag puts it there) because maildir MUASs sometimes add other information onto the ends of
message file names.

[quota_warn_message Use: appendfile Type: stringt Default: see below|

See below for the use of this option. If it isnot set when quota_warn_threshold is set, it defaultsto

guot a_war n_nessage = "\
To: $l ocal _part @domai n\ n\
Subj ect: Your mail box\ n\n\
This nessage is automatically created \
by mail delivery software.\n\n\
The size of your nmail box has exceeded \
a warning threshold that is\n\
set by the system adninistrator.\n"

[quota_warn_threshold Use: appendfile Type: string? Default: O]

This option is expanded in the same way as quota (see above). If the resulting value is greater than
zero, and delivery of the message causes the size of the file or total space in the directory tree to cross
the given threshold, a warning message is sent. If quota is also set, the threshold may be specified as
apercentage of it by following the value with a percent sign. For example:

quota = 10M
guota warn_threshold = 75%

If quotaisnot set, a setting of quota_warn_threshold that ends with a percent sign isignored.

The warning message itself is specified by the quota_warn_message option, and it must start with a
To: header line containing the recipient(s) of the warning message. These do not necessarily have to
include the recipient(s) of the original message. A Subject: line should also normally be supplied. You
can include any other header linesthat you want. If you do not include a From: line, the default is:

From Mail Delivery System <nmail er-daenon@qual i fy_donai n_sender >

240 The appendfile transport (26)

If you supply aReply-To: line, it overrides the global errors reply_to option.

The quota option does not have to be set in order to use this option; they are independent of one
another except when the threshold is specified as a percentage.

|use_bsmtp Use: appendfile Type: boolean Default: false|

If this option is set true, appendfile writes messages in “batch SMTP” format, with the envelope
sender and recipient(s) included as SMTP commands. If you want to include a leading HELO
command with such messages, you can do so by setting the message _pr efix option. See section 45.10
for details of batch SMTP.

luse_crlf Use: appendfile Type: boolean Default: false|

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence written
to the file is then an exact image of what would be sent down areal SM TP connection.

The contents of the message prefix and message suffix options are written verbatim, so must
contain their own carriage return characters if these are needed. In cases where these options have
non-empty defaults, the values end with a single linefeed, so they must be changed to end with\ r\ n
if use crif isset.

luse_fentl_lock Use: appendfile Type: boolean Default: see below|

This option controls the use of the fentl() function to lock afile for exclusive use when a message is
being appended. It is set by default unless use flock lock is set. Otherwise, it should be turned off
only if you know that all your MUASs use lock file locking. When both use fentl_lock and use
flock _lock are unset, use lockfile must be set.

luse_flock_lock Use: appendfile Type: boolean Default: false|

This option is provided to support the use of flock() for file locking, for the few situations where it is
needed. Most modern operating systems support fentl() and lockf() locking, and these two functions
interwork with each other. Exim uses fcntl () locking by default.

This option is required only if you are using an operating system where flock() is used by programs
that access mailboxes (typically MUAS), and where flock() does not correctly interwork with fentl().
Y ou can use both fentl() and flock() locking simultaneously if you want.

Not all operating systems provide flock(). Some versions of Solaris do not have it (and some, | think,
provide a not quite right version built on top of lockf()). If the OS does not have flock(), Exim will be
built without the ability to useit, and any attempt to do so will cause a configuration error.

Warning: flock() locks do not work on NFS files (unless flock() is just being mapped onto fcntl() by
the OS).

|use_lockfile Use: appendfile Type: boolean Default: see below|

If this option is turned off, Exim does not attempt to create a lock file when appending to a mailbox
file. In this situation, the only locking is by fentl(). You should only turn use_lockfile off if you are
absolutely sure that every MUA that is ever going to look at your users mailboxes uses fentl() rather
than alock file, and even then only when you are not delivering over NFS from more than one host.

In order to append to an NFS file safely from more than one hogt, it is necessary to take out a lock
before opening the file, and the lock file achieves this. Otherwise, even with fentl() locking, thereisa
risk of file corruption.

The use_lockfile option is set by default unless use_mbx_lock is set. It is not possible to turn both

241 The appendfile transport (26)

use_lockfileand use_fcntl_lock off, except when mbx_format is set.

|use_mbx_lock Use: appendfile Type: boolean Default: see below|

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile.
Setting the option specifies that special MBX locking rules be used. It is set by default if mbx_format
is set and none of the locking options are mentioned in the configuration. The locking rules are the
same as are used by the c-client library that underlies Pine and the IMAP4 and POP daemons that
come with it (see the discussion below). The rules allow for shared access to the mailbox. However,
this kind of locking does not work when the mailbox is NFS mounted.

You can set use_mbx_lock with either (or both) of use fentl lock and use flock lock to control
what kind of locking is used in implementing the MBX locking rules. The default is to use fentl() if
use_mbx_lock isset without use fentl lock or use flock lock.

26.3 Operational details for appending
Before appending to afile, the following preparations are made:

« If the name of thefileis/dev/null, no action istaken, and a success return is given.

« |If any directories on the file's path are missing, Exim creates them if the create _directory option is
set. A created directory’s mode is given by the directory_maode option.

 If file_format is set, the format of an existing file is checked. If this indicates that a different
transport should be used, control is passed to that transport.

» |If use lockfileisset, alock fileisbuilt in away that will work reliably over NFS, as follows:

(1) Create a"hitching post” file whose name is that of the lock file with the current time, primary
host name, and process id added, by opening for writing as a new file. If this fails with an
access error, delivery is deferred.

(2) Closethe hitching post file, and hard link it to the lock file name.

(3) If the call to link() succeeds, creation of the lock file has succeeded. Unlink the hitching post
name.

(4) Otherwise, use stat() to get information about the hitching post file, and then unlink hitching
post name. If the number of links is exactly two, creation of the lock file succeeded but
something (for example, an NFS server crash and restart) caused this fact not to be
communicated to the link() call.

(5) |If creation of the lock file failed, wait for lock_interval and try again, up to lock_retries
times. However, since any program that writes to a mailbox should complete its task very
quickly, it is reasonable to time out old lock files that are normally the result of user agent and
system crashes. If an existing lock file is older than lockfile_timeout Exim attempts to unlink
it before trying again.

» A cal is made to Istat() to discover whether the main file exists, and if so, what its characteristics
are. If Istat() fails for any reason other than non-existence, delivery is deferred.

* If thefile does exist and isa symbolic link, delivery is deferred, unless the allow_symlink option is
set, in which case the ownership of the link is checked, and then stat() is called to find out about the
real file, which is then subjected to the checks below. The check on the top-level link ownership
prevents one user creating a link for another’s mailbox in a sticky directory, though allowing
symbolic links in this case is definitely not a good idea. If there is a chain of symbolic links, the
intermediate ones are not checked.

« If the file already exists but is not a regular file, or if the file's owner and group (if the group is
being checked — see check _group above) are different from the user and group under which the
delivery isrunning, delivery is deferred.

« If thefile's permissions are more generous than specified, they are reduced. If they are insufficient,

242 The appendfile transport (26)

delivery is deferred, unless mode_fail_narrower is set false, in which case the delivery is tried
using the existing permissions.

» Thefile€' sinode number is saved, and the file is then opened for appending. If this fails because the
file has vanished, appendfile behaves as if it hadn't existed (see below). For any other failures,
delivery is deferred.

* If the file is opened successfully, check that the inode number hasn’'t changed, that it is still a
regular file, and that the owner and permissions have not changed. If anything is wrong, defer
delivery and freeze the message.

« If the file did not exist originally, defer delivery if the file_must_exist option is set. Otherwise,
check that the file is being created in a permitted directory if the create file option is set (deferring
on failure), and then open for writing as a new file, with the O_EXCL and O_CREAT options,
except when dealing with a symbolic link (the allow_symlink option must be set). In this case,
which can happen if the link points to a non-existent file, the file is opened for writing using O_
CREAT but not O_EXCL, because that prevents link following.

« If opening fails because the file exists, obey the tests given above for existing files. However, to
avoid looping in a situation where the file is being continuously created and destroyed, the
exists/not-exists loop is broken after 10 repetitions, and the message is then frozen.

* If opening failswith any other error, defer delivery.

» Once the file is open, unless both use fentl _lock and use flock _lock are false, it is locked using
fentl() or flock() or both. If use_mbx_lock is false, an exclusive lock is requested in each case.
However, if use_mbx_lock istrue, Exim takes out a shared lock on the open file, and an exclusive
lock on the file whose name is

[/t mp/ . <devi ce- nunber >. <i node- nunber >

using the device and inode numbers of the open mailbox file, in accordance with the MBX locking
rules. Thisfileis created with a mode that is specified by the lockfile_mode option.

If Exim fails to lock the file, there are two possible courses of action, depending on the value of the
locking timeout. Thisis obtained from lock_fcntl_timeout or lock_flock_timeout, as appropriate.

If the timeout value is zero, thefile is closed, Exim waits for lock_interval, and then goes back and
re-opens the file as above and tries to lock it again. This happens up to lock_retries times, after
which the delivery is deferred.

If the timeout has a value greater than zero, blocking calls to fentl() or flock() are used (with the
given timeout), so there has aready been some waiting involved by the time locking fails.
Nevertheless, Exim does not give up immediately. It retries up to

(lock _retries * lock_ interval) / <timeout>
times (rounded up).

At the end of delivery, Exim closes the file (which releases the fentl() and/or flock() locks) and then
deletesthe lock file if one was created.

26.4 Operational details for delivery to a new file

When the directory option is set instead of file, each message is delivered into a newly-created file or
set of files. When appendfile is activated directly from aredirect router, neither file nor directory is
normally set, because the path for delivery is supplied by the router. (See for example, the
address file trangport in the default configuration.) In this case, delivery isto a new file if either the
path name endsin/ , or the maildir_format or mailstore format option is set.

No locking is required while writing the message to a new file, so the various locking options of the
trangport are ignored. The “From” line that by default separates messages in a single file is not
normally needed, nor is the escaping of message lines that start with “From”, and there is no need to
ensure a newline at the end of each message. Consequently, the default values for check_string,

243 The appendfile transport (26)

message_prefix, and message _suffix are al unset when any of directory, maildir_format, or
mailstore format is set.

If Exim is required to check a quota setting, it adds up the sizes of al the files in the delivery
directory by default. However, you can specify a different directory by setting quota_directory. Also,
for maildir deliveries (see below) the maildirfolder convention is honoured.

There are three different ways in which delivery to individual files can be done, controlled by the
settings of the maildir_format and mailstore_format options. Note that code to support maildir or
mailstore formats is not included in the binary unless SUPPORT_ _MAILDIR or SUPPORT _
MAILSTORE, respectively, is set in Local/Makefile.

In all three cases an attempt is made to create the directory and any necessary sub-directories if they
do not exist, provided that the create directory option is set (the default). The location of a created
directory can be constrained by setting create file. A created directory’s mode is given by the
directory_mode option. If creation fails, or if the create_directory option is not set when creation is
required, delivery is deferred.

26.5 Maildir delivery

If the maildir_format option istrue, Exim delivers each message by writing it to afile whose nameis
tmp/< stime>.H<mtime>P< pid>.<host> in the directory that is defined by the directory option (the
“delivery directory”). If the delivery is successful, the file is renamed into the new subdirectory.

In the file name, <stime> is the current time of day in seconds, and <mtime> is the microsecond
fraction of the time. After amaildir delivery, Exim checks that the time-of-day clock has moved on by
at least one microsecond before terminating the delivery process. This guarantees uniqueness for the
file name. However, as a precaution, Exim calls stat() for the file before opening it. If any response
other than ENOENT (does not exist) is given, Exim waits 2 seconds and tries again, up to maildir_
retriestimes.

Before Exim carries out a maildir delivery, it ensures that subdirectories called new, cur, and tmp exist
in the delivery directory. If they do not exist, Exim tries to create them and any superior directoriesin
their path, subject to the create directory and create file options. If the maildirfolder _create
regex option is set, and the regular expression it contains matches the delivery directory, Exim also
ensures that a file called maildirfolder exists in the delivery directory. If a missing directory or
maildirfolder file cannot be created, delivery is deferred.

These features make it possible to use Exim to create al the necessary files and directories in a
maildir mailbox, including subdirectories for maildir++ folders. Consider this example:

mai ldir _format = true
directory = /var/mail/$l ocal part\
${if eq{$local part_suffix}{}{}\
{/.%${substr_1:$l ocal _part_suffix}}}
mai | dirfol der_create_regex = /\.["]+$

If $local_part_suffix is empty (there was no suffix for the local part), delivery is into a toplevel
maildir with a name like /var/mail/pimbo (for the user called pimbo). The pattern in maildirfolder _
create regex does not match this name, so Exim will not look for or create the file
/var/mail/pimbo/maildirfolder, though it will create /var/mail/pimbo/{cur,new,tmp} if necessary.

However, if $local_part_suffix contains - exi nuser s (for example), delivery is into the maildir++
folder /var/mail/pimbo/.eximusers, which does match maildirfolder_create regex. In this case, Exim
will create /var/mail/pimbo/.eximusers/maildirfolder as well as the three maildir directories
Ivar/mail/pimbo/.eximuser s/{ cur ,new,tmp}.

Warning: Take care when setting maildirfolder _create regex that it does not inadvertently match
the toplevel maildir directory, because a maildirfolder file at top level would completely break quota
calculations.

If Exim isrequired to check a quota setting before a maildir delivery, and quota_directory is not set,
it looks for afile called maildirfolder in the maildir directory (alongside new, cur, tmp). If this exists,
Exim assumes the directory is a maildir++ folder directory, which is one level down from the user’s

244 The appendfile transport (26)

top level mailbox directory. This causes it to start at the parent directory instead of the current
directory when calculating the amount of space used.

One problem with delivering into a multi-file mailbox is that it is computationally expensive to
compute the size of the mailbox for quota checking. Various approaches have been taken to reduce
the amount of work needed. The next two sections describe two of them. A third aternative is to use
some external process for maintaining the size data, and use the expansion of the mailbox_size option
asaway of importing it into Exim.

26.6 Using tags to record message sizes

If maildir_tag is set, the string is expanded for each delivery. When the maildir file is renamed into
the new sub-directory, the tag is added to its name. However, if adding the tag takes the length of the
name to the point where the test stat() call fails with ENAMETOOLONG, the tag is dropped and the
maildir fileis created with no tag.

Tags can be used to encode the size of files in their names; see quota_size regex above for an
example. The expansion of maildir _tag happens after the message has been written. The value of the
$message size variable is set to the number of bytes actually written. If the expansion is forced to fail,
the tag is ignored, but a non-forced failure causes delivery to be deferred. The expanded tag may
contain any printing characters except “/”. Non-printing characters in the string are ignored; if the
resulting string is empty, it is ignored. If it starts with an alphanumeric character, a leading colon is
inserted.

26.7 Using a maildirsize file

If maildir_use size fileis true, Exim implements the maildir++ rules for storing quota and message
size information in afile called maildirsize within the toplevel maildir directory. If this file does not
exist, Exim creates it, setting the quota from the quota option of the transport. If the maildir directory
itself does not exist, it is created before any attempt to write amaildirsizefile.

The maildirsize file is used to hold information about the sizes of messages in the maildir, thus
speeding up quota calculations. The quota value in the file is just a cache; if the quota is changed in
the transport, the new value overrides the cached value when the next message is delivered. The cache
is maintained for the benefit of other programs that access the maildir and need to know the quota.

If the quota option in the transport is unset or zero, the maildirsize file is maintained (with a zero
guota setting), but no quotaisimposed.

A regular expression is available for controlling which directories in the maildir participate in quota
calculations when a maildirsizefile is in use. See the description of the maildir_quota_directory
regex option above for details.

26.8 Mailstore delivery

If the mailstore format option is true, each message is written as two files in the given directory. A
unique base name is constructed from the message id and the current delivery process, and the files
that are written use this base name plus the suffixes .env and .msg. The .env file contains the
message’ s envelope, and the .msg file contains the message itself. The base name is placed in the
variable $mailstore_basename.

During delivery, the envelope is first written to a file with the suffix .tmp. The .msg file is then
written, and when it is complete, the .tmp file is renamed as the .env file. Programs that access
messages in mailstore format should wait for the presence of both a .msg and a .env file before
accessing either of them. An alternative approach is to wait for the absence of a.tmp file.

The envelope file starts with any text defined by the mailstore prefix option, expanded and
terminated by a newline if there isn’t one. Then follows the sender address on one line, then al the
recipient addresses, one per line. There can be more than one recipient only if the batch_max option
is set greater than one. Finally, mailstore_suffix is expanded and the result appended to the file,
followed by anewline if it does not end with one.

If expansion of mailstore_prefix or mailstore_suffix ends with a forced failure, it isignored. Other
expansion errors are treated as serious configuration errors, and delivery is deferred. The variable

245 The appendfile transport (26)

$mailstore_basename is available for use during these expansions.

26.9 Non-special new file delivery

If neither maildir_format nor mailstore_format is set, a single new file is created directly in the
named directory. For example, when delivering messages into files in batched SMTP format for later
delivery to some host (see section 45.10), a setting such as

directory = /var/bsnt p/ $host

might be used. A message is written to a file with atemporary name, which is then renamed when the
delivery is complete. The final name is obtained by expanding the contents of the directory_file
option.

246 The appendfile transport (26)

27. The autoreply transport

The autor eply transport is not a true transport in that it does not cause the message to be transmitted.
Instead, it generates a new mail message as an automatic reply to the incoming message. References:
and Auto-Submitted: header lines are included. These are constructed according to the rules in RFCs
2822 and 3834, respectively.

If the router that passes the message to this transport does not have the unseen option set, the original
message (for the current recipient) is not delivered anywhere. However, when the unseen option is set
on the router that passes the message to this transport, routing of the address continues, so another
router can set up anormal message delivery.

The autoreply transport is usualy run as the result of mail filtering, a “vacation” message being the
standard example. However, it can aso be run directly from a router like any other transport. To
reduce the possibility of message cascades, messages created by the autoreply transport always have
empty envelope sender addresses, like bounce messages.

The parameters of the message to be sent can be specified in the configuration by options described
below. However, these are used only when the address passed to the transport does not contain its
own reply information. When the transport is run as a consequence of amail or vacation command in
afilter file, the parameters of the message are supplied by the filter, and passed with the address. The
transport’ s options that define the message are then ignored (so they are not usually set in this case).
The message is specified entirely by the filter or by the transport; it is never built from a mixture of
options. However, the file_optional, mode, and retur n_message options apply in all cases.

Autoreply isimplemented as alocal transport. When used as a result of a command in a user’s filter
file, autoreply normally runs under the uid and gid of the user, and with appropriate current and home
directories (see chapter 23).

There is a subtle difference between routing a message to a pipe transport that generates some text to
be returned to the sender, and routing it to an autor eply transport. This difference is noticeable only if
more than one address from the same message is so handled. In the case of a pipe, the separate outputs
from the different addresses are gathered up and returned to the sender in a single message, whereas if
autor eply is used, a separate message is generated for each address that is passed to it.

Non-printing characters are not permitted in the header lines generated for the message that autor eply
creates, with the exception of newlines that are immediately followed by white space. If any
non-printing characters are found, the transport defers. Whether characters with the top bit set count
as printing characters or not is controlled by the print_topbitchars global option.

If any of the generic options for manipulating headers (for example, headers add) are set on an
autor eply transport, they apply to the copy of the original message that is included in the generated
message when return_message is set. They do not apply to the generated message itself.

If the autoreply transport receives return code 2 from Exim when it submits the message, indicating
that there were no recipients, it does not treat this as an error. This means that autoreplies sent to
$sender _address when this is empty (because the incoming message is a bounce message) do not
cause problems. They are just discarded.

27.1 Private options for autoreply

[bce Use: autoreply Type: string? Default: unset|

This specifies the addresses that are to receive “blind carbon copies’ of the message when the
message is specified by the transport.

lcc Use: autoreply Type: string?t Default: unset|

This specifies recipients of the message and the contents of the Cc. header when the message is
specified by the transport.

247 The autoreply transport (27)

[file Use: autoreply Type: string? Default: unset|

The contents of the file are sent as the body of the message when the message is specified by the
trangport. If both file and text are set, the text string comes first.

|file_expand Use: autoreply Type: boolean Default: false|

If thisis set, the contents of the file named by the file option are subjected to string expansion as they
are added to the message.

[file_optional Use: autoreply Type: boolean Defaullt: false|

If this option is true, no error is generated if the file named by the file option or passed with the
address does not exist or cannot be read.

[from Use: autoreply Type: string? Default: unset|

This specifies the contents of the From: header when the message is specified by the transport.

[headers Use: autoreply Type: string? Default: unset|

This specifies additional RFC 2822 headers that are to be added to the message when the message is
specified by the transport. Several can be given by using “\n” to separate them. There is ho check on
the format.

[log Use: autoreply Type: string? Default: unset|

This option names a file in which a record of every message sent is logged when the message is
specified by the transport.

|mode Use autoreply Type: octal integer Default: 0600|

If either thelog file or the “once” file has to be created, this mode is used.

[never_mail Use: autoreply Type: addresslistt Default: unset|

If any run of the transport creates a message with a recipient that matches any item in the list, that
recipient is quietly discarded. If all recipients are discarded, no message is created. This applies both
when the recipients are generated by afilter and when they are specified in the transport.

lonce Use: autoreply Type: string? Default: unset|

This option names a file or DBM database in which a record of each To: recipient is kept when the
message is specified by the transport. Note: This does not apply to Cc: or Bcc: recipients.

If onceisunset, or is set to an empty string, the message is always sent. By default, if onceissetto a
non-empty file name, the message is not sent if a potentia recipient is already listed in the database.
However, if the once_repeat option specifies a time greater than zero, the message is sent if that
much time has elapsed since a message was last sent to this recipient. A setting of zero time for once
repeat (the default) prevents a message from being sent a second time — in this case, zero means
infinity.

If once _file_sizeiszero, aDBM database is used to remember recipients, and it is allowed to grow as
large as necessary. If once file sizeis set greater than zero, it changes the way Exim implements the
once option. Instead of using a DBM file to record every recipient it sends to, it uses a regular file,
whose size will never get larger than the given value.

248 The autoreply transport (27)

In the file, Exim keeps a linear list of recipient addresses and the times at which they were sent
messages. If the file is full when a new address needs to be added, the oldest address is dropped. If
once_repeat is not set, this means that a given recipient may receive multiple messages, but at
unpredictable intervals that depend on the rate of turnover of addresses in the file. If once_repeat is
set, it specifies a maximum time between repeats.

lonce file size Use: autoreply Type: integer Default: 0|
See once above.
lonce_repeat Use: autoreply Type: timet Default: Os|

See once above. After expansion, the value of this option must be avalid time value.

[reply_to Use: autoreply Type: string? Default: unset|

This specifies the contents of the Reply-To: header when the message is specified by the transport.

[return_message Use: autoreply Type: boolean Default: false|

If thisis set, a copy of the original message is returned with the new message, subject to the maximum
sizeset inthereturn_size limit global configuration option.

[subject Use: autoreply Type: string? Default: unset|

This specifies the contents of the Subject: header when the message is specified by the transport. It is
tempting to quote the original subject in automatic responses. For example:

subj ect = Re: $h_subject:

There is a danger in doing this, however. It may allow a third party to subscribe your users to an
opt-in mailing list, provided that the list accepts bounce messages as subscription confirmations.
Well-managed lists require a non-bounce message to confirm a subscription, so the danger is
relatively small.

|text Use: autoreply Type: string? Default: unset|

This specifies a single string to be used as the body of the message when the message is specified by
the transport. If both text and file are set, the text comesfirst.

to Use: autoreply Type: string? Default: unset|

This specifies recipients of the message and the contents of the To: header when the message is
specified by the transport.

249 The autoreply transport (27)

28. The Imtp transport

The Imtp transport runs the LMTP protocol (RFC 2033) over a pipe to a specified command or by
interacting with a Unix domain socket. This transport is something of a cross between the pipe and
smtp transports. Exim also has support for using LMTP over TCP/IP; this is implemented as an
option for the smtp transport. Because LMTP is expected to be of minority interest, the default
build-time configure in src/EDITME has it commented out. Y ou need to ensure that

TRANSPORT_LMI'P=yes

is present in your Local/Makefile in order to have the Imtp transport included in the Exim binary. The
private options of the Imtp transport are as follows:

[batch_id Use: Imtp Type: stringt Default: unset|

See the description of local delivery batching in chapter 25.

[batch_max Use: Imtp Type: integer Default: 1]

This limits the number of addresses that can be handled in a single delivery. Most LM TP servers can
handle several addresses at once, so it is normally a good idea to increase this value. See the
description of local delivery batching in chapter 25.

|[command Use: Imtp Type: stringt Default: unset|

This option must be set if socket is not set. The string is a command which is run in a separate
process. It is split up into a command name and list of arguments, each of which is separately
expanded (so expansion cannot change the number of arguments). The command is run directly, not
via a shell. The message is passed to the new process using the standard input and output to operate
the LMTP protocol.

lignore_quota Use: Imtp Type: boolean Default: false|

If this option is set true, the string | GNOREQUOTA is added to RCPT commands, provided that the
LMTP server has advertised support for IGNOREQUOTA in its response to the LHLO command.

|socket Use: Imtp Type: string? Default: unset|

This option must be set if command is not set. The result of expansion must be the name of a Unix
domain socket. The transport connects to the socket and delivers the message to it using the LMTP
protocol.

[timeout Use: Imtp Type: time Default: 5m|

The transport is aborted if the created process or Unix domain socket does not respond to LMTP
commands or message input within this timeout.

Here is an example of atypical LM TP transport:

| mp:
driver = Intp
command = /sone/ | ocal /| nt p/delivery/ program
batch_max = 20
user = exim

This delivers up to 20 addresses at a time, in a mixture of domains if necessary, running as the user
exim.

250 The Imtp transport (28)

29. The pipe transport

The pipe transport is used to deliver messages via a pipe to a command running in another process.
One example is the use of pipe as a pseudo-remote transport for passing messages to some other
delivery mechanism (such as UUCP). Another is the use by individual users to automatically process
their incoming messages. The pipe transport can be used in one of the following ways.

» A router routes one address to a transport in the normal way, and the transport is configured as a
pipe transport. In this case, $local_part contains the local part of the address (as usual), and the
command that is run is specified by the command option on the transport.

 |If the batch_max option is set greater than 1 (the default is 1), the transport can handle more than
one address in a single run. In this case, when more than one address is routed to the transport,
$local _part is not set (because it is not unique). However, the pseudo-variable $pipe addresses
(described in section 29.3 below) contains al the addresses that are routed to the transport.

* A router redirects an address directly to a pipe command (for example, from an alias or forward
file). In this case, $address_pipe contains the text of the pipe command, and the command option
on the transport isignored. If only one address is being transported (batch_max is not greater than
one, or only one address was redirected to this pipe command), $local _part contains the local part
that was redirected.

The pipe transport is a non-interactive delivery method. Exim can also deliver messages over pipes
using the LM TP interactive protocol. Thisisimplemented by the Imtp transport.

In the case when pipeis run as a consequence of an entry in alocal user’s .forward file, the command
runs under the uid and gid of that user. In other cases, the uid and gid have to be specified explicitly,
either on the transport or on the router that handles the address. Current and “home” directories are
also controllable. See chapter 23 for details of the local delivery environment and chapter 25 for a
discussion of local delivery batching.

29.1 Concurrent delivery

If two messages arrive at almost the same time, and both are routed to a pipe delivery, the two pipe
transports may be run concurrently. Y ou must ensure that any pipe commands you set up are robust
against this happening. If the commands write to afile, the exim_lock utility might be of use.

29.2 Returned status and data

If the command exits with a non-zero return code, the delivery is deemed to have failed, unless either
theignore_status option is set (in which case the return code is treated as zero), or the return code is
one of those listed in the temp_errors option, which are interpreted as meaning “try again later”. In
this case, delivery is deferred. Details of a permanent failure are logged, but are not included in the
bounce message, which merely contains “local delivery failed”.

If the return code is greater than 128 and the command being run is a shell script, it normally means
that the script was terminated by a signal whose value is the return code minus 128.

If Exim is unable to run the command (that is, if execve() fails), the return code is set to 127. Thisis
the value that a shell returnsif it is asked to run a non-existent command. The wording for the log line
suggests that a non-existent command may be the problem.

The return_output option can affect the result of a pipe delivery. If it is set and the command
produces any output on its standard output or standard error streams, the command is considered to
have failed, even if it gave a zero return code or if ignore_statusis set. The output from the command
is included as part of the bounce message. The return_fail _output option is similar, except that
output is returned only when the command exits with a failure return code, that is, a value other than
zero or acode that matchestemp_errors.

29.3 How the command is run
The command line is (by default) broken down into a command name and arguments by the pipe

251 The pipe transport (29)

trangport itself. The allow_commands and restrict_to_path options can be used to restrict the
commands that may be run.

Unguoted arguments are delimited by white space. If an argument appears in double quotes, backslash
is interpreted as an escape character in the usua way. If an argument appears in single quotes, no

escaping is done.

String expansion is applied to the command line except when it comes from atraditional .forward file
(commands from afilter file are expanded). The expansion is applied to each argument in turn rather
than to the whole line. For this reason, any string expansion item that contains white space must be
quoted so as to be contained within a single argument. A setting such as

command = /sone/path ${if eq{$l ocal part}{postmaster}{xx}{yy}}

will not work, because the expansion item gets split between several arguments. Y ou have to write

command = /sone/path "${if eq{$local part}{postmaster}{xx}{yy}}"

to ensure that it is all in one argument. The expansion is done in this way, argument by argument, so
that the number of arguments cannot be changed as a result of expansion, and quotes or backslashesin
inserted variables do not interact with external quoting. However, this leads to problems if you want
to generate multiple arguments (or the command name plus arguments) from a single expansion. In
this situation, the simplest solution is to use a shell. For example:

command = /bin/sh -c ${| ookup{$l ocal _part}|search{/sone/file}}

Special handling takes place when an argument consists of precisely the text $pi pe_addr esses.
Thisis not a general expansion variable; the only place this string is recognized is when it appears as
an argument for a pipe or transport filter command. It causes each address that is being handled to be
inserted in the argument list at that point as a separate argument. This avoids any problems with
spaces or shell metacharacters, and is of use when a pipe transport is handling groups of addressesin
abatch.

After splitting up into arguments and expansion, the resulting command is run in a subprocess directly
from the transport, not under a shell. The message that is being delivered is supplied on the standard
input, and the standard output and standard error are both connected to a single pipe that is read by
Exim. The max_ output option controls how much output the command may produce, and the
return_output and return_fail _output options control what is done with it.

Not running the command under a shell (by default) lessens the security risks in cases when a
command from a user’s filter file is built out of data that was taken from an incoming message. If a
shell isrequired, it can of course be explicitly specified as the command to be run. However, there are
circumstances where existing commands (for example, in .forward files) expect to be run under a
shell and cannot easily be modified. To allow for these cases, there is an option called use shell,
which changes the way the pipe transport works. Instead of breaking up the command line as just
described, it expands it as a single string and passes the result to /bin/sh. The restrict_to_path option
and the $pipe_addresses facility cannot be used with use_shell, and the whole mechanism is
inherently less secure.

29.4 Environment variables

The environment variables listed below are set up when the command is invoked. This list is a
compromise for maximum compatibility with other MTAs. Note that the environment option can be
used to add additional variables to this environment.

DOVAI N the domain of the address

HOVE the home directory, if set

HOST the host name when called from arouter (see below)
LOCAL_PART see below

LOCAL_PART_PREFI X seebelow
LOCAL_PART_SUFFI X seebelow
LOGNAME see below
MESSAGE | D Exim’'slocal 1D for the message

252 The pipe transport (29)

PATH as specified by the path option below

QUALI FY_DOVAI N the sender qualification domain

RECI PI ENT the compl ete recipient address

SENDER the sender of the message (empty if abounce)
SHELL / bi n/ sh

TZ the value of the timezone option, if set
USER see below

When a pipe transport is called directly from (for example) an accept router, LOCAL_PART is set to
the local part of the address. When it is called as a result of a forward or alias expansion, LOCAL _
PART is set to the local part of the address that was expanded. In both cases, any affixes are removed
from the local part, and made available in LOCAL_PART_PREFIX and LOCAL_PART_SUFFIX,
respectively. LOGNAME and USER are set to the same value as LOCAL_PART for compatibility
with other MTAS.

HOST is set only when a pipe transport is called from a router that associates hosts with an address,
typically when using pipe as a pseudo-remote transport. HOST is set to the first host name specified
by the router.

If the transport’s generic home_directory option is set, its value is used for the HOME environment
variable. Otherwise, a home directory may be set by the router’s transport_home_directory option,
which defaults to the user’ s home directory if check_local _user is set.

29.5 Private options for pipe

|allow_commands Use: pipe Type: string listt Default: unset|

The string is expanded, and is then interpreted as a colon-separated list of permitted commands. If
restrict_to_path is not set, the only commands permitted are those in the allow_commands list.
They need not be absolute paths; the path option is still used for relative paths. If restrict_to_path is
set with allow_commands, the command must either be in the allow_commands list, or a name
without any dashes that is found on the path. In other words, if neither allow _commands nor
restrict_to_path is set, there is no restriction on the command, but otherwise only commands that are
permitted by one or the other are allowed. For example, if

al | ow_conmands = /usr/bin/vacation

and restrict_to_path is not set, the only permitted command is /usr/bin/vacation. The allow_
commands option may not be set if use shell is set.

[batch_id Use: pipe Type: string Default: unset|

See the description of local delivery batching in chapter 25.

[batch_max Use: pipe Type: integer Default: 1]

This limits the number of addresses that can be handled in a single delivery. See the description of
local delivery batching in chapter 25.

[check_string Use: pipe Type: string Default: unset|

As pipe writes the message, the start of each line is tested for matching check_string, and if it does,
the initial matching characters are replaced by the contents of escape string, provided both are set.
The value of check_string is a literal string, not a regular expression, and the case of any letters it
contains is significant. When use_bsmtp is set, the contents of check_string and escape_string are
forced to values that implement the SMTP escaping protocol. Any settings made in the configuration
file are ignored.

253 The pipe transport (29)

|[command Use: pipe Type: stringt Default: unset|

This option need not be set when pipe is being used to deliver to pipes obtained directly from address
redirections. In other cases, the option must be set, to provide a command to be run. It need not yield
an absolute path (see the path option below). The command is split up into separate arguments by
Exim, and each argument is separately expanded, as described in section 29.3 above.

|environment Use: pipe Type: string? Default: unset|

This option is used to add additional variables to the environment in which the command runs (see
section 29.4 for the default list). Its value is a string which is expanded, and then interpreted as a
colon-separated list of environment settings of the form <name>=<value>.

|escape_string Use: pipe Type: string Default: unset|

See check_string above.

[freeze_exec_fall Use: pipe Type: boolean Default: false|

Failure to exec the command in a pipe transport is by default treated like any other failure while
running the command. However, if freeze exec fail is set, failure to exec is treated specially, and
causes the message to be frozen, whatever the setting of ignore_status.

lignore_status Use: pipe Type: boolean Default: false|

If this option is true, the status returned by the subprocess that is set up to run the command is
ignored, and Exim behaves as if zero had been returned. Otherwise, a non-zero status or termination
by signal causes an error return from the transport unless the status value is one of those listed in
temp_errors; these cause the delivery to be deferred and tried again later.

Note: This option does not apply to timeouts, which do not return a status. See the timeout_ defer
option for how timeouts are handled.

[log_defer_output Use: pipe Type: boolean Default: false|

If this option is set, and the status returned by the command is one of the codes listed in temp_errors
(that is, delivery was deferred), and any output was produced, the first line of it is written to the main
log.

[log_fail_output Use: pipe Type: boolean Default: false|

If this option is set, and the command returns any output, and also ends with a return code that is
neither zero nor one of the return codes listed in temp_errors (that is, the delivery failed), the first
line of output iswritten to the main log. This option and log_output are mutually exclusive. Only one
of them may be set.

[log_output Use: pipe Type: boolean Defaullt: false|

If this option is set and the command returns any output, the first line of output is written to the main
log, whatever the return code. This option and log_fail _output are mutually exclusive. Only one of
them may be set.

|max_output Use: pipe Type: integer Default: 20K|

This specifies the maximum amount of output that the command may produce on its standard output
and standard error file combined. If the limit is exceeded, the process running the command is killed.

254 The pipe transport (29)

Thisisintended as a safety measure to catch runaway processes. The limit is applied independently of
the settings of the options that control what is done with such output (for example, return_output).
Because of buffering effects, the amount of output may exceed the limit by a small amount before
Exim notices.

|message_pr efix Use: pipe Type: stringt Default: see below]|

The string specified here is expanded and output at the start of every message. The default is unset if
use bsmtp is set. Otherwiseit is

nmessage_prefix =\
From ${if def:return_path{$return_path}{MAl LER- DAEMON} } \
${t od_bsdi nbox}\n

Thisisrequired by the commonly used /usr/bin/vacation program. However, it must not be present if
delivery is to the Cyrus IMAP server, or to the tmail local delivery agent. The prefix can be
suppressed by setting

message_prefix =

|message_suffix Use: pipe Type: string? Default: see below|

The string specified here is expanded and output at the end of every message. The default is unset if
use _bsmtp is set. Otherwiseit isasingle newline. The suffix can be suppressed by setting

nmessage_suffix =

path Use: pipe Type: string Default:
[bin:/usr/bin

This option specifies the string that is set up in the PATH environment variable of the subprocess. If
the command option does not yield an absolute path name, the command is sought in the PATH
directories, in the usua way. Warning: This does not apply to a command specified as a transport
filter.

|pipe_as _creator Use: pipe Type: boolean Default: false|

If the generic user option is not set and this option is true, the delivery process is run under the uid
that was in force when Exim was originally caled to accept the message. If the group id is not
otherwise set (via the generic group option), the gid that was in force when Exim was originally
called to accept the message is used.

[restrict_to_path Use: pipe Type: boolean Default: false|

When this option is set, any command name not listed in allow_commands must contain no slashes.
The command is searched for only in the directories listed in the path option. This option is intended
for use in the case when a pipe command has been generated from a user’s .forward file. This is
usually handled by a pipe transport called address pipe.

[return_fail_output Use: pipe Type: boolean Default: false|

If this option is true, and the command produced any output and ended with a return code other than
zero or one of the codes listed in temp_errors (that is, the delivery failed), the output is returned in
the bounce message. However, if the message has a null sender (that is, it isitself a bounce message),
output from the command is discarded. This option and return_output are mutually exclusive. Only
one of them may be set.

255 The pipe transport (29)

[return_output Use: pipe Type: boolean Defaullt: false|

If this option is true, and the command produced any output, the delivery is deemed to have failed
whatever the return code from the command, and the output is returned in the bounce message.
Otherwise, the output is just discarded. However, if the message has a null sender (that is, it is a
bounce message), output from the command is aways discarded, whatever the setting of this option.
Thisoption and return_fail_output are mutually exclusive. Only one of them may be set.

[temp_errors Use: pipe Type: string list Default: see below|

This option contains either a colon-separated list of numbers, or a single asterisk. If ignore_statusis
false and return_output is not set, and the command exits with a non-zero return code, the failure is
treated as temporary and the delivery is deferred if the return code matches one of the numbers, or if
the setting is a single asterisk. Otherwise, non-zero return codes are treated as permanent errors. The
default setting contains the codes defined by EX_TEMPFAIL and EX_CANTCREAT in sysexits.h. If
Exim is compiled on a system that does not define these macros, it assumes values of 75 and 73,
respectively.

[timeout Use: pipe Type: time Default: 1h|

If the command fails to complete within thistime, it iskilled. This normally causes the delivery to fail
(but see timeout_defer). A zero time interval specifies no timeout. In order to ensure that any
subprocesses created by the command are also killed, Exim makes the initial process a process group
leader, and kills the whole process group on a timeout. However, this can be defeated if one of the
processes starts a new process group.

[timeout_defer Use: pipe Type: boolean Default: false|

A timeout in a pipe transport, either in the command that the transport runs, or in atransport filter that
is associated with it, is by default treated as a hard error, and the delivery fails. However, if timeout_
defer is set true, both kinds of timeout become temporary errors, causing the delivery to be deferred.

[umask Use: pipe Type: octal integer Default: 022

This specifies the umask setting for the subprocess that runs the command.

[use_bsmtp Use: pipe Type: boolean Default: false|

If this option is set true, the pipe transport writes messages in “batch SMTP” format, with the
envelope sender and recipient(s) included as SMTP commands. If you want to include a leading
HELO command with such messages, you can do so by setting the message prefix option. See
section 45.10 for details of batch SMTP.

|use_classr esour ces Use: pipe Type: boolean Defaullt: false|

This option is available only when Exim is running on FreeBSD, NetBSD, or BSD/OS. If it is set true,
the setclassresources() function is used to set resource limits when a pipe transport is run to perform a
delivery. The limits for the uid under which the pipe is to run are obtained from the login class
database.

luse_crlf Use: pipe Type: boolean Default: false|

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence written
to the pipeisthen an exact image of what would be sent down areal SMTP connection.

256 The pipe transport (29)

The contents of the message prefix and message suffix options are written verbatim, so must
contain their own carriage return characters if these are needed. Since the default values for both
message prefix and message suffix end with a single linefeed, their values must be changed to end
with\ r\ nif use crif isset.

|use_shell Use: pipe Type: boolean Defaullt: false|

If this option is set, it causes the command to be passed to /bin/sh instead of being run directly from
the transport, as described in section 29.3. This is less secure, but is heeded in some situations where
the command is expected to be run under a shell and cannot easily be modified. The allow_
commands and restrict_to_path options, and the $pi pe_addr esses facility are incompatible
with use_shell. The command is expanded as a single string, and handed to /bin/sh as data for its -c
option.

29.6 Using an external local delivery agent

The pipe transport can be used to pass all messages that require local delivery to a separate local
delivery agent such as procmail. When doing this, care must be taken to ensure that the pipe is run
under an appropriate uid and gid. In some configurations one wants this to be a uid that is trusted by
the delivery agent to supply the correct sender of the message. It may be necessary to recompile or
reconfigure the delivery agent so that it trusts an appropriate user. The following is an example
transport and router configuration for procmail:

transport

procmai | _pi pe:
driver = pipe
command = /usr/local/bin/procrmail -d $l ocal _part
return_path_add
delivery date_add
envel ope_t o_add
check_string = "From"
escape_string = ">From™
user = $l ocal _part
group = nai

router

procmai | :
driver = accept
check | ocal _user
transport = procmail _pipe

In this example, the pipeis run as the local user, but with the group set to mail. An alternativeisto run
the pipe as a specific user such as mail or exim, but in this case you must arrange for procmail to trust
that user to supply a correct sender address. If you do not specify either a group or auser option, the
pipe command is run as the local user. The home directory is the user’s home directory by default.

Note: The command that the pipe transport runs does not begin with

| FS=" "

as shown in some procmail documentation, because Exim does not by default use a shell to run pipe
commands.

The next example shows a transport and a router for a system where local deliveries are handled by
the Cyrus IMAP server.

transport
| ocal _delivery_cyrus:
driver = pipe
command = /usr/cyrus/bin/deliver \
-m ${substr_1: 3%l ocal _part_suffix} -- $local _part
user = cyrus
group = nai

257 The pipe transport (29)

return_out put

| og_out put
nessage_prefix
nessage_suffix

router
| ocal _user_cyrus:
driver = accept
check_I| ocal _user
| ocal _part_suffix = .*
transport = | ocal delivery cyrus

Note the unsetting of message prefix and message_suffix, and the use of return_output to cause
any text written by Cyrus to be returned to the sender.

258 The pipe transport (29)

30. The smtp transport

The smtp transport delivers messages over TCP/IP connections using the SMTP or LM TP protocol.
Thelist of hoststo try can either be taken from the address that is being processed (having been set up
by the router), or specified explicitly for the transport. Timeout and retry processing (see chapter 32)
is applied to each | P address independently.

30.1 Multiple messages on a single connection
The sending of multiple messages over a single TCP/IP connection can arise in two ways.

* If amessage contains more than max_rcpt (see below) addresses that are routed to the same host,
more than one copy of the message has to be sent to that host. In this situation, multiple copies may
be sent in asingle run of the smtp transport over a single TCP/IP connection. (What Exim actually
does when it has too many addresses to send in one message also depends on the value of the global
remote_max_parallel option. Details are given in section 45.1.)

» When a message has been successfully delivered over a TCP/IP connection, Exim looks in its hints
database to see if there are any other messages awaiting a connection to the same host. If there are,
anew delivery processis started for one of them, and the current TCP/IP connection is passed on to
it. The new process may in turn send multiple copies and possibly create yet another process.

For each copy sent over the same TCP/IP connection, a sequence counter isincremented, and if it ever
gets to the value of connection_max_messages, no further messages are sent over that connection.

30.2 Use of the $host variable

At the start of arun of the smtp transport, the values of $host and $host_address are the name and 1P
address of the first host on the host list passed by the router. However, when the transport is about to
connect to a specific host, and while it is connected to that host, $host and $host_address are set to the
values for that host. These are the values that are in force when the helo _data, hosts try auth,
interface, serialize_hosts, and the various TL S options are expanded.

30.3 Private options for smtp
The private options of the smtp transport are as follows:

|address retry_include_sender Use: smtp Type: boolean Defallt: true|

When an address is delayed because of a 4xx response to a RCPT command, it is the combination of
sender and recipient that is delayed in subsequent queue runs until the retry time is reached. Y ou can
delay the recipient without reference to the sender (which is what earlier versions of Exim did), by
setting address_retry_include_sender false. However, this can lead to problems with servers that
regularly issue 4xx responses to RCPT commands.

lallow_localhost Use: smip Type: boolean Defaullt: false|

When a host specified in hosts or fallback_hosts (see below) turns out to be the local host, or is listed
in hosts treat_as local, delivery is deferred by default. However, if allow_localhost is set, Exim
goes on to do the delivery anyway. This should be used only in specia cases when the configuration
ensures that no looping will result (for example, a differently configured Exim is listening on the port
to which the message is sent).

|authenticated_sender Use: smitp Type: stringt Default: unset|

When Exim has authenticated as a client, or if authenticated_sender_force is true, this option sets a
value for the AUTH= item on outgoing MAIL commands, overriding any existing authenticated
sender value. If the string expansion is forced to fail, the option is ignored. Other expansion failures
cause delivery to be deferred. If the result of expansion is an empty string, that is also ignored.

259 The smtp transport (30)

If the SMTP session is not authenticated, the expansion of authenticated_sender still happens (and
can cause the delivery to be deferred if it fails), but no AUTH= item is added to MAIL commands
unless authenticated_sender_forceistrue.

This option alows you to use the smtp transport in LM TP mode to deliver mail to Cyrus IMAP and
provide the proper local part as the “authenticated sender”, via a setting such as:

aut henti cat ed_sender = $l ocal _part

This removes the need for IMAP subfolders to be assigned special ACLs to alow direct delivery to
those subfolders.

Because of expected uses such as that just described for Cyrus (when no domain isinvolved), thereis
no checking on the syntax of the provided value.

lauthenticated_sender_force Use. smtp Type: boolean Default: false|

If this option is set true, the authenticated sender option’s value is used for the AUTH= item on
outgoing MAIL commands, even if Exim has not authenticated as a client.

|command_timeout Use: smtp Type: time Default: 5m|

This sets a timeout for receiving a response to an SMTP command that has been sent out. It is also
used when waiting for the initial banner line from the remote host. Its value must not be zero.

[connect_timeout Use: smtp Type: time Default: 5m|

This sets a timeout for the connect() function, which sets up a TCP/IP call to a remote host. A setting
of zero alows the system timeout (typically several minutes) to act. To have any effect, the value of
this option must be less than the system timeout. However, it has been observed that on some systems
there is no system timeout, which is why the default value for this option is 5 minutes, a value
recommended by RFC 1123.

[connection_max_messages Use: smtp Type: integer Default: 500

This controls the maximum number of separate message deliveries that are sent over asingle TCP/IP
connection. If the value is zero, there is no limit. For testing purposes, this value can be overridden by
the -oB command line option.

|data_timeout Use. smtp Type: time Default: 5m|

This sets a timeout for the transmission of each block in the data portion of the message. As a resullt,
the overall timeout for a message depends on the size of the message. Its value must not be zero. See
also final_timeout.

|delay_after_cutoff Use. smtp Type: boolean Defaullt: true|

This option controls what happens when all remote |P addresses for a given domain have been
inaccessible for so long that they have passed their retry cutoff times.

In the default state, if the next retry time has not been reached for any of them, the address is bounced
without trying any deliveries. In other words, Exim delays retrying an |1P address after the final cutoff
time until a new retry time is reached, and can therefore bounce an address without ever trying a
delivery, when machines have been down for along time. Some people are unhappy at this prospect,
0...

If delay_after_cutoff is set false, Exim behaves differently. If all 1P addresses are past their fina
cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message

260 The smtp transport (30)

arrived. If there are none, of if they all fail, the address is bounced. In other words, it does not delay
when a new message arrives, but immediately tries those expired |P addresses that haven't been tried
since the message arrived. If there is a continuous stream of messages for the dead hosts, unsetting
delay_after _cutoff meansthat there will be many more attemptsto deliver to them.

|[dns_qualify_single Use: smtp Type: boolean Defaullt: true|

If the hosts or fallback__hosts option is being used, and the gethostbyname option is false, the RES _
DEFNAMES resolver option is set. See the qualify_single option in chapter 17 for more details.

|dns_sear ch_parents Use: smip Type: boolean Defaullt: false|

If the hosts or fallback_hosts option is being used, and the gethostbyname option is false, the RES _
DNSRCH resolver option is set. See the sear ch_parents option in chapter 17 for more details.

[fallback_hosts Use. smtp Type: string list Default: unset|

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or |P addresses, optionally also including port numbers, though the separator can be changed,
as described in section 6.19. Each individual item in the list is the same as an item in aroute list
setting for the manualr oute router, as described in section 20.5.

Fallback hosts can also be specified on routers, which associate them with the addresses they process.
As for the hosts option without hosts override, fallback hosts specified on the transport is used
only if the address does not have its own associated fallback host list. Unlike hosts, a setting of
fallback _hosts on an address is not overridden by hosts override. However, hosts randomize does
apply to fallback host lists.

If Exim is unable to deliver to any of the hosts for a particular address, and the errors are not
permanent rejections, the address is put on a separate transport queue with its host list replaced by the
fallback hosts, unless the address was routed via MX records and the current host was in the origina
MX list. In that situation, the fallback host list is not used.

Once normal deliveries are complete, the fallback queue is delivered by re-running the same
transports with the new host lists. If several failing addresses have the same fallback hosts (and max_
rcpt permitsit), asingle copy of the message is sent.

The resolution of the host names on the fallback list is controlled by the gethostbyname option, as for
the hosts option. Fallback hosts apply both to cases when the host list comes with the address and
when it is taken from hosts. This option provides a“use a smart host only if delivery fails” facility.

[final_timeout Use: smtp Type: time Default: 10m|

This is the timeout that applies while waiting for the response to the final line containing just “.” that
terminates a message. Its value must not be zero.

|gethostbyname Use: smtp Type: boolean Default: false|

If this option is true when the hosts and/or fallback _hosts options are being used, names are looked
up using gethostbyname() (or getipnodebyname() when available) instead of using the DNS. Of
course, that function may in fact use the DNS, but it may also consult other sources of information
such as/etc/hosts.

helo_data Use: smtp Type: stringt Default:
$pri mary_host nane

The value of this option is expanded, and used as the argument for the EHLO, HELO, or LHLO
command that starts the outgoing SMTP or LM TP session. The variables $host and $host_address are

261 The smtp transport (30)

set to the identity of the remote host, and can be used to generate different values for different servers.

[hosts Use: smtp Type: string listt Default: unset|

Hosts are associated with an address by a router such as dnslookup, which finds the hosts by looking
up the address domain in the DNS, or by manualroute, which has lists of hosts in its configuration.
However, email addresses can be passed to the smtp transport by any router, and not all of them can
provide an associated list of hosts.

The hosts option specifies a list of hosts to be used if the address being processed does not have any
hosts associated with it. The hosts specified by hosts are also used, whether or not the address has its
own hosts, if hosts overrideis set.

The string is first expanded, before being interpreted as a colon-separated list of host names or IP
addresses, possibly including port numbers. The separator may be changed to something other than
colon, as described in section 6.19. Each individual item in the list is the same as an item in aroute
list setting for the manualroute router, as described in section 20.5. However, note that the / MX
facility of the manualroute router is not available here.

If the expansion fails, delivery is deferred. Unless the failure was caused by the inability to complete a
lookup, the error is logged to the panic log as well as the main log. Host names are looked up either
by searching directly for address records in the DNS or by caling gethostbyname() (or
getipnodebyname() when available), depending on the setting of the gethostbyname option. When
Exim is compiled with IPv6 support, if a host that is looked up in the DNS has both 1Pv4 and IPv6
addresses, both types of address are used.

During delivery, the hosts are tried in order, subject to their retry status, unless hosts randomize is
Set.

[hosts_avoid_esmtp Use: smtp Type: host listT Default: unset|

This option is for use with broken hosts that announce ESM TP facilities (for example, PIPELINING)
and then fail to implement them properly. When a host matches hosts avoid _esmtp, Exim sends
HELO rather than EHLO at the start of the SMTP session. This means that it cannot use any of the
ESMTP facilities such as AUTH, PIPELINING, SIZE, and STARTTLS.

[hosts_avoid_tls Use: smtp Type: host listt Default: unset|

Exim will not try to start a TLS session when delivering to any host that matches this list. See chapter
39 for detailsof TLS.

[hosts_max_try Use: smtp Type: integer Default: 5]

This option limits the number of 1P addresses that are tried for any one delivery in cases where there
aretemporary delivery errors. Section 30.4 describes in detail how the value of this option is used.

[hosts max_try_hardlimit Use: smtp Type: integer Default: 50|

This is an additional check on the maximum number of IP addresses that Exim tries for any one
delivery. Section 30.4 describesits use and why it exists.

[hosts_nopass tls Use: smtp Type: host listt Default: unset|

For any host that matches this list, a connection on which a TLS session has been started will not be
passed to a new delivery process for sending another message on the same connection. See section
39.10 for an explanation of when this might be needed.

[hosts_override Use: smip Type: boolean Defaullt: false|

262 The smtp transport (30)

If this option is set and the hosts option is also set, any hosts that are attached to the address are
ignored, and instead the hosts specified by the hosts option are always used. This option does not
apply to fallback _hosts.

[hosts_randomize Use. smtp Type: boolean Default: false|

If this option is set, and either the list of hosts is taken from the hosts or the fallback _hosts option, or
the hosts supplied by the router were not obtained from M X records (this includes fallback hosts from
the router), and were not randomizied by the router, the order of trying the hosts is randomized each
time the transport runs. Randomizing the order of a host list can be used to do crude load sharing.

When hosts_randomize is true, a host list may be split into groups whose order is separately
randomized. This makes it possible to set up MX-like behaviour. The boundaries between groups are
indicated by an item that isjust + in the host list. For example:

hosts = host 1: host 2: host 3: +: host 4: host 5

The order of the first three hosts and the order of the last two hosts is randomized for each use, but the
first three always end up before the last two. If hosts randomize is not set, a + item in the list is
ignored.

|hosts require_auth Use: smtp Type: host listt Default: unset|

This option provides a list of servers for which authentication must succeed before Exim will try to
transfer a message. If authentication fails for servers which are not in this list, Exim tries to send
unauthenticated. If authentication fails for one of these servers, delivery is deferred. This temporary
error is detectable in the retry rules, so it can be turned into a hard failure if required. See also hosts
try_auth, and chapter 33 for details of authentication.

[hosts _require_tls Use: smtp Type: host listt Default: unset|

Exim will insist on using a TLS session when delivering to any host that matches this list. See chapter
39 for details of TLS. Note: This option affects outgoing mail only. To insist on TLS for incoming
messages, use an appropriate ACL.

[hosts_try_auth Use: smtp Type: host listt Default: unset|

This option provides a list of servers to which, provided they announce authentication support, Exim
will attempt to authenticate as a client when it connects. If authentication fails, Exim will try to
transfer the message unauthenticated. See also hosts_require_auth, and chapter 33 for details of
authentication.

[interface Use. smtp Type: string listt Default: unset|

This option specifies which interface to bind to when making an outgoing SMTP call. Note: Do not
confuse this with the interface address that was used when a message was received, which is in
$received_ip_address, formerly known as $interface _address. The name was changed to minimize
confusion with the outgoing interface address. There is no variable that contains an outgoing interface
address because, unlessit is set by this option, its value is unknown.

During the expansion of the interface option the variables $host and $host_address refer to the host
to which a connection is about to be made during the expansion of the string. Forced expansion
failure, or an empty string result causes the option to be ignored. Otherwise, after expansion, the
string must be a list of 1P addresses, colon-separated by default, but the separator can be changed in
the usual way. For example:

interface = <; 192.168.123.123 ; 3ffe:ffff:836f::fe86:a061
The first interface of the correct type (IPv4 or IPv6) is used for the outgoing connection. If none of

263 The smtp transport (30)

them are the correct type, the option is ignored. If interface is not set, or is ignored, the system’s IP
functions choose which interface to use if the host has more than one.

|keepalive Use: smtp Type: boolean Defaullt: true|

This option controls the setting of SO_KEEPALIVE on outgoing TCP/IP socket connections. When
set, it causes the kernel to probe idle connections periodically, by sending packets with “old”
sequence numbers. The other end of the connection should send a acknowledgement if the connection
is still okay or areset if the connection has been aborted. The reason for doing this is that it has the
beneficial effect of freeing up certain types of connection that can get stuck when the remote host is
disconnected without tidying up the TCP/IP call properly. The keepalive mechanism takes severa
hours to detect unreachable hosts.

[Imtp_ignore_quota Use: smitp Type: boolean Default: false|

If this option is set true when the protocol option is set to “Imtp”, the string | GNOREQUOTA is added
to RCPT commands, provided that the LMTP server has advertised support for IGNOREQUOTA in
its response to the LHLO command.

[max_rcpt Use: smtp Type: integer Default: 100]

This option limits the number of RCPT commands that are sent in a single SMTP message
transaction. Each set of addresses is treated independently, and so can cause parallel connections to
the same host if remote_max_parallel permits this.

[multi_domain Use: smtp Type: boolean Defaullt: true|

When this option is set, the smtp transport can handle a number of addresses containing a mixture of
different domains provided they all resolve to the same list of hosts. Turning the option off restricts
the transport to handling only one domain at a time. This is useful if you want to use $domain in an
expansion for the transport, because it is set only when there is a single domain involved in a remote
delivery.

[port Use: smtp Type: string? Default: see below|

This option specifies the TCP/IP port on the server to which Exim connects. Note: Do not confuse
this with the port that was used when a message was received, which isin $received port, formerly
known as $interface_port. The name was changed to minimize confusion with the outgoing port.
Thereis no variable that contains an outgoing port.

If the value of this option begins with a digit it is taken as a port number; otherwise it is looked up
using getservbyname(). The default value is normally “smtp”, but if protocol is set to “Imtp”, the
default is“Imtp”. If the expansion fails, or if aport number cannot be found, delivery is deferred.

[protocol Use: smtp Type: string Default: smtp|

If this option is set to “Imtp” instead of “smtp”, the default value for the port option changes to
“Imtp”, and the transport operates the LM TP protocol (RFC 2033) instead of SMTP. This protocol is
sometimes used for local deliveries into closed message stores. Exim also has support for running
LMTP over apipeto alocal process— see chapter 28.

[retry_include_ip_address Use: smtp Type: boolean Defaullt: true|

Exim normally includes both the host hame and the IP address in the key it constructs for indexing
retry data after a temporary delivery failure. This means that when one of severa IP addresses for a
host isfailing, it getstried periodically (controlled by the retry rules), but use of the other | P addresses

264 The smtp transport (30)

is not affected.

However, in some dialup environments hosts are assigned a different |IP address each time they
connect. In this situation the use of the IP address as part of the retry key leads to undesirable
behaviour. Setting this option false causes Exim to use only the host name. This should normally be
done on a separate instance of the smtp transport, set up specially to handle the dialup hosts.

|serialize_hosts Use: smtp Type: host listt Default: unset|

Because Exim operates in a distributed manner, if several messages for the same host arrive at around
the same time, more than one simultaneous connection to the remote host can occur. This is not
usually a problem except when there is a slow link between the hosts. In that situation it may be
helpful to restrict Exim to one connection at a time. This can be done by setting serialize_hosts to
match the relevant hosts.

Exim implements seriaization by means of a hints database in which a record is written whenever a
process connects to one of the restricted hosts. The record is deleted when the connection is
completed. Obvioudly there is scope for records to get left lying around if there is a system or program
crash. To guard against this, Exim ignores any records that are more than six hours old.

If you set up this kind of serialization, you should also arrange to delete the relevant hints database
whenever your system reboots. The names of the files start with misc and they are kept in the spool/db
directory. There may be one or two files, depending on the type of DBM in use. The same files are
used for ETRN serialization.

[size_addition Use. smtp Type: integer Default: 1024

If aremote SMTP server indicates that it supports the SIZE option of the MAIL command, Exim uses
this to pass over the message size at the start of an SMTP transaction. It adds the value of size
addition to the value it sends, to allow for headers and other text that may be added during delivery
by configuration options or in a transport filter. It may be necessary to increase thisif alot of text is
added to messages.

Alternatively, if the value of size addition is set negative, it disables the use of the SIZE option
atogether.

|tls_certificate Use: smtp Type: string Default: unset|

The value of this option must be the absolute path to a file which contains the client’s certificate, for
possible use when sending a message over an encrypted connection. The values of $host and $host_
address are set to the name and address of the server during the expansion. See chapter 39 for details
of TLS.

Note: This option must be set if you want Exim to be able to use a TLS certificate when sending
messages as a client. The global option of the same name specifies the certificate for Exim as a server;
it is not automatically assumed that the same certificate should be used when Exim is operating as a
client.

[tls crl Use: smtp Type: string? Default: unset|

This option specifies a certificate revocation list. The expanded value must be the name of a file that
containsa CRL in PEM format.

|tls_privatekey Use: smtp Type: string? Default: unset|

The value of this option must be the absolute path to a file which contains the client’s private key.
This is used when sending a message over an encrypted connection using a client certificate. The
values of $host and $host_address are set to the name and address of the server during the expansion.

265 The smtp transport (30)

If this option is unset, or the expansion is forced to fail, or the result is an empty string, the private key
is assumed to be in the same file as the certificate. See chapter 39 for details of TLS.

tls_require_ciphers Use. smtp Type: string? Default: unset|

The value of this option must be alist of permitted cipher suites, for use when setting up an outgoing
encrypted connection. (There is a globa option of the same name for controlling incoming
connections.) The values of $host and $host_address are set to the name and address of the server
during the expansion. See chapter 39 for details of TLS; note that this option is used in different ways
by OpenSSL and GnuTLS (see sections 39.4 and 39.5). For GnuTLS, the order of the ciphers is a
preference order.

[tls_tempfail_tryclear Use: smip Type: boolean Defallt: true|

When the server host is not in hosts_require_tls, and there is a problem in setting up a TLS session,
this option determines whether or not Exim should try to deliver the message unencrypted. If it is set
false, delivery to the current host is deferred; if there are other hosts, they are tried. If thisoption is set
true, Exim attempts to deliver unencrypted after a 4xx response to STARTTLS. Also, if STARTTLS
is accepted, but the subsequent TL S negotiation fails, Exim closes the current connection (because it
isin an unknown state), opens a new one to the same host, and then tries the delivery in clear.

|tls_verify_certificates Use: smtp Type: string? Default: unset|

The value of this option must be the absolute path to afile containing permitted server certificates, for
use when setting up an encrypted connection. Alternatively, if you are using OpenSSL, you can set
tls verify_certificates to the name of a directory containing certificate files. This does not work with
GnuTLS; the option must be set to the name of a single file if you are using GnuTLS. The values of
$host and $host_address are set to the name and address of the server during the expansion of this
option. See chapter 39 for details of TLS.

30.4 How the limits for the number of hosts to try are used

There are two options that are concerned with the number of hosts that are tried when an SMTP
delivery takes place. They are hosts max_try and hosts_max_try_hardlimit.

The hosts_max_try option limits the number of hosts that are tried for a single delivery. However,
despite the term “host” in its name, the option actually applies to each IP address independently. In
other words, a multihomed host is treated as several independent hosts, just asit isfor retrying.

Many of the larger ISPs have multiple MX records which often point to multihomed hosts. As a
result, a list of a dozen or more IP addresses may be created as a result of routing one of these
domains.

Trying every single IP address on such a long list does not seem sensible; if several at the top of the
list fail, it is reasonable to assume there is some problem that is likely to affect al of them. Roughly
speaking, the value of hosts max_try is the maximum number that are tried before deferring the
delivery. However, the logic cannot be quite that simple.

Firstly, 1P addresses that are skipped because their retry times have not arrived do not count, and in
addition, addresses that are past their retry limits are also not counted, even when they are tried. This
means that when some IP addresses are past their retry limits, more than the value of hosts_max_
retry may be tried. The reason for this behaviour is to ensure that al |P addresses are considered
before timing out an email address (but see below for an exception).

Secondly, when the hosts_max_try limit is reached, Exim looks down the host list to seeif thereisa
subsequent host with a different (higher valued) MX. If thereis, that host is considered next, and the
current | P address is used but not counted. This behaviour helps in the case of a domain with aretry
rule that hardly ever delays any hosts, asis now explained:

Consider the case of along list of hosts with one MX value, and a few with a higher MX value. If
hosts max_try is small (the default is 5) only a few hosts at the top of the list are tried at first. With

266 The smtp transport (30)

the default retry rule, which specifies increasing retry times, the higher MX hosts are eventualy tried
when those at the top of the list are skipped because they have not reached their retry times.

However, it is common practice to put a fixed short retry time on domains for large 1SPs, on the
grounds that their servers are rarely down for very long. Unfortunately, these are exactly the domains
that tend to resolve to long lists of hosts. The short retry time means that the lowest MX hosts are tried
every time. The attempts may be in a different order because of random sorting, but without the
special MX check, the higher MX hosts would never be tried until all the lower MX hosts had timed
out (which might be several days), because there are always some lower MX hosts that have reached
their retry times. With the special check, Exim considers at least one IP address from each MX value
at every delivery attempt, even if the hosts max_try limit has already been reached.

The above logic means that hosts max_try is not a hard limit, and in particular, Exim normally
eventually tries all the IP addresses before timing out an email address. When hosts_max_try was
implemented, this seemed a reasonable thing to do. Recently, however, some lunatic DNS
configurations have been set up with hundreds of IP addresses for some domains. It can take a very
long time indeed for an address to time out in these cases.

The hosts max_try hardlimit option was added to help with this problem. Exim never tries more
than this number of IP addresses; if it hits this limit and they are al timed out, the email address is
bounced, even though not all possible | P addresses have been tried.

267 The smtp transport (30)

31. Address rewriting

There are some circumstances in which Exim automatically rewrites domains in addresses. The two
most common are when an address is given without a domain (referred to as an “unqualified address’)
or when an address contains an abbreviated domain that is expanded by DNS lookup.

Unqualified envelope addresses are accepted only for localy submitted messages, or for messages
that are received from hosts matching sender _unqualified_hosts or recipient_unqualified_hosts, as
appropriate. Unqualified addresses in header lines are qualified if they are in locally submitted
messages, or messages from hosts that are permitted to send unqualified envelope addresses.
Otherwise, unqualified addresses in header lines are neither qualified nor rewritten.

One situation in which Exim does not automatically rewrite a domain is when it is the name of a
CNAME record in the DNS. The older RFCs suggest that such a domain should be rewritten using the
“canonical” name, and some MTAs do this. The new RFCs do not contain this suggestion.

31.1 Explicitly configured address rewriting

This chapter describes the rewriting rules that can be used in the main rewrite section of the
configuration file, and also in the generic headers rewrite option that can be set on any transport.

Some people believe that configured address rewriting is a Mortal Sin. Others believe that life is not
possible without it. Exim provides the facility; you do not have to use it.

The main rewriting rules that appear in the “rewrite” section of the configuration file are applied to
addresses in incoming messages, both envelope addresses and addresses in header lines. Each rule
specifies the types of addressto which it applies.

Whether or not addresses in header lines are rewritten depends on the origin of the headers and the
type of rewriting. Global rewriting, that is, rewriting rules from the rewrite section of the
configuration file, is applied only to those headers that were received with the message. Header lines
that are added by ACLs or by a system filter or by individual routers or transports (which are specific
to individual recipient addresses) are not rewritten by the global rules.

Rewriting at transport time, by means of the headers rewrite option, applies al headers except those
added by routers and transports. That is, as well as the headers that were received with the message, it
also applies to headers that were added by an ACL or asystem filter.

In general, rewriting addresses from your own system or domain has some legitimacy. Rewriting
other addresses should be done only with great care and in specia circumstances. The author of Exim
believes that rewriting should be used sparingly, and mainly for “regularizing” addresses in your own
domains. Although it can sometimes be used as a routing tool, thisis very strongly discouraged.

There are two commonly encountered circumstances where rewriting is used, as illustrated by these
examples:

» The company whose domain is hitch.fict.example has a number of hosts that exchange mail with
each other behind a firewall, but there is only a single gateway to the outer world. The gateway
rewrites * .hitch.fict.example as hitch.fict.example when sending mail off-site.

* A host rewrites the local parts of its own users so that, for example, fp42@hitch.fict.example
becomes Ford.Prefect@hitch.fict.example.

31.2 When does rewriting happen?
Configured address rewriting can take place at several different stages of a message's processing.

At the start of an ACL for MAIL, the sender address may have been rewritten by a specia
SMTP-time rewrite rule (see section 31.9), but no ordinary rewrite rules have yet been applied. If,
however, the sender address is verified in the ACL, it is rewritten before verification, and remains
rewritten thereafter. The subsequent value of $sender_address is the rewritten address. This aso
applies if sender verification happens in a RCPT ACL. Otherwise, when the sender address is not
verified, it is rewritten as soon as a message’' s header lines have been received.

268 Address rewriting (31)

Similarly, at the start of an ACL for RCPT, the current recipient’s address may have been rewritten by
a special SMTP-time rewrite rule, but no ordinary rewrite rules have yet been applied to it. However,
the behaviour is different from the sender address when a recipient is verified. The address is
rewritten for the verification, but the rewriting is not remembered at this stage. The value of $local_
part and $domain after verification are always the same as they were before (that is, they contain the
unrewritten — except for SMTP-time rewriting — address).

As soon as a message's header lines have been received, al the envelope recipient addresses are
permanently rewritten, and rewriting is also applied to the addresses in the header lines (if
configured). This happens before adding any header lines that were specified in MAIL or RCPT
ACLs, and before the DATA ACL and local_scan() functions are run.

When an address is being routed, either for delivery or for verification, rewriting is applied
immediately to child addresses that are generated by redirection, unless no_rewrite is set on the
router.

At transport time, additional rewriting of addresses in header lines can be specified by setting the
generic headers rewrite option on a transport. This option contains rules that are identical in form to
those in the rewrite section of the configuration file. They are applied to the original message header
lines and any that were added by ACLs or a system filter. They are not applied to header lines that are
added by routers or the transport.

The outgoing envelope sender can be rewritten by means of the return_path transport option.
However, it is not possible to rewrite envel ope recipients at transport time.

31.3 Testing the rewriting rules that apply on input

Exim'’s input rewriting configuration appears in a part of the run time configuration file headed by
“begin rewrite”. It can be tested by the -brw command line option. This takes an address (which can
be a full RFC 2822 address) as its argument. The output is a list of how the address would be
transformed by the rewriting rules for each of the different places it might appear in an incoming
message, that is, for each different header and for the envelope sender and recipient fields. For
example,

exi m-brw phl0@xi m wor kshop. exanpl e

might produce the output

sender: Philip. Hazel @xi m wor kshop. exanpl e
from Philip.Hazel @xi mworkshop. exanpl e

to: phl0@xi m wor kshop. exanmpl e

cc: phlOo@xi m wor kshop. exanpl e

bcc: phl10@xi m wor kshop. exanpl e

reply-to: Philip.Hazel @xi m workshop. exanpl e
env-from Philip. Hazel @xi m wor kshop. exanpl e
env-to: phl0o@xi m wor kshop. exanpl e

which shows that rewriting has been set up for that address when used in any of the source fields, but
not when it appears as a recipient address. At the present time, there is no equivaent way of testing
rewriting rules that are set for a particular transport.

31.4 Rewriting rules
The rewrite section of the configuration file consists of lines of rewriting rules in the form

<source pattern> <replacement> <flags>

Rewriting rules that are specified for the headers_rewrite generic transport option are given as a
colon-separated list. Each item in the list takes the same form as a line in the main rewriting
configuration (except that any colons must be doubled, of course).

The formats of source patterns and replacement strings are described below. Each is terminated by
white space, unless enclosed in double quotes, in which case normal quoting conventions apply inside
the quotes. The flags are single characters which may appear in any order. Spaces and tabs between

269 Address rewriting (31)

them are ignored.

For each address that could potentially be rewritten, the rules are scanned in order, and replacements
for the address from earlier rules can themselves be replaced by later rules (but see the “q” and “R”

flags).

The order in which addresses are rewritten is undefined, may change between releases, and must not
be relied on, with one exception: when a message is received, the envelope sender is aways rewritten
first, before any header lines are rewritten. For example, the replacement string for a rewrite of an
address in To: must not assume that the message’'s address in From: has (or has not) already been
rewritten. However, a rewrite of From: may assume that the envelope sender has already been
rewritten.

The variables $local_part and $domain can be used in the replacement string to refer to the address
that is being rewritten. Note that |lookup-driven rewriting can be done by arule of the form

*@ ${lookup ...

where the lookup key uses $1 and $2 or $local_part and $domain to refer to the address that is being
rewritten.

31.5 Rewriting patterns

The source pattern in a rewriting rule is any item which may appear in an address list (see section
10.18). It is in fact processed as a single-item address list, which means that it is expanded before
being tested against the address. As aways, if you use aregular expression as a pattern, you must take
care to escape dollar and backslash characters, or use the \ N facility to suppress string expansion
within the regular expression.

Domains in patterns should be given in lower case. Local parts in patterns are case-sensitive. If you
want to do case-insensitive matching of local parts, you can use a regular expression that starts with
NI .

After matching, the numerical variables $1, $2, etc. may be set, depending on the type of match which
occurred. These can be used in the replacement string to insert portions of the incoming address. $0
always refers to the complete incoming address. When a regular expression is used, the numerical
variables are set from its capturing subexpressions. For other types of pattern they are set as follows:

 If alocal part or domain starts with an asterisk, the numerical variables refer to the character strings
matched by asterisks, with $1 associated with the first asterisk, and $2 with the second, if present.
For example, if the pattern

*queen@. fict. exanple

is matched against the address hearts-queen@wonderland.fict.example then

$0 = hearts-queen@wonderl and. fict. exanpl e
$1 = hearts-
$2 = wonder| and

Note that if the local part does not start with an asterisk, but the domain does, it is $1 that contains
the wild part of the domain.

 If the domain part of the pattern is a partial lookup, the wild and fixed parts of the domain are
placed in the next available numerical variables. Suppose, for example, that the address
foo@bar .baz.example is processed by arewriting rule of the form

*@artial-dbm/sone/dbnifil e <replacement string>
and the key in the file that matches thedomainis*. baz. exanpl e. Then

$1 = foo
$2 = bar
$3 = baz. exanpl e

270 Address rewriting (31)

If the address foo@baz.example is looked up, this matches the same wildcard file entry, and in this
case $2 is set to the empty string, but $3 is still set to baz.example. If anon-wild key is matched in a
partial lookup, $2 is again set to the empty string and $3 is set to the whole domain. For non-partial
domain lookups, no numerical variables are set.

31.6 Rewriting replacements

If the replacement string for a rule is a single asterisk, addresses that match the pattern and the flags
are not rewritten, and no subsequent rewriting rules are scanned. For example,

hatt a@ ooki nggl ass. fict.exanple * f
specifies that hatta@lookingglass.fict.example is never to be rewritten in From: headers.

If the replacement string is not a single asterisk, it is expanded, and must yield a fully qualified
address. Within the expansion, the variables $local_part and $domain refer to the address that is being
rewritten. Any letters they contain retain their original case —they are not lower cased. The numerical
variables are set up according to the type of pattern that matched the address, as described above. If
the expansion is forced to fail by the presence of “fail” in a conditional or lookup item, rewriting by
the current rule is abandoned, but subsequent rules may take effect. Any other expansion failure
causes the entire rewriting operation to be abandoned, and an entry written to the panic log.

31.7 Rewriting flags
There are three different kinds of flag that may appear on rewriting rules:

» FHagsthat specify which headers and envelope addresses to rewrite: E, F, T, b, ¢, f, h, 1, s, t.
» A flag that specifies rewriting at SMTPtime: S.
» Flagsthat control the rewriting process: Q, g, R, w.

For rules that are part of the headers_rewrite generic transport option, E, F, T, and S are not
permitted.

31.8 Flags specifying which headers and envelope addresses to rewrite

If none of the following flag letters, nor the S’ flag (see section 31.9) are present, a main rewriting
rule applies to al headers and to both the sender and recipient fields of the envelope, whereas a
transport-time rewriting rule just applies to all headers. Otherwise, the rewriting rule is skipped unless
the relevant addresses are being processed.

rewrite all envelope fields
rewrite the envelope From field
rewrite the envelope To field
rewrite the Bcc: header

rewrite the Cc: header

rewrite the From: header
rewrite all headers

rewrite the Reply-To: header
rewrite the Sender: header
rewrite the To: header

~u - TrooTHTM

Y ou should be particularly careful about rewriting Sender: headers, and restrict this to special known
cases in your own domains.

31.9 The SMTP-time rewriting flag

The rewrite flag S’ specifies a rewrite of incoming envelope addresses at SMTP time, as soon as an
address is received in a MAIL or RCPT command, and before any other processing; even before
syntax checking. The pattern is required to be a regular expression, and it is matched against the
whole of the data for the command, including any surrounding angle brackets.

271 Address rewriting (31)

This form of rewrite rule allows for the handling of addresses that are not compliant with RFCs 2821
and 2822 (for example, “bang paths” in batched SMTP input). Because the input is not required to be
a syntactically valid address, the variables $local_part and $domain are not available during the
expansion of the replacement string. The result of rewriting replaces the original addressin the MAIL
or RCPT command.

31.10 Flags controlling the rewriting process

There are four flags which control the way the rewriting process works. These take effect only when a
rule is invoked, that is, when the address is of the correct type (matches the flags) and matches the
pattern:

» If the“ Q" flag is set on arule, the rewritten address is permitted to be an unqualified local part. It is
qualified with qualify_recipient. In the absence of “Q” the rewritten address must always include a
domain.

« If the “q” flag is set on a rule, no further rewriting rules are considered, even if no rewriting
actually takes place because of a“fail” in the expansion. The “q” flag is not effective if the address
is of the wrong type (does not match the flags) or does not match the pattern.

» The“R” flag causes a successful rewriting rule to be re-applied to the new address, up to ten times.
It can be combined with the “q" flag, to stop rewriting once it fails to match (after at least one
successful rewrite).

» When an addressin a header is rewritten, the rewriting normally applies only to the working part of
the address, with any comments and RFC 2822 “phrase” left unchanged. For example, rewriting
might change

From Ford Prefect <fp42@estaurant. hitch.fict.exanple>
into
From Ford Prefect <prefectf@itch.fict.exanple>

Sometimes there is a need to replace the whole address item, and this can be done by adding the
flag letter “w” to arule. If thisis set on arule that causes an address in a header line to be rewritten,
the entire address is replaced, not just the working part. The replacement must be a complete RFC
2822 address, including the angle brackets if necessary. If text outside angle brackets contains a
character whose value is greater than 126 or less than 32 (except for tab), the text is encoded
according to RFC 2047. The character set is taken from headers charset, which defaults to
|SO-8859-1.

When the “w” flag is set on a rule that causes an envelope address to be rewritten, all but the
working part of the replacement address is discarded.

31.11 Rewriting examples
Hereis an example of the two common rewriting paradigms:

*@.hitch.fict.exanple $1@itch.fict.exanple
*@itch.fict.exanple ${| ookup{$1}dbrm{/ et c/ r eal nanes}\
{$value}fail}@itch.fict.exanple bctfrF

Note the use of “fail” in the lookup expansion in the second rule, forcing the string expansion to fail if
the lookup does not succeed. In this context it has the effect of leaving the origina address
unchanged, but Exim goes on to consider subsequent rewriting rules, if any, because the “q” flag is
not present in that rule. An alternative to “fail” would be to supply $1 explicitly, which would cause
the rewritten address to be the same as before, at the cost of a small bit of processing. Not supplying
either of theseis an error, since the rewritten address would then contain no local part.

The first example above replaces the domain with a superior, more general domain. This may not be
desirable for certain local parts. If the rule

root@. hitch.fict.exanple *

272 Address rewriting (31)

were inserted before the first rule, rewriting would be suppressed for the local part root at any domain
ending in hitch.fict.example.

Rewriting can be made conditional on a number of tests, by making use of ${if in the expansion item.
For example, to apply arewriting rule only to messages that originate outside the local host:

*@.hitch.fict.exanple "${if leq {$sender_host_address}{}\
{$1@itch.fict.exanple}fail}"

The replacement string is quoted in this example because it contains white space.

Exim does not handle addresses in the form of “bang paths’. If it sees such an address it treats it as an
unqualified local part which it qualifies with the local qualification domain (if the source of the
message is local or if the remote host is permitted to send unqualified addresses). Rewriting can
sometimes be used to handle simple bang paths with a fixed number of components. For example, the
rule

\NM([AM]H)!(.*) @our. domai n. exanpl eS\N $2@1

rewrites a two-component bang path host.nameluser as the domain address user@host.name.
However, thereis a security implication in using this as aglobal rewriting rule for envel ope addresses.
It can provide a backdoor method for using your system as a relay, because the incoming addresses
appear to be local. If the bang path addresses are received via SMTP, it is safer to usethe “S’ flag to
rewrite them as they are received, so that relay checking can be done on the rewritten addresses.

273 Address rewriting (31)

32. Retry configuration

The “retry” section of the run time configuration file contains a list of retry rules that control how
often Exim tries to deliver messages that cannot be delivered at the first attempt. If there are no retry
rules, temporary errors are treated as permanent. The -brt command line option can be used to test
which retry rule will be used for a given address, domain and error.

The most common cause of retries is temporary failure to deliver to a remote host because the host is
down, or inaccessible because of a network problem. Exim’s retry processing in this case is applied
on a per-host (strictly, per |P address) basis, not on a per-message basis. Thus, if one message has
recently been delayed, delivery of a new message to the same host is not immediately tried, but waits
for the host’s retry time to arrive. If the retry_defer log selector is set, the message “retry time not
reached” is written to the main log whenever a delivery is skipped for this reason. Section 45.2
contains more details of the handling of errors during remote deliveries.

Retry processing applies to routing as well as to delivering, except as covered in the next paragraph.
The retry rules do not distinguish between these actions. It is not possible, for example, to specify
different behaviour for failures to route the domain snark.fict.example and failures to deliver to the
host snark.fict.example. | didn’t think anyone would ever need this added complication, so did not
implement it. However, although they share the same retry rule, the actual retry times for routing and
transporting a given domain are maintained independently.

When a delivery is not part of a queue run (typically an immediate delivery on receipt of a message),
the routers are always run, and local deliveries are always attempted, even if retry times are set for
them. This makes for better behaviour if one particular message is causing problems (for example,
causing quota overflow, or provoking an error in afilter file). If such a delivery suffers a temporary
failure, the retry data is updated as normal, and subsequent delivery attempts from queue runs occur
only when the retry time for the local addressis reached.

32.1 Changing retry rules

If you change the retry rules in your configuration, you should consider whether or not to delete the
retry data that is stored in Exim's spool areain files with names like db/retry. Deleting any of Exim’'s
hintsfilesis dways safe; that is why they are called “hints’.

The hints retry data contains suggested retry times based on the previous rules. In the case of a
long-running problem with a remote host, it might record the fact that the host has timed out. If your
new rules increase the timeout time for such a host, you should definitely remove the old retry data
and let Exim recreate it, based on the new rules. Otherwise Exim might bounce messages that it
should now be retaining.

32.2 Format of retry rules

Each retry rule occupies one line and consists of three or four parts, separated by white space: a
pattern, an error name, an optional list of sender addresses, and a list of retry parameters. The pattern
and sender lists must be enclosed in double quotes if they contain white space. The rules are searched
in order until one is found where the pattern, error name, and sender list (if present) match the failing
host or address, the error that occurred, and the message' s sender, respectively.

The pattern is any single item th