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CHAPTER 1

Introduction

This guide provides a reference about the Python interface of GetFEM. For a complete reference of
GetFEM, please report to the specific guides, but you should be able to use the getfem-interface’s without
any particular knowledge of the GetFEM internals, although a basic knowledge about Finite Elements
is required. This documentation is however not self contained. You should in particular refer to the user
documentation to have a more extensive description of the structures algorithms and concepts used.

Copyright © 2004-2022 GetFEM project.

The text of the GetFEM website and the documentations are available for modification and reuse under
the terms of the GNU Free Documentation License

GetFEM is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version along with the GCC Runtime Library Exception either version
3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC
Runtime Library Exception for more details. You should have received a copy of the GNU Lesser
General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51
Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

1
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CHAPTER 2

Installation

If installing from sources, use the option –enable-python of the configure script.

For the parallel version of the interface, see also ud-parallel.

See the download and install page for the installation of GetFEM on different plateforms.

3
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CHAPTER 3

Preliminary

This is just a short summary of the terms employed in this manual. If you are not familiar with finite
elements, this should be useful (but in any case, you should definitively read the dp).

The mesh is composed of convexes. What we call convexes can be simple line segments, prisms,
tetrahedrons, curved triangles, of even something which is not convex (in the geometrical sense). They
all have an associated reference convex: for segments, this will be the [0, 1] segment, for tri-
angles this will be the canonical triangle (0, 0) − (0, 1) − (1, 0), etc. All convexes of the mesh are
constructed from the reference convex through a geometric transformation. In simple cases
(when the convexes are simplices for example), this transformation will be linear (hence it is easily in-
verted, which can be a great advantage). In order to define the geometric transformation, one defines
geometrical nodes on the reference convex. The geometrical transformation maps these nodes to
the mesh nodes.

On the mesh, one defines a set of basis functions: the FEM. A FEM is associated at each convex. The
basis functions are also attached to some geometrical points (which can be arbitrarily chosen). These
points are similar to the mesh nodes, but they don’t have to be the same (this only happens on very
simple cases, such as a classical 𝑃1 fem on a triangular mesh). The set of all basis functions on the mesh
forms the basis of a vector space, on which the PDE will be solved. These basis functions (and their
associated geometrical point) are the degrees of freedom (contracted to dof). The FEM is said
to be Lagrangian when each of its basis functions is equal to one at its attached geometrical point,
and is null at the geometrical points of others basis functions. This is an important property as it is very
easy to interpolate an arbitrary function on the finite elements space.

The finite elements method involves evaluation of integrals of these basis functions (or product of ba-
sis functions etc.) on convexes (and faces of convexes). In simple cases (polynomial basis functions
and linear geometrical transformation), one can evaluate analytically these integrals. In other cases,
one has to approximate it using quadrature formulas. Hence, at each convex is attached an
integration method along with the FEM. If you have to use an approximate integration method,
always choose carefully its order (i.e. highest degree of the polynomials who are exactly integrated with
the method): the degree of the FEM, of the polynomial degree of the geometrical transformation, and the
nature of the elementary matrix have to be taken into account. If you are unsure about the appropriate
degree, always prefer a high order integration method (which will slow down the assembly) to a low
order one which will produce a useless linear-system.

5
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The process of construction of a global linear system from integrals of basis functions on each convex is
the assembly.

A mesh, with a set of FEM attached to its convexes is called a mesh_fem object in GetFEM.

A mesh, with a set of integration methods attached to its convexes is called a mesh_im object in
GetFEM.

A mesh_fem can be used to approximate scalar fields (heat, pression, . . . ), or vector fields (displacement,
electric field, . . . ). A mesh_im will be used to perform numerical integrations on these fields. Most of
the finite elements implemented in GetFEM are scalar (however, 𝑇𝑅0 and edges elements are also
available). Of course, these scalar FEMs can be used to approximate each component of a vector field.
This is done by setting the 𝑄𝑑𝑖𝑚 of the mesh_fem to the dimension of the vector field (i.e. 𝑄𝑑𝑖𝑚 = 1
IRightarrow scalar field, 𝑄𝑑𝑖𝑚 = 2 IRightarrow 2D vector field etc.).

When solving a PDE, one often has to use more than one FEM. The most important one will be of course
the one on which is defined the solution of the PDE. But most PDEs involve various coefficients, for
example:

∇ · (𝜆(𝑥)∇𝑢) = 𝑓(𝑥).

Hence one has to define an FEM for the main unknown 𝑢, but also for the data 𝜆(𝑥) and 𝑓(𝑥) if they
are not constant. In order to interpolate easily these coefficients in their finite element space, one often
choose a Lagrangian FEM.

The convexes, mesh nodes, and dof are all numbered. We sometimes refer to the number associated
to a convex as its convex id (contracted to cvid). Mesh node numbers are also called point id
(contracted to pid). Faces of convexes do not have a global numbering, but only a local number in each
convex. Hence functions which need or return a list of faces will always use a two-rows matrix, the first
one containing convex ids, and the second one containing local face number.

While the dof are always numbered consecutively, this is not always the case for point ids and convex
ids, especially if you have removed points or convexes from the mesh. To ensure that they form a
continuous sequence (starting from 1), you have to call:

>>> m.set('optimize structure')

6 Chapter 3. Preliminary



CHAPTER 4

Python GetFEM interface

4.1 Introduction

GetFEM provides an interface to the Python scripting language. Python is a nice, cross-platform, and
free language. With the addition of the numpy package, python provides a subset of Matlab function-
alities (i.e. dense arrays). The VTK toolkit may provide visualization tools via its python interface (or
via MayaVi), and data files for OpenDX may be exported. In this guide, nevertheless, to visualize the
results, we will export to Gmsh post-processing format. The sparse matrix routines are provided by the
getfem interface.

The python interface is available via a python module getfem.py. In order to use the interface you have
to load it with:

import getfem
m = getfem.Mesh('cartesian', range(0, 3), range(0,3))

or:

from getfem import *
m = Mesh('cartesian', range(0, 3), range(0,3))

If the getfem.py (and the internal _getfem.so) module is not installed in a standard location for python,
you may have to set the PYTHONPATH environment variable to its location. For example with:

import sys
sys.path.append('.../getfem/getfem++/interface/src/python/')

4.2 Parallel version

The python interface is the only one for the moment to interface the mpi based parallel version of
Getfem. See ud-parallel.
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4.3 Memory Management

A nice advantage over the Matlab interface is that you do not have to explicitly delete objects that are not
used any more, this is done automagically. You can however inspect the content of the getfem workspace
with the function getfem.memstats().

4.4 Documentation

The getfem module is largely documented. This documentation has been extracted into the API refer-
ence. The getfem-matlab user guide may also be used, as 95% of its content translates quite directly into
python (with the exception of the plotting functions, which are specific to matlab).

4.5 Python GetFEM organization

The general organization of the python-interface is the following:

• Each class from the matlab interface has a corresponding class in the python interface: the gfMesh
class becomes the getfem.Mesh class in python, the gfSlice becomes the getfem.Slice etc.

• Each get and set method of the matlab interface has been translated into a method of the corre-
sponding class in the python interface. For example:

gf_mesh_get(m, 'outer faces');
gf_mesh_get(m, 'pts');

becomes:

m.outer_faces();
m.pts();

Some methods have been renamed when there was ambiguity, for example gf_mesh_set(m,
'pts', P) is m.set_pts(P).

• The other getfem-matlab function have a very simple mapping to their python equivalent:

gf_compute(mf,U,’foo’,. . . ) getfem.compute_foo(mf,U) or getfem.compute(‘foo’,. . . )
gf_asm(‘foobar’,. . . ) getfem.asm_foobar(. . . ) or getfem.asm(‘foobar’,. . . )
gf_linsolve(‘gmres’,. . . ) getfem.linsolve_gmres(. . . ) or getfem.linsolve(‘gmres’,. . . )

class CvStruct(self, *args)
Descriptor for a convex structure objects, stores formal information convex structures (nb. of
points, nb. of faces which are themselves convex structures)

class GeoTrans(self, *args)
Descriptor for geometric transformations objects (defines the shape/position of the convexes).

class Mesh(self, *args)
Descriptor for mesh structure (nodes, convexes, geometric transformations for each convex).

class Fem(self, fem_name)
Descriptor for FEM (Finite Element Method) objects (one per convex, can be PK, QK, HERMITE,
etc. . . ).

8 Chapter 4. Python GetFEM interface
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Fig. 1: python-getfem interface main objects hierarchy.
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class Integ(self, *args)
Descriptor for Integration Method objects (exact, quadrature formulaldots). Although not linked
directly to GeoTrans, an integration method is usually specific to a given convex structure.

class MeshFem(self, *args)
Descriptor for object linked to a mesh, where each convex has been assigned an FEM.

class MeshIm(self, *args)
Descriptor for object linked to a mesh, where each convex has been assigned an integration
method.

class Model(self, *args)
Descriptor for model object, holds the global data, variables and description of a model. Evolution
of model state and model brick object for 4.0 version of GetFEM.

10 Chapter 4. Python GetFEM interface



CHAPTER 5

Examples

5.1 A step-by-step basic example

This example shows the basic usage of getfem, on the über-canonical problem above all others: solving
the Laplacian, −∆𝑢 = 𝑓 on a square, with the Dirichlet condition 𝑢 = 𝑔(𝑥) on the domain bound-
ary. You can find the py-file of this example under the name demo_step_by_step.py in the directory
interface/tests/python/ of the GetFEM distribution.

The first step is to create a Mesh object. It is possible to create simple structured meshes or un-
structured meshes for simple geometries (see getfem.Mesh('generate', mesher_object
mo, scalar h)) or to rely on an external mesher (see getfem.Mesh('import', string
FORMAT, string FILENAME)), or use very simple meshes. For this example, we just consider
a regular meshindex{cartesian mesh} whose nodes are {𝑥𝑖=0...10,𝑗=0..10 = (𝑖/10, 𝑗/10)}

1 import numpy as np
2

3 # import basic modules
4 import getfem as gf
5

6 # creation of a simple cartesian mesh

The next step is to create a MeshFem object. This one links a mesh with a set of FEM

1

2 # create a MeshFem of for a field of dimension 1 (i.e. a scalar field)
3 mf = gf.MeshFem(m, 1)
4 # assign the Q2 fem to all convexes of the MeshFem

The first instruction builds a new MeshFem object, the second argument specifies that this object will
be used to interpolate scalar fields (since the unknown 𝑢 is a scalar field). The second instruction
assigns the 𝑄2 FEM to every convex (each basis function is a polynomial of degree 4, remember that
𝑃 𝑘IRightarrow polynomials of degree 𝑘, while 𝑄𝑘IRightarrow polynomials of degree 2𝑘). As 𝑄2 is a
polynomial FEM, you can view the expression of its basis functions on the reference convex:

11
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1

2 # view the expression of its basis functions on the reference convex

Now, in order to perform numerical integrations on mf, we need to build a MeshIm object

1

2 # an exact integration will be used

The integration method will be used to compute the various integrals on each element: here we choose
to perform exact computations (no quadrature formula), which is possible since the geometric
transformation of these convexes from the reference convex is linear (this is true for all simplices, and
this is also true for the parallelepipeds of our regular mesh, but it is not true for general quadrangles), and
the chosen FEM is polynomial. Hence it is possible to analytically integrate every basis function/product
of basis functions/gradients/etc. There are many alternative FEM methods and integration methods (see
ud).

Note however that in the general case, approximate integration methods are a better choice than exact
integration methods.

Now we have to find the <boundary> of the domain, in order to set a Dirichlet condition. A mesh
object has the ability to store some sets of convexes and convex faces. These sets (called <regions>) are
accessed via an integer #id

1

2 # detect the border of the mesh
3 border = m.outer_faces()
4 # mark it as boundary #42

Here we find the faces of the convexes which are on the boundary of the mesh (i.e. the faces which are
not shared by two convexes).

The array border has two rows, on the first row is a convex number, on the second row is a face number
(which is local to the convex, there is no global numbering of faces). Then this set of faces is assigned
to the region number 42.

At this point, we just have to describe the model and run the solver to get the solution! The “model”
is created with the Model constructor. A model is basically an object which build a global linear system
(tangent matrix for non-linear problems) and its associated right hand side. Typical modifications are
insertion of the stiffness matrix for the problem considered (linear elasticity, laplacian, etc), handling of
a set of constraints, Dirichlet condition, addition of a source term to the right hand side etc. The global
tangent matrix and its right hand side are stored in the “model” structure.

Let us build a problem with an easy solution: 𝑢 = 𝑥(𝑥 − 1) − 𝑦(𝑦 − 1), then we have −∆𝑢 = 0 (the
FEM won’t be able to catch the exact solution since we use a 𝑄2 method).

We start with an empty real model

1

2 # empty real model

(a model is either 'real' or 'complex'). And we declare that u is an unknown of the system on the
finite element method mf by

1

2 # declare that "u" is an unknown of the system
3 # on the finite element method `mf`

12 Chapter 5. Examples
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Now, we add a generic elliptic brick, which handles −∇ · (𝐴 : ∇𝑢) = . . . problems, where 𝐴 can be a
scalar field, a matrix field, or an order 4 tensor field. By default, 𝐴 = 1. We add it on our main variable
u with

1

2 # add generic elliptic brick on "u"

Next we add a Dirichlet condition on the domain boundary

1

2 # add Dirichlet condition
3 g = mf.eval('x*(x-1) - y*(y-1)')
4 md.add_initialized_fem_data('DirichletData', mf, g)

The two first lines defines a data of the model which represents the value of the Dirichlet condition.
The third one add a Dirichlet condition to the variable u on the boundary number 42. The dirichlet
condition is imposed with lagrange multipliers. Another possibility is to use a penalization. A MeshFem
argument is also required, as the Dirichlet condition 𝑢 = 𝑔 is imposed in a weak form

∫︀
Γ 𝑢(𝑥)𝑣(𝑥) =∫︀

Γ 𝑔(𝑥)𝑣(𝑥) ∀𝑣 where 𝑣 is taken in the space of multipliers given by here by mf.

Remark:

the polynomial expression was interpolated on mf. It is possible only if mf is of Lagrange type. In this
first example we use the same MeshFem for the unknown and for the data such as g, but in the general
case, mf won’t be Lagrangian and another (Lagrangian) MeshFem will be used for the description of
Dirichlet conditions, source terms etc.

A source term can be added with (uncommented) the following lines

1

2 # add source term
3 #f = mf.eval('0')
4 #md.add_initialized_fem_data('VolumicData', mf, f)

It only remains now to launch the solver. The linear system is assembled and solve with the instruction

1

2 # solve the linear system

The model now contains the solution (as well as other things, such as the linear system which was
solved). It is extracted

1

2 # extracted solution

Then export solution

1

2 # export computed solution

and view with gmsh u.pos, see figure Computed solution.

5.1. A step-by-step basic example 13



Python Interface, Release 5.4.2

Fig. 1: Computed solution

5.2 Another Laplacian with exact solution (source term)

This example shows the basic usage of getfem, on the canonical problem: solving the Laplacian,
−∆𝑢 = 𝑓 on a square, with the Dirichlet condition 𝑢 = 𝑔(𝑥) on the domain boundary Γ𝐷 and the
Neumann condition 𝜕𝑢

𝜕𝜂 = ℎ(𝑥) on the domain boundary Γ𝑁 . You can find the py-file of this example
under the name demo_laplacian.py in the directory interface/tests/python/ of the GetFEM
distribution.

We create Mesh, MeshFem, MeshIm object and find the boundary of the domain in the same way as the
previous example

1 import numpy as np
2

3 # import basic modules
4 import getfem as gf
5

6 # boundary names
7 top = 101 # Dirichlet boundary
8 down = 102 # Neumann boundary
9 left = 103 # Dirichlet boundary

10 right = 104 # Neumann boundary
11

12 # parameters
13 NX = 40 # Mesh parameter
14 Dirichlet_with_multipliers = True; # Dirichlet condition with multipliers

→˓or penalization
15 dirichlet_coefficient = 1e10; # Penalization coefficient
16

17 # mesh creation

(continues on next page)

14 Chapter 5. Examples
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(continued from previous page)

18 m = gf.Mesh('regular_simplices', np.arange(0,1+1./NX,1./NX), np.arange(0,
→˓1+1./NX,1./NX))

19

20 # create a MeshFem for u and rhs fields of dimension 1 (i.e. a scalar
→˓field)

21 mfu = gf.MeshFem(m, 1)
22 mfrhs = gf.MeshFem(m, 1)
23 # assign the P2 fem to all convexes of the both MeshFem
24 mfu.set_fem(gf.Fem('FEM_PK(2,2)'))
25 mfrhs.set_fem(gf.Fem('FEM_PK(2,2)'))
26

27 # an exact integration will be used
28 mim = gf.MeshIm(m, gf.Integ('IM_TRIANGLE(4)'))
29

30 # boundary selection
31 flst = m.outer_faces()
32 fnor = m.normal_of_faces(flst)
33 ttop = abs(fnor[1,:]-1) < 1e-14
34 tdown = abs(fnor[1,:]+1) < 1e-14
35 tleft = abs(fnor[0,:]+1) < 1e-14
36 tright = abs(fnor[0,:]-1) < 1e-14
37 ftop = np.compress(ttop, flst, axis=1)
38 fdown = np.compress(tdown, flst, axis=1)
39 fleft = np.compress(tleft, flst, axis=1)
40 fright = np.compress(tright, flst, axis=1)
41

42 # mark it as boundary
43 m.set_region(top, ftop)
44 m.set_region(down, fdown)
45 m.set_region(left, fleft)

then, we interpolate the exact solution and source terms

1

2 # interpolate the exact solution (assuming mfu is a Lagrange fem)
3 g = mfu.eval('y*(y-1)*x*(x-1)+x*x*x*x*x')
4

5 # interpolate the source terms (assuming mfrhs is a Lagrange fem)
6 f = mfrhs.eval('-(2*(x*x+y*y)-2*x-2*y+20*x*x*x)')

and we bricked the problem as in the previous example

1

2 # model
3 md = gf.Model('real')
4

5 # add variable and data to model
6 md.add_fem_variable('u', mfu) # main unknown
7 md.add_initialized_fem_data('f', mfrhs, f) # volumic source term
8 md.add_initialized_fem_data('g', mfrhs, g) # Dirichlet condition
9 md.add_initialized_fem_data('h', mfrhs, h) # Neumann condition

10

11 # bricked the problem
12 md.add_Laplacian_brick(mim, 'u') # laplacian

→˓term on u
13 md.add_source_term_brick(mim, 'u', 'f') # volumic

→˓source term (continues on next page)

5.2. Another Laplacian with exact solution (source term) 15
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(continued from previous page)

14 md.add_normal_source_term_brick(mim, 'u', 'h', down) # Neumann
→˓condition

15 md.add_normal_source_term_brick(mim, 'u', 'h', left) # Neumann
→˓condition

16

17 # Dirichlet condition on the top
18 if (Dirichlet_with_multipliers):
19 md.add_Dirichlet_condition_with_multipliers(mim, 'u', mfu, top, 'g')
20 else:
21 md.add_Dirichlet_condition_with_penalization(mim, 'u', dirichlet_

→˓coefficient, top, 'g')
22

23 # Dirichlet condition on the right
24 if (Dirichlet_with_multipliers):
25 md.add_Dirichlet_condition_with_multipliers(mim, 'u', mfu, right, 'g')
26 else:

the only change is the add of source term bricks. Finally the solution of the problem is extracted and
exported

1

2 # assembly of the linear system and solve.
3 md.solve()
4

5 # main unknown
6 u = md.variable('u')
7 L2error = gf.compute(mfu, u-g, 'L2 norm', mim)
8 H1error = gf.compute(mfu, u-g, 'H1 norm', mim)
9

10 if (H1error > 1e-3):
11 print 'Error in L2 norm : ', L2error
12 print 'Error in H1 norm : ', H1error
13 print 'Error too large !'
14

15 # export data
16 mfu.export_to_pos('sol.pos', g,'Exact solution',

view with gmsh sol.pos:

5.3 Linear and non-linear elasticity

This example uses a mesh that was generated with GiD. The object is meshed with quadratic tetrahe-
drons. You can find the py-file of this example under the name demo_tripod.py in the directory
interface/tests/python/ of the GetFEM distribution.

1 import numpy as np
2

3 import getfem as gf
4

5 with_graphics=True
6 try:
7 import getfem_tvtk
8 except:

(continues on next page)
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Fig. 2: Differences

(continued from previous page)

9 print("\n** Could NOT import getfem_tvtk -- graphical output disabled
→˓**\n")

10 import time
11 time.sleep(2)
12 with_graphics=False
13

14

15 m=gf.Mesh('import','gid','../meshes/tripod.GiD.msh')
16 print('done!')
17 mfu=gf.MeshFem(m,3) # displacement
18 mfp=gf.MeshFem(m,1) # pressure
19 mfd=gf.MeshFem(m,1) # data
20 mim=gf.MeshIm(m, gf.Integ('IM_TETRAHEDRON(5)'))
21 degree = 2
22 linear = False
23 incompressible = False # ensure that degree > 1 when incompressible is on..
24

25 mfu.set_fem(gf.Fem('FEM_PK(3,%d)' % (degree,)))
26 mfd.set_fem(gf.Fem('FEM_PK(3,0)'))
27 mfp.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,0)'))
28

29 print('nbcvs=%d, nbpts=%d, qdim=%d, fem = %s, nbdof=%d' % \
30 (m.nbcvs(), m.nbpts(), mfu.qdim(), mfu.fem()[0].char(), mfu.nbdof()))
31

32 P=m.pts()
33 print('test', P[1,:])

(continues on next page)
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(continued from previous page)

34 ctop=(abs(P[1,:] - 13) < 1e-6)
35 cbot=(abs(P[1,:] + 10) < 1e-6)
36 pidtop=np.compress(ctop, list(range(0, m.nbpts())))
37 pidbot=np.compress(cbot, list(range(0, m.nbpts())))
38

39 ftop=m.faces_from_pid(pidtop)
40 fbot=m.faces_from_pid(pidbot)
41 NEUMANN_BOUNDARY = 1
42 DIRICHLET_BOUNDARY = 2
43

44 m.set_region(NEUMANN_BOUNDARY,ftop)
45 m.set_region(DIRICHLET_BOUNDARY,fbot)
46

47 E=1e3
48 Nu=0.3
49 Lambda = E*Nu/((1+Nu)*(1-2*Nu))
50 Mu =E/(2*(1+Nu))
51

52

53 md = gf.Model('real')
54 md.add_fem_variable('u', mfu)
55 if linear:
56 md.add_initialized_data('cmu', Mu)
57 md.add_initialized_data('clambda', Lambda)
58 md.add_isotropic_linearized_elasticity_brick(mim, 'u', 'clambda', 'cmu

→˓')
59 if incompressible:
60 md.add_fem_variable('p', mfp)
61 md.add_linear_incompressibility_brick(mim, 'u', 'p')
62 else:
63 md.add_initialized_data('params', [Lambda, Mu]);
64 if incompressible:
65 lawname = 'Incompressible Mooney Rivlin';
66 md.add_finite_strain_elasticity_brick(mim, lawname, 'u', 'params')
67 md.add_fem_variable('p', mfp);
68 md.add_finite_strain_incompressibility_brick(mim, 'u', 'p');
69 else:
70 lawname = 'SaintVenant Kirchhoff';
71 md.add_finite_strain_elasticity_brick(mim, lawname, 'u', 'params');
72

73

74 md.add_initialized_data('VolumicData', [0,-1,0]);
75 md.add_source_term_brick(mim, 'u', 'VolumicData');
76

77 # Attach the tripod to the ground
78 md.add_Dirichlet_condition_with_multipliers(mim, 'u', mfu, 2);
79

80 print('running solve...')
81 md.solve('noisy', 'max iter', 1);
82 U = md.variable('u');
83 print('solve done!')
84

85

86 mfdu=gf.MeshFem(m,1)
87 mfdu.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,1)'))
88 if linear:

(continues on next page)
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(continued from previous page)

89 VM = md.compute_isotropic_linearized_Von_Mises_or_Tresca('u','clambda',
→˓'cmu', mfdu);

90 else:
91 VM = md.compute_finite_strain_elasticity_Von_Mises(lawname, 'u', 'params

→˓', mfdu);
92

93 # post-processing
94 sl=gf.Slice(('boundary',), mfu, degree)
95

96 print('Von Mises range: ', VM.min(), VM.max())
97

98 # export results to VTK
99 sl.export_to_vtk('tripod.vtk', 'ascii', mfdu, VM, 'Von Mises Stress', mfu,

→˓ U, 'Displacement')

Here is the final figure, displaying the Von Mises stress and displacements norms:

Fig. 3: (a) Tripod Von Mises, (b) Tripod displacements norms.

5.4 Avoiding the model framework

The model bricks are very convenient, as they hide most of the details of the assembly of the final linear
systems. However it is also possible to stay at a lower level, and handle the assembly of linear systems,
and their resolution, directly in Python. For example, the demonstration demo_tripod_alt.py is
very similar to the demo_tripod.py except that the assembly is explicit

mfu = gf.MeshFem(m,3) # displacement
mfe = gf.MeshFem(m,1) # for plot von-mises
mfu.set_fem(gf.Fem('FEM_PK(3,%d)' % (degree,)))
m.set_region(DIRICHLET_BOUNDARY,fbot)

# assembly
print "nbd: ",nbd

print "np.repeat([Mu], nbd).shape:",np.repeat([Mu], nbd).shape

(continues on next page)
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(continued from previous page)

# handle Dirichlet condition

print "U0.shape: ",U0.shape

Nt = gf.Spmat('copy',N)
Nt.transpose()
KK = Nt*K*N
FF = Nt*F # FF = Nt*(F-K*U0)

# solve ...
P = gf.Precond('ildlt',KK)
print "UU.shape:",UU.shape
print "U.shape:",U.shape

# post-processing
sl = gf.Slice(('boundary',), mfu, degree)

# compute the Von Mises Stress
DU = gf.compute_gradient(mfu,U,mfe)
VM = np.zeros((DU.shape[2],),'d')
Sigma = DU

for i in range(DU.shape[2]):
d = np.array(DU[:,:,i])
E = (d+d.T)*0.5
Sigma[:,:,i]=E
VM[i] = np.sum(E**2) - (1./3.)*np.sum(np.diagonal(E))**2

# can be viewed with mayavi -d ./tripod_ev.vtk -f WarpVector -m
→˓TensorGlyphs
#print 'mayavi -d ./tripod.vtk -f WarpVector -m BandedSurfaceMap'

# export to Gmsh
sl.export_to_pos('tripod.pos', mfe, VM,'Von Mises Stress', mfu, U,
→˓'Displacement')
sl.export_to_pos('tripod_ev.pos', mfu, U, 'Displacement', SigmaSL, 'stress
→˓')

In getfem-interface, the assembly of vectors, and matrices is done via the gf.asm_* functions.
The Dirichlet condition ℎ(𝑥)𝑢(𝑥) = 𝑟(𝑥) is handled in the weak form

∫︀
(ℎ(𝑥)𝑢(𝑥)).𝑣(𝑥) =∫︀

𝑟(𝑥).𝑣(𝑥) ∀𝑣 (where ℎ(𝑥) is a 3 × 3 matrix field – here it is constant and equal to the identity).
The reduced system KK UU = FF is then built via the elimination of Dirichlet constraints from the
original system. Note that it might be more efficient (and simpler) to deal with Dirichlet condition via a
penalization technique.

5.5 Other examples

• the demo_refine.py script shows a simple 2D or 3D bar whose extremity is clamped. An
adaptative refinement is used to obtain a better approximation in the area where the stress is
singular (the transition between the clamped area and the neumann boundary).

• the demo_nonlinear_elasticity.py script shows a 3D bar which is is bended and
twisted. This is a quasi-static problem as the deformation is applied in many steps. At each
step, a non-linear (large deformations) elasticity problem is solved.
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• the demo_stokes_3D_tank.py script shows a Stokes (viscous fluid) problem in a tank. The
demo_stokes_3D_tank_draw.py shows how to draw a nice plot of the solution, with mesh
slices and stream lines. Note that the demo_stokes_3D_tank_alt.py is the old example,
which uses the deprecated gf_solve function.

• the demo_bilaplacian.py script is just an adaption of the GetFEM example tests/
bilaplacian.cc. Solve the bilaplacian (or a Kirchhoff-Love plate model) on a square.

• the demo_plasticity.py script is an adaptation of the GetFEM example tests/
plasticity.cc: a 2D or 3D bar is bended in many steps, and the plasticity of the material is
taken into account (plastification occurs when the material’s Von Mises exceeds a given threshold).

• the demo_wave2D.py is a 2D scalar wave equation example (diffraction of a plane wave by a
cylinder), with high order geometric transformations and high order FEMs.

5.5. Other examples 21
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CHAPTER 6

How-tos

6.1 Import gmsh mesh

If we have in the file quad.geo a parameterized mesh, as this:

1 lc = 0.05 ;
2

3 Point(1) = {0,0,0,lc};
4 Point(2) = {1,0,0,lc};
5 Point(3) = {1,1,0,lc};
6 Point(4) = {0,1,0,lc};
7

8 Line(5) = {1,2};
9 Line(6) = {2,3};

10 Line(7) = {3,4};
11 Line(8) = {4,1};
12

13 Line Loop(9) = {5,6,7,8};
14 Plane Surface(10) = {9};
15

16 Physical Line(101) = {7};
17 Physical Line(102) = {5};
18 Physical Line(103) = {8};
19 Physical Line(104) = {6};
20

21 Physical Surface(201) = {10};

then, when we run:

$ gmsh -2 quad.geo -format msh1

the file quad.msh is created and contains the encoding of the mesh and its regions. We can import that
file (quad.msh) to getfem:

23
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import getfem as gf

m = gf.Mesh('import','gmsh','quad.msh')
print m.regions()

with the second command we can see the regions ids. When we import the mesh, we might be warned
with the following:

Level 3 Warning in getfem_import.cc, line 137:
All regions must have different number!

this means that the parametrization of the mesh in Gmsh .geo file must assign a different number to
each region, the problem exists because in Gmsh can coexist, for example, “Physical Surface (200)” and
“Physical Line (200)”, as they are different “types of regions” in Gmsh, that which does not occur in
GetFEM since there is only one “type of region”.
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API reference

Please remember that this documentation is not self contained. You should in particular refer to the user
documentation to have a more extensive description of the structures algorithms and concepts used.

7.1 ContStruct

class ContStruct(*args)
GetFEM ContStruct object

This object serves for storing parameters and data used in numerical continuation of solution
branches of models (for more details about continuation see the GetFEM user documentation).

General constructor for ContStruct objects

• S = ContStruct(Model md, string dataname_parameter[,
string dataname_init, string dataname_final, string
dataname_current], scalar sc_fac[, ...]) The variable
dataname_parameter should parametrise the model given by md. If the parameteri-
zation is done via a vector datum, dataname_init and dataname_final should store two given
values of this datum determining the parameterization, and dataname_current serves for
actual values of this datum. sc_fac is a scale factor involved in the weighted norm used in
the continuation.

Additional options:

– ‘lsolver’, string SOLVER_NAME name of the solver to be used for the incorporated
linear systems (the default value is ‘auto’, which lets getfem choose itself); possible
values are ‘superlu’, ‘mumps’ (if supported), ‘cg/ildlt’, ‘gmres/ilu’ and ‘gmres/ilut’;

– ‘h_init’, scalar HIN initial step size (the default value is 1e-2);

– ‘h_max’, scalar HMAX maximum step size (the default value is 1e-1);

– ‘h_min’, scalar HMIN minimum step size (the default value is 1e-5);

– ‘h_inc’, scalar HINC factor for enlarging the step size (the default value is 1.3);

25
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– ‘h_dec’, scalar HDEC factor for diminishing the step size (the default value is 0.5);

– ‘max_iter’, int MIT maximum number of iterations allowed in the correction (the de-
fault value is 10);

– ‘thr_iter’, int TIT threshold number of iterations of the correction for enlarging the
step size (the default value is 4);

– ‘max_res’, scalar RES target residual value of a new point on the solution curve (the
default value is 1e-6);

– ‘max_diff’, scalar DIFF determines a convergence criterion for two consecutive
points (the default value is 1e-6);

– ‘min_cos’, scalar MCOS minimal value of the cosine of the angle between tangents
to the solution curve at an old point and a new one (the default value is 0.9);

– ‘max_res_solve’, scalar RES_SOLVE target residual value for the linear systems to
be solved (the default value is 1e-8);

– ‘singularities’, int SING activates tools for detection and treatment of singular points
(1 for limit points, 2 for bifurcation points and points requiring special branching
techniques);

– ‘non-smooth’ determines that some special methods for non-smooth problems can be
used;

– ‘delta_max’, scalar DMAX maximum size of division for evaluating the test function
on the convex combination of two augmented Jacobians that belong to different
smooth pieces (the default value is 0.005);

– ‘delta_min’, scalar DMIN minimum size of division for evaluating the test function
on the convex combination (the default value is 0.00012);

– ‘thr_var’, scalar TVAR threshold variation for refining the division (the default value
is 0.02);

– ‘nb_dir’, int NDIR total number of the linear combinations of one couple of reference
vectors when searching for new tangent predictions during location of new one-
sided branches (the default value is 40);

– ‘nb_span’, int NSPAN total number of the couples of the reference vectors forming
the linear combinations (the default value is 1);

– ‘noisy’ or ‘very_noisy’ determines how detailed information has to be displayed dur-
ing the continuation process (residual values etc.).

Moore_Penrose_continuation(solution, parameter, tangent_sol, tangent_par, h)
Compute one step of the Moore-Penrose continuation: Take the point given by solution and
parameter, the tangent given by tangent_sol and tangent_par, and the step size h. Return
a new point on the solution curve, the corresponding tangent, a step size for the next step
and optionally the current step size. If the returned step size equals zero, the continuation
has failed. Optionally, return the type of any detected singular point. NOTE: The new point
need not to be saved in the model in the end!

bifurcation_test_function()
Return the last value of the bifurcation test function and eventually the whole calculated
graph when passing between different sub-domains of differentiability.
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char()
Output a (unique) string representation of the ContStruct.

This can be used for performing comparisons between two different ContStruct objects. This
function is to be completed.

compute_tangent(solution, parameter, tangent_sol, tangent_par)
Compute and return an updated tangent.

display()
Display a short summary for a ContStruct object.

init_Moore_Penrose_continuation(solution, parameter, init_dir)
Initialise the Moore-Penrose continuation: Return a unit tangent to the solution curve at
the point given by solution and parameter, and an initial step size for the continuation.
Orientation of the computed tangent with respect to the parameter is determined by the sign
of init_dir.

init_step_size()
Return an initial step size for continuation.

max_step_size()
Return the maximum step size for continuation.

min_step_size()
Return the minimum step size for continuation.

non_smooth_bifurcation_test(solution1, parameter1, tangent_sol1, tan-
gent_par1, solution2, parameter2, tangent_sol2,
tangent_par2)

Test for a non-smooth bifurcation point between the point given by solution1 and parameter1
with the tangent given by tangent_sol1 and tangent_par1 and the point given by solution2
and parameter2 with the tangent given by tangent_sol2 and tangent_par2.

sing_data()
Return a singular point (X, gamma) stored in the ContStruct object and a couple of arrays
(T_X, T_gamma) of tangents to all located solution branches that emanate from there.

step_size_decrement()
Return the decrement ratio of the step size for continuation.

step_size_increment()
Return the increment ratio of the step size for continuation.

7.2 CvStruct

class CvStruct(*args)
GetFEM CvStruct object

General constructor for CvStruct objects

basic_structure()
Get the simplest convex structure.

For example, the ‘basic structure’ of the 6-node triangle, is the canonical 3-noded triangle.

char()
Output a string description of the CvStruct.
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dim()
Get the dimension of the convex structure.

display()
displays a short summary for a CvStruct object.

face(F)
Return the convex structure of the face F.

facepts(F)
Return the list of point indices for the face F.

nbpts()
Get the number of points of the convex structure.

7.3 Eltm

class Eltm(*args)
GetFEM Eltm object

This object represents a type of elementary matrix. In order to obtain a numerical value of these
matrices, see MeshIm.eltm().

If you have very particular assembling needs, or if you just want to check the content of an ele-
mentary matrix, this function might be useful. But the generic assembly abilities of gf_asm(. . . )
should suit most needs.

General constructor for Eltm objects

• E = Eltm('base', Fem FEM) return a descriptor for the integration of shape func-
tions on elements, using the Fem FEM.

• E = Eltm('grad', Fem FEM) return a descriptor for the integration of the gradient
of shape functions on elements, using the Fem FEM.

• E = Eltm('hessian', Fem FEM) return a descriptor for the integration of the hes-
sian of shape functions on elements, using the Fem FEM.

• E = Eltm('normal') return a descriptor for the unit normal of convex faces.

• E = Eltm('grad_geotrans') return a descriptor to the gradient matrix of the geo-
metric transformation.

• E = Eltm('grad_geotrans_inv') return a descriptor to the inverse of the gradient
matrix of the geometric transformation (this is rarely used).

• E = Eltm('product', Eltm A, Eltm B) return a descriptor for the integration
of the tensorial product of elementary matrices A and B.

7.4 Fem

class Fem(*args)
GetFEM Fem object

This object represents a finite element method on a reference element.

General constructor for Fem objects
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• F = Fem('interpolated_fem', MeshFem mf_source, MeshIm
mim_target, [ivec blocked_dofs[, bool caching]]) Build a special
Fem which is interpolated from another MeshFem.

Using this special finite element, it is possible to interpolate a given MeshFem mf_source on
another mesh, given the integration method mim_target that will be used on this mesh.

Note that this finite element may be quite slow or consume much memory depending if
caching is used or not. By default caching is True

• F = Fem('projected_fem', MeshFem mf_source, MeshIm
mim_target, int rg_source, int rg_target[, ivec
blocked_dofs[, bool caching]]) Build a special Fem which is interpolated
from another MeshFem.

Using this special finite element, it is possible to interpolate a given MeshFem mf_source on
another mesh, given the integration method mim_target that will be used on this mesh.

Note that this finite element may be quite slow or consume much memory depending if
caching is used or not. By default caching is True

• F = Fem(string fem_name) The fem_name should contain a description of the finite
element method. Please refer to the GetFEM manual (especially the description of finite
element and integration methods) for a complete reference. Here is a list of some of them:

– FEM_PK(n,k) : classical Lagrange element Pk on a simplex of dimension n.

– FEM_PK_DISCONTINUOUS(n,k[,alpha]) : discontinuous Lagrange element Pk on a
simplex of dimension n.

– FEM_QK(n,k) : classical Lagrange element Qk on quadrangles, hexahedrons etc.

– FEM_QK_DISCONTINUOUS(n,k[,alpha]) : discontinuous Lagrange element Qk on
quadrangles, hexahedrons etc.

– FEM_Q2_INCOMPLETE(n) : incomplete Q2 elements with 8 and 20 dof (serendipity
Quad 8 and Hexa 20 elements).

– FEM_PK_PRISM(n,k) : classical Lagrange element Pk on a prism of dimension n.

– FEM_PK_PRISM_DISCONTINUOUS(n,k[,alpha]) : classical discontinuous Lagrange
element Pk on a prism.

– FEM_PK_WITH_CUBIC_BUBBLE(n,k) : classical Lagrange element Pk on a simplex
with an additional volumic bubble function.

– FEM_P1_NONCONFORMING : non-conforming P1 method on a triangle.

– FEM_P1_BUBBLE_FACE(n) : P1 method on a simplex with an additional bubble
function on face 0.

– FEM_P1_BUBBLE_FACE_LAG : P1 method on a simplex with an additional lagrange
dof on face 0.

– FEM_PK_HIERARCHICAL(n,k) : PK element with a hierarchical basis.

– FEM_QK_HIERARCHICAL(n,k) : QK element with a hierarchical basis.

– FEM_PK_PRISM_HIERARCHICAL(n,k) : PK element on a prism with a hierarchical
basis.
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– FEM_STRUCTURED_COMPOSITE(Fem f,k) : Composite Fem f on a grid with k
divisions.

– FEM_PK_HIERARCHICAL_COMPOSITE(n,k,s) : Pk composite element on a grid
with s subdivisions and with a hierarchical basis.

– FEM_PK_FULL_HIERARCHICAL_COMPOSITE(n,k,s) : Pk composite element
with s subdivisions and a hierarchical basis on both degree and subdivision.

– FEM_PRODUCT(A,B) : tensorial product of two polynomial elements.

– FEM_HERMITE(n) : Hermite element P3 on a simplex of dimension n = 1, 2, 3.

– FEM_ARGYRIS : Argyris element P5 on the triangle.

– FEM_HCT_TRIANGLE : Hsieh-Clough-Tocher element on the triangle (composite
P3 element which is C1), should be used with IM_HCT_COMPOSITE() integration
method.

– FEM_QUADC1_COMPOSITE : Quadrilateral element, composite P3 element and C1
(16 dof).

– FEM_REDUCED_QUADC1_COMPOSITE : Quadrilateral element, composite P3 el-
ement and C1 (12 dof).

– FEM_RT0(n) : Raviart-Thomas element of order 0 on a simplex of dimension n.

– FEM_NEDELEC(n) : Nedelec edge element of order 0 on a simplex of dimension n.

Of course, you have to ensure that the selected fem is compatible with the geometric trans-
formation: a Pk fem has no meaning on a quadrangle.

base_value(p)
Evaluate all basis functions of the FEM at point p.

p is supposed to be in the reference convex!

char()
Ouput a (unique) string representation of the Fem.

This can be used to perform comparisons between two different Fem objects.

dim()
Return the dimension (dimension of the reference convex) of the Fem.

display()
displays a short summary for a Fem object.

estimated_degree()
Return an estimation of the polynomial degree of the Fem.

This is an estimation for fem which are not polynomials.

grad_base_value(p)
Evaluate the gradient of all base functions of the Fem at point p.

p is supposed to be in the reference convex!

hess_base_value(p)
Evaluate the Hessian of all base functions of the Fem at point p.

p is supposed to be in the reference convex!
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index_of_global_dof(cv)
Return the index of global dof for special fems such as interpolated fem.

is_equivalent()
Return 0 if the Fem is not equivalent.

Equivalent Fem are evaluated on the reference convex. This is the case of most classical
Fem’s.

is_lagrange()
Return 0 if the Fem is not of Lagrange type.

is_polynomial()
Return 0 if the basis functions are not polynomials.

nbdof(cv=None)
Return the number of dof for the Fem.

Some specific Fem (for example ‘interpolated_fem’) may require a convex number cv to
give their result. In most of the case, you can omit this convex number.

poly_str()
Return the polynomial expressions of its basis functions in the reference convex.

The result is expressed as a tuple of strings. Of course this will fail on non-polynomial
Fem’s.

pts(cv=None)
Get the location of the dof on the reference element.

Some specific Fem may require a convex number cv to give their result (for example ‘inter-
polated_fem’). In most of the case, you can omit this convex number.

target_dim()
Return the dimension of the target space.

The target space dimension is usually 1, except for vector Fem.

7.5 GeoTrans

class GeoTrans(*args)
GetFEM GeoTrans object

The geometric transformation must be used when you are building a custom mesh convex by
convex (see the add_convex() function of Mesh): it also defines the kind of convex (triangle,
hexahedron, prism, etc..)

General constructor for GeoTrans objects

• GT = GeoTrans(string name) The name argument contains the specification of the
geometric transformation as a string, which may be:

– GT_PK(n,k) : Transformation on simplexes, dim n, degree k.

– GT_QK(n,k) : Transformation on parallelepipeds, dim n, degree k.

– GT_PRISM(n,k) : Transformation on prisms, dim n, degree k.

– GT_PRODUCT(A,B) : Tensorial product of two transformations.
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– GT_LINEAR_PRODUCT(GeoTrans gt1,GeoTrans gt2) : Linear tensorial product of
two transformations

char()
Output a (unique) string representation of the GeoTrans.

This can be used to perform comparisons between two different GeoTrans objects.

dim()
Get the dimension of the GeoTrans.

This is the dimension of the source space, i.e. the dimension of the reference convex.

display()
displays a short summary for a GeoTrans object.

is_linear()
Return 0 if the GeoTrans is not linear.

nbpts()
Return the number of points of the GeoTrans.

normals()
Get the normals for each face of the reference convex of the GeoTrans.

The normals are stored in the columns of the output matrix.

pts()
Return the reference convex points of the GeoTrans.

The points are stored in the columns of the output matrix.

transform(G, Pr)
Apply the GeoTrans to a set of points.

G is the set of vertices of the real convex, Pr is the set of points (in the reference convex)
that are to be transformed. The corresponding set of points in the real convex is returned.

7.6 GlobalFunction

class GlobalFunction(*args)
GetFEM GlobalFunction object

Global function object is represented by three functions:

• The function val.

• The function gradient grad.

• The function Hessian hess.

this type of function is used as local and global enrichment function. The global function Hessian
is an optional parameter (only for fourth order derivative problems).

General constructor for GlobalFunction objects

• GF = GlobalFunction('cutoff', int fn, scalar r, scalar r1,
scalar r0) Create a cutoff global function.
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• GF = GlobalFunction('crack', int fn) Create a near-tip asymptotic global
function for modelling cracks.

• GF = GlobalFunction('parser', string val[, string grad[,
string hess]]) Create a global function from strings val, grad and hess. This
function could be improved by using the derivation of the generic assembly language . . . to
be done.

• GF = GlobalFunction('product', GlobalFunction F,
GlobalFunction G) Create a product of two global functions.

• GF = GlobalFunction('add', GlobalFunction gf1, GlobalFunction
gf2) Create a add of two global functions.

char()
Output a (unique) string representation of the GlobalFunction.

This can be used to perform comparisons between two different GlobalFunction objects.
This function is to be completed.

display()
displays a short summary for a GlobalFunction object.

grad(PTs)
Return grad function evaluation in PTs (column points).

On return, each column of GRADs is of the form [Gx,Gy].

hess(PTs)
Return hess function evaluation in PTs (column points).

On return, each column of HESSs is of the form [Hxx,Hxy,Hyx,Hyy].

val(PTs)
Return val function evaluation in PTs (column points).

7.7 Integ

class Integ(*args)
GetFEM Integ object

General object for obtaining handles to various integrations methods on convexes (used when the
elementary matrices are built).

General constructor for Integ objects

• I = Integ(string method) Here is a list of some integration methods defined in
GetFEM (see the description of finite element and integration methods for a complete refer-
ence):

– IM_EXACT_SIMPLEX(n) : Exact integration on simplices (works only with linear
geometric transformations and PK Fem’s).

– IM_PRODUCT(A,B) : Product of two integration methods.

– IM_EXACT_PARALLELEPIPED(n) : Exact integration on parallelepipeds.

– IM_EXACT_PRISM(n) : Exact integration on prisms.
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– IM_GAUSS1D(k) : Gauss method on the segment, order k=1,3,. . . ,99.

– IM_NC(n,k) : Newton-Cotes approximative integration on simplexes, order k.

– IM_NC_PARALLELEPIPED(n,k) : Product of Newton-Cotes integration on paral-
lelepipeds.

– IM_NC_PRISM(n,k) : Product of Newton-Cotes integration on prisms.

– IM_GAUSS_PARALLELEPIPED(n,k) : Product of Gauss1D integration on paral-
lelepipeds.

– IM_TRIANGLE(k) : Gauss methods on triangles k=1,3,5,6,7,8,9,10,13,17,19.

– IM_QUAD(k) : Gauss methods on quadrilaterons k=2,3,5, . . . ,17. Note that
IM_GAUSS_PARALLELEPIPED should be prefered for QK Fem’s.

– IM_TETRAHEDRON(k) : Gauss methods on tetrahedrons k=1,2,3,5,6 or 8.

– IM_SIMPLEX4D(3) : Gauss method on a 4-dimensional simplex.

– IM_STRUCTURED_COMPOSITE(im,k) : Composite method on a grid with k divi-
sions.

– IM_HCT_COMPOSITE(im) : Composite integration suited to the HCT composite fi-
nite element.

Example:

– I = Integ(‘IM_PRODUCT(IM_GAUSS1D(5),IM_GAUSS1D(5))’)

is the same as:

– I = Integ(‘IM_GAUSS_PARALLELEPIPED(2,5)’)

Note that ‘exact integration’ should be avoided in general, since they only apply to linear
geometric transformations, are quite slow, and subject to numerical stability problems for
high degree Fem’s.

char()
Ouput a (unique) string representation of the integration method.

This can be used to comparisons between two different Integ objects.

coeffs()
Returns the coefficients associated to each integration point.

Only for approximate methods, this has no meaning for exact integration methods!

dim()
Return the dimension of the reference convex of the method.

display()
displays a short summary for a Integ object.

face_coeffs(F)
Returns the coefficients associated to each integration of a face.

Only for approximate methods, this has no meaning for exact integration methods!

face_pts(F)
Return the list of integration points for a face.

Only for approximate methods, this has no meaning for exact integration methods!
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is_exact()
Return 0 if the integration is an approximate one.

nbpts()
Return the total number of integration points.

Count the points for the volume integration, and points for surface integration on each face
of the reference convex.

Only for approximate methods, this has no meaning for exact integration methods!

pts()
Return the list of integration points

Only for approximate methods, this has no meaning for exact integration methods!

7.8 LevelSet

class LevelSet(*args)
GetFEM LevelSet object

The level-set object is represented by a primary level-set and optionally a secondary level-set used
to represent fractures (if p(x) is the primary level-set function and s(x) is the secondary level-set,
the crack is defined by 𝑝(𝑥) = 0 and 𝑠(𝑥) ≤ 0 : the role of the secondary is to determine the crack
front/tip).

note:

All tools listed below need the package qhull installed on your system. This package
is widely available. It computes convex hull and delaunay triangulations in arbitrary
dimension.

General constructor for LevelSet objects

• LS = LevelSet(Mesh m, int d[, string 'ws'| string f1[, string
f2 | string 'ws']]) Create a LevelSet object on a Mesh represented by a primary
function (and optional secondary function, both) defined on a lagrange MeshFem of degree
d.

If ws (with secondary) is set; this levelset is represented by a primary function and a sec-
ondary function. If f1 is set; the primary function is defined by that expression (with the
syntax of the high generic assembly language). If f2 is set; this levelset is represented by a
primary function and a secondary function defined by these expressions.

char()
Output a (unique) string representation of the LevelSet.

This can be used to perform comparisons between two different LevelSet objects. This
function is to be completed.

degree()
Return the degree of lagrange representation.

display()
displays a short summary for a LevelSet.

memsize()
Return the amount of memory (in bytes) used by the level-set.
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mf()
Return a reference on the MeshFem object.

set_values(*args)
Synopsis: LevelSet.set_values(self, {mat v1|string func_1}[, mat v2|string func_2])

Set values of the vector of dof for the level-set functions.

Set the primary function with the vector of dof v1 (or the expression func_1) and the sec-
ondary function (if any) with the vector of dof v2 (or the expression func_2)

simplify(eps=0.01)
Simplify dof of level-set optionally with the parameter eps.

values(nls)
Return the vector of dof for nls function.

If nls is 0, the method return the vector of dof for the primary level-set function. If nls is 1,
the method return the vector of dof for the secondary level-set function (if any).

7.9 Mesh

class Mesh(*args)
GetFEM Mesh object

This object is able to store any element in any dimension even if you mix elements with different
dimensions.

General constructor for Mesh objects

• M = Mesh('empty', int dim) Create a new empty mesh.

• M = Mesh('cartesian', vec X[, vec Y[, vec Z,..]]) Build quickly a
regular mesh of quadrangles, cubes, etc.

• M = Mesh('pyramidal', vec X[, vec Y[, vec Z,..]]) Build quickly a
regular mesh of pyramids, etc.

• M = Mesh('cartesian Q1', vec X, vec Y[, vec Z,..]) Build quickly a
regular mesh of quadrangles, cubes, etc. with Q1 elements.

• M = Mesh('triangles grid', vec X, vec Y) Build quickly a regular mesh of
triangles.

This is a very limited and somehow deprecated function (See also Mesh('ptND'),
Mesh('regular simplices') and Mesh('cartesian')).

• M = Mesh('regular simplices', vec X[, vec Y[, vec Z,...
]]['degree', int k]['noised']) Mesh a n-dimensional parallelepiped with
simplices (triangles, tetrahedrons etc) .

The optional degree may be used to build meshes with non linear geometric transformations.

• M = Mesh('curved', Mesh m, vec F) Build a curved (n+1)-dimensions mesh
from a n-dimensions mesh m.

The points of the new mesh have one additional coordinate, given by the vector F. This can
be used to obtain meshes for shells. m may be a MeshFem object, in that case its linked
mesh will be used.
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• M = Mesh('prismatic', Mesh m, int nl[, int degree]) Extrude a pris-
matic Mesh M from a Mesh m.

In the additional dimension there are nl layers of elements distributed from 0 to 1. If the
optional parameter degree is provided with a value greater than the default value of 1, a
non-linear transformation of corresponding degree is considered in the extrusion direction.

• M = Mesh('pt2D', mat P, imat T[, int n]) Build a mesh from a 2D trian-
gulation.

Each column of P contains a point coordinate, and each column of T contains the point
indices of a triangle. n is optional and is a zone number. If n is specified then only the zone
number n is converted (in that case, T is expected to have 4 rows, the fourth containing these
zone numbers).

• M = Mesh('ptND', mat P, imat T) Build a mesh from a n-dimensional “triangu-
lation”.

Similar function to ‘pt2D’, for building simplexes meshes from a triangulation given in T,
and a list of points given in P. The dimension of the mesh will be the number of rows of P,
and the dimension of the simplexes will be the number of rows of T.

• M = Mesh('load', string filename) Load a mesh from a GetFEM ascii mesh
file.

See also Mesh.save(string filename).

• M = Mesh('from string', string s) Load a mesh from a string description.

For example, a string returned by Mesh.char().

• M = Mesh('import', string format, string filename) Import a mesh.

format may be:

– ‘gmsh’ for a mesh created with Gmsh

– ‘gmsh_with_lower_dim_elt’ for a mesh created with Gmsh and including elements of
lower dimension than the mesh

– ‘gid’ for a mesh created with GiD

– ‘cdb’ for a mesh created with ANSYS

– ‘am_fmt’ for a mesh created with EMC2

• M = Mesh('clone', Mesh m2) Create a copy of a mesh.

• M = Mesh('generate', MesherObject mo, scalar h[, int K = 1[,
mat vertices]]) Call the experimental mesher of Getfem on the geometry represented
by mo. please control the conformity of the produced mesh. You can help the mesher by
adding a priori vertices in the array vertices which should be of size n x m where n n
is the dimension of the mesh and m the number of points. h is approximate diameter of
the elements. K is the degree of the mesh ( > 1 for curved boundaries). The mesher try to
optimize the quality of the elements. This operation may be time consuming. Note that if
the mesh generation fails, because of some random procedure used, it can be run again since
it will not give necessarily the same result due to random procedures used. The messages
send to the console by the mesh generation can be deactivated using gf_util(‘trace level’,
2). More information can be obtained by gf_util(‘trace level’, 4). See MesherObject to
manipulate geometric primitives in order to describe the geometry.
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add_convex(GT, PTS)
Add a new convex into the mesh.

The convex structure (triangle, prism,. . . ) is given by GT (obtained with GeoTrans(‘. . . ’)),
and its points are given by the columns of PTS. On return, CVIDs contains the convex #ids.
PTS might be a 3-dimensional array in order to insert more than one convex (or a two di-
mensional array correctly shaped according to Fortran ordering).

add_point(PTS)
Insert new points in the mesh and return their #ids.

PTS should be an nxmmatrix , where n is the mesh dimension, and m is the number of points
that will be added to the mesh. On output, PIDs contains the point #ids of these new points.

Remark: if some points are already part of the mesh (with a small tolerance of approximately
1e-8), they won’t be inserted again, and PIDs will contain the previously assigned #ids of
these points.

adjacent_face(cvid, fid)
Return convex face of the neighbor element if it exists. If the convex have more than one
neighbor relatively to the face f (think to bar elements in 3D for instance), return the first
face found.

all_faces(CVIDs=None)
Return the set of faces of the in CVIDs (in all the mesh if CVIDs is omitted). Note that the
face shared by two neighbor elements will be represented twice.

boundaries()
DEPRECATED FUNCTION. Use ‘regions’ instead.

boundary()
DEPRECATED FUNCTION. Use ‘region’ instead.

char()
Output a string description of the mesh.

convex_area(CVIDs=None)
Return an estimate of the area of each convex.

convex_radius(CVIDs=None)
Return an estimate of the radius of each convex.

convexes_in_box(pmin, pmax)
Return the set of convexes lying entirely within the box defined by the corner points pmin
and pmax.

The output CVIDs is a two-rows matrix, the first row lists convex #ids, and the second one
lists face numbers (local number in the convex). If CVIDs is given, it returns portion of the
boundary of the convex set defined by the #ids listed in CVIDs.

curved_edges(N, CVLST=None)
[OBSOLETE FUNCTION! will be removed in a future release]

Return E and C. More sophisticated version of Mesh.edges() designed for curved elements.
This one will return N (N>=2) points of the (curved) edges. With N==2, this is equivalent
to Mesh.edges(). Since the points are no more always part of the mesh, their coordinates
are returned instead of points number, in the array E which is a [ mesh_dim x 2 x nb_edges
] array. If the optional output argument C is specified, it will contain the convex number
associated with each edge.
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cvid()
Return the list of all convex #id.

Note that their numbering is not supposed to be contiguous from 0 to Mesh.nbcvs()-
1, especially if some points have been removed from the mesh. You can use
Mesh.optimize_structure() to enforce a contiguous numbering.

cvid_from_pid(PIDs, share=False)
Return convex #ids related with the point #ids given in PIDs.

If share=False, search convex whose vertex #ids are in PIDs. If share=True, search convex
#ids that share the point #ids given in PIDs. CVIDs is a vector (possibly empty).

cvstruct(CVIDs=None)
Return an array of the convex structures.

If CVIDs is not given, all convexes are considered. Each convex structure is listed once in S,
and CV2S maps the convexes indice in CVIDs to the indice of its structure in S.

del_convex(CVIDs)
Remove one or more convexes from the mesh.

CVIDs should contain the convexes #ids, such as the ones returned by the ‘add convex’
command.

del_convex_of_dim(DIMs)
Remove all convexes of dimension listed in DIMs.

For example; Mesh.del_convex_of_dim([1,2]) remove all line segments, triangles
and quadrangles.

del_point(PIDs)
Removes one or more points from the mesh.

PIDs should contain the point #ids, such as the one returned by the ‘add point’ command.

delete_boundary(rnum, CVFIDs)
DEPRECATED FUNCTION. Use ‘delete region’ instead.

delete_region(RIDs)
Remove the regions whose #ids are listed in RIDs

dim()
Get the dimension of the mesh (2 for a 2D mesh, etc).

display()
displays a short summary for a Mesh object.

edges(CVLST=None, *args)
Synopsis: [E,C] = Mesh.edges(self [, CVLST][, ‘merge’])

[OBSOLETE FUNCTION! will be removed in a future release]

Return the list of edges of mesh M for the convexes listed in the row vector CVLST. E is
a 2 x nb_edges matrix containing point indices. If CVLST is omitted, then the edges of all
convexes are returned. If CVLST has two rows then the first row is supposed to contain
convex numbers, and the second face numbers, of which the edges will be returned. If
‘merge’ is indicated, all common edges of convexes are merged in a single edge. If the
optional output argument C is specified, it will contain the convex number associated with
each edge.
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export_to_dx(filename, *args)
Synopsis: Mesh.export_to_dx(self, string filename, . . . [,’ascii’][,’append’][,’as’,string
name,[,’serie’,string serie_name]][,’edges’])

Exports a mesh to an OpenDX file.

See also MeshFem.export_to_dx(), Slice.export_to_dx().

export_to_pos(filename, name=None)
Exports a mesh to a POS file .

See also MeshFem.export_to_pos(), Slice.export_to_pos().

export_to_vtk(filename, *args)
Synopsis: Mesh.export_to_vtk(self, string filename, . . . [,’ascii’][,’quality’])

Exports a mesh to a VTK file .

If ‘quality’ is specified, an estimation of the quality of each convex will be written to the file.

See also MeshFem.export_to_vtk(), Slice.export_to_vtk().

export_to_vtu(filename, *args)
Synopsis: Mesh.export_to_vtu(self, string filename, . . . [,’ascii’][,’quality’])

Exports a mesh to a VTK(XML) file .

If ‘quality’ is specified, an estimation of the quality of each convex will be written to the file.

See also MeshFem.export_to_vtu(), Slice.export_to_vtu().

extend_region(rnum, CVFIDs)
Extends the region identified by the region number rnum to include the set of convexes
or/and convex faces provided in the matrix CVFIDs, see also Mesh.(set region).

faces_from_cvid(CVIDs=None, *args)
Synopsis: CVFIDs = Mesh.faces_from_cvid(self[, ivec CVIDs][, ‘merge’])

Return a list of convex faces from a list of convex #id.

CVFIDs is a two-rows matrix, the first row lists convex #ids, and the second lists face num-
bers (local number in the convex). If CVIDs is not given, all convexes are considered. The
optional argument ‘merge’ merges faces shared by the convex of CVIDs.

faces_from_pid(PIDs)
Return the convex faces whose vertex #ids are in PIDs.

CVFIDs is a two-rows matrix, the first row lists convex #ids, and the second lists face num-
bers (local number in the convex). For a convex face to be returned, EACH of its points have
to be listed in PIDs.

geotrans(CVIDs=None)
Returns an array of the geometric transformations.

See also Mesh.cvstruct().

inner_faces(CVIDs=None)
Return the set of faces shared at least by two elements in CVIDs. Each face is represented
only once and is arbitrarily chosen between the two neighbor elements.

max_cvid()
Return the maximum #id of all convexes in the mesh (see ‘max pid’).
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max_pid()
Return the maximum #id of all points in the mesh (see ‘max cvid’).

memsize()
Return the amount of memory (in bytes) used by the mesh.

merge(m2, tol=None)
Merge with the Mesh m2.

Overlapping points, within a tolerance radius tol, will not be duplicated. If m2 is a MeshFem
object, its linked mesh will be used.

nbcvs()
Get the number of convexes of the mesh.

nbpts()
Get the number of points of the mesh.

normal_of_face(cv, f, nfpt=None)
Return the normal vector of convex cv, face f at the nfpt point of the face.

If nfpt is not specified, then the normal is evaluated at each geometrical node of the face.

normal_of_faces(CVFIDs)
Return matrix of (at face centers) the normal vectors of convexes.

CVFIDs is supposed a two-rows matrix, the first row lists convex #ids, and the second lists
face numbers (local number in the convex).

optimize_structure(with_renumbering=None)
Reset point and convex numbering.

After optimisation, the points (resp. convexes) will be consecutively numbered from 0 to
Mesh.max_pid()-1 (resp. Mesh.max_cvid()-1).

orphaned_pid()
Return point #id which are not linked to a convex.

outer_faces(dim=None, *args)
Synopsis: CVFIDs = Mesh.outer_faces(self[, dim][, CVIDs])

Return the set of faces not shared by two elements.

The output CVFIDs is a two-rows matrix, the first row lists convex #ids, and the second
one lists face numbers (local number in the convex). If dim is provided, the function is
forced to detect faces of elements that have dimension dim, e.g. dim‘=2 will detect edges
of surface elements, even if these belong to a 3D mesh. If ‘CVIDs is not given, all convexes
are considered, and the function basically returns the mesh boundary. If CVIDs is given, it
returns the boundary of the convex set whose #ids are listed in CVIDs.

outer_faces_in_ball(center, radius, dim=None, *args)
Synopsis: CVFIDs = Mesh.outer_faces_in_ball(self, vec center, scalar radius[, dim][,
CVIDs])

Return the set of faces not shared by two convexes and lying within the ball of corresponding
center and radius.

The output CVFIDs is a two-rows matrix, the first row lists convex #ids, and the second one
lists face numbers (local number in the convex). The argument dim works as in outer_faces().
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If CVIDs is given, it returns portion of the boundary of the convex set defined by the #ids
listed in CVIDs.

outer_faces_in_box(pmin, pmax, dim=None, *args)
Synopsis: CVFIDs = Mesh.outer_faces_in_box(self, vec pmin, vec pmax[, dim][, CVIDs])

Return the set of faces not shared by two convexes and lying within the box defined by the
corner points pmin and pmax.

The output CVFIDs is a two-rows matrix, the first row lists convex #ids, and the second one
lists face numbers (local number in the convex). The argument dim works as in outer_faces().
If CVIDs is given, it returns portion of the boundary of the convex set defined by the #ids
listed in CVIDs.

outer_faces_with_direction(v, angle, dim=None, *args)
Synopsis: CVFIDs = Mesh.outer_faces_with_direction(self, vec v, scalar angle[, dim][,
CVIDs])

Return the set of faces not shared by two convexes and with a mean outward vector lying
within an angle angle (in radians) from vector v.

The output CVFIDs is a two-rows matrix, the first row lists convex #ids, and the second one
lists face numbers (local number in the convex). The argument dim works as in outer_faces().
If CVIDs is given, it returns portion of the boundary of the convex set defined by the #ids
listed in CVIDs.

pid()
Return the list of points #id of the mesh.

Note that their numbering is not supposed to be contiguous from 0 to Mesh.nbpts()-
1, especially if some points have been removed from the mesh. You can use
Mesh.optimize_structure() to enforce a contiguous numbering.

pid_from_coords(PTS, radius=0)
Return point #id whose coordinates are listed in PTS.

PTS is an array containing a list of point coordinates. On return, PIDs is a vector containing
points #id for each point found in eps range, and -1 for those which where not found in the
mesh.

pid_from_cvid(CVIDs=None)
Return the points attached to each convex of the mesh.

If CVIDs is omitted, all the convexes will be considered (equivalent to CVIDs =
Mesh.max_cvid()). IDx is a vector, length(IDx) = length(CVIDs)+1. Pid is a vector con-
taining the concatenated list of #id of points of each convex in CVIDs. Each entry of IDx is
the position of the corresponding convex point list in Pid. Hence, for example, the list of #id
of points of the second convex is Pid[IDx(2):IDx(3)].

If CVIDs contains convex #id which do not exist in the mesh, their point list will be empty.

pid_in_cvids(CVIDs)
Return point #id listed in CVIDs.

PIDs is a vector containing points #id.

pid_in_faces(CVFIDs)
Return point #id listed in CVFIDs.

42 Chapter 7. API reference



Python Interface, Release 5.4.2

CVFIDs is a two-rows matrix, the first row lists convex #ids, and the second lists face num-
bers. On return, PIDs is a vector containing points #id.

pid_in_regions(RIDs)
Return point #id listed in RIDs.

PIDs is a vector containing points #id.

pts(PIDs=None)
Return the list of point coordinates of the mesh.

Each column of the returned matrix contains the coordinates of one point. If the op-
tional argument PIDs was given, only the points whose #id is listed in this vector are re-
turned. Otherwise, the returned matrix will have Mesh.max_pid() columns, which might be
greater than Mesh.nbpts() (if some points of the mesh have been destroyed and no call to
Mesh.optimize_structure() have been issued). The columns corresponding to deleted points
will be filled with NaN. You can use Mesh.pid() to filter such invalid points.

pts_from_cvid(CVIDs=None)
Search point listed in CVID.

Return Pts and IDx. If CVIDs is omitted, all the convexes will be considered (equivalent to
CVIDs = Mesh.max_cvid()). IDx is a vector, length(IDx) = length(CVIDs)+1. Pts is a vector
containing the concatenated list of points of each convex in CVIDs. Each entry of IDx is the
position of the corresponding convex point list in Pts. Hence, for example, the list of points
of the second convex is Pts[:,IDx[2]:IDx[3]].

If CVIDs contains convex #id which do not exist in the mesh, their point list will be empty.

quality(CVIDs=None)
Return an estimation of the quality of each convex (0 ≤ 𝑄 ≤ 1).

refine(CVIDs=None)
Use a Bank strategy for mesh refinement.

If CVIDs is not given, the whole mesh is refined. Note that the regions, and the finite element
methods and integration methods of the MeshFem and MeshIm objects linked to this mesh
will be automagically refined.

region(RIDs)
Return the list of convexes/faces on the regions RIDs.

CVFIDs is a two-rows matrix, the first row lists convex #ids, and the second lists face num-
bers (local number in the convex). (and -1 when the whole convex is in the regions).

region_intersect(r1, r2)
Replace the region number r1 with its intersection with region number r2.

region_merge(r1, r2)
Merge region number r2 into region number r1.

region_subtract(r1, r2)
Replace the region number r1 with its difference with region number r2.

regions()
Return the list of valid regions stored in the mesh.

save(filename)
Save the mesh object to an ascii file.
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This mesh can be restored with Mesh(‘load’, filename).

set_boundary(rnum, CVFIDs)
DEPRECATED FUNCTION. Use ‘region’ instead.

set_pts(PTS)
Replace the coordinates of the mesh points with those given in PTS.

set_region(rnum, CVFIDs)
Assigns the region number rnum to the set of convexes or/and convex faces provided in the
matrix CVFIDs.

The first row of CVFIDs contains convex #ids, and the second row contains a face number
in the convex (or -1 for the whole convex (regions are usually used to store a list of convex
faces, but you may also use them to store a list of convexes).

If a vector is provided (or a one row matrix) the region will represent the corresponding set
of convex.

transform(T)
Applies the matrix T to each point of the mesh.

Note that T is not required to be a NxN matrix (with N = Mesh.dim()). Hence it is
possible to transform a 2D mesh into a 3D one (and reciprocally).

translate(V)
Translates each point of the mesh from V.

triangulated_surface(Nrefine, CVLIST=None)
[DEPRECATED FUNCTION! will be removed in a future release]

Similar function to Mesh.curved_edges() : split (if necessary, i.e. if the geometric transfor-
mation if non-linear) each face into sub-triangles and return their coordinates in T (see also
gf_compute(‘eval on P1 tri mesh’))

7.10 MeshFem

class MeshFem(*args)
GetFEM MeshFem object

This object represents a finite element method defined on a whole mesh.

General constructor for MeshFem objects

• MF = MeshFem(Mesh m[, int Qdim1=1[, int Qdim2=1, ...]]) Build a
new MeshFem object.

The Qdim parameters specifies the dimension of the field represented by the finite element
method. Qdim1 = 1 for a scalar field, Qdim1 = n for a vector field off size n, Qdim1=m,
Qdim2=n for a matrix field of size mxn . . . Returns the handle of the created object.

• MF = MeshFem('load', string fname[, Mesh m]) Load a MeshFem from a
file.

If the mesh m is not supplied (this kind of file does not store the mesh), then it is read from
the file fname and its descriptor is returned as the second output argument.
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• MF = MeshFem('from string', string s[, Mesh m]) Create a MeshFem
object from its string description.

See also MeshFem.char()

• MF = MeshFem('clone', MeshFem mf) Create a copy of a MeshFem.

• MF = MeshFem('sum', MeshFem mf1, MeshFem mf2[, MeshFem mf3[,
...]]) Create a MeshFem that spans two (or more) MeshFem’s.

All MeshFem must share the same mesh.

After that, you should not modify the FEM of mf1, mf2 etc.

• MF = MeshFem('product', MeshFem mf1, MeshFem mf2) Create a Mesh-
Fem that spans all the product of a selection of shape functions of mf1 by all shape functions
of mf2. Designed for Xfem enrichment.

mf1 and mf2 must share the same mesh.

After that, you should not modify the FEM of mf1, mf2.

• MF = MeshFem('levelset', MeshLevelSet mls, MeshFem mf) Create a
MeshFem that is conformal to implicit surfaces defined in MeshLevelSet.

• MF = MeshFem('global function', Mesh m, LevelSet ls,
(GlobalFunction GF1,...)[, int Qdim_m]) Create a MeshFem whose
base functions are global function given by the user in the system of coordinate defined by
the iso-values of the two level-set function of ls.

• MF = MeshFem('bspline_uniform', Mesh m, int NX[, int NY,] int
order[, string bcX_low[, string bcY_low[, string bcX_high][,
string bcY_high]]]) Create a MeshFem on mesh m, whose base functions are
global functions corresponding to bspline basis of order order, in an NX x NY grid (just NX
in 1s) that spans the entire bounding box of m. Optionally boundary conditions at the edges
of the domain can be defined with bcX_low, bcY_low, bcX_high, abd bcY_high set to ‘free’
(default) or ‘periodic’ or ‘symmetry’.

• MF = MeshFem('partial', MeshFem mf, ivec DOFs[, ivec RCVs])
Build a restricted MeshFem by keeping only a subset of the degrees of freedom of mf.

If RCVs is given, no FEM will be put on the convexes listed in RCVs.

adapt()
For a MeshFem levelset object only. Adapt the mesh_fem object to a change of the levelset
function.

basic_dof_from_cv(CVids)
Return the dof of the convexes listed in CVids.

WARNING: the Degree of Freedom might be returned in ANY order, do not use this function
in your assembly routines. Use ‘basic dof from cvid’ instead, if you want to be able to map
a convex number with its associated degrees of freedom.

One can also get the list of basic dof on a set on convex faces, by indicating on the second
row of CVids the faces numbers (with respect to the convex number on the first row).

basic_dof_from_cvid(CVids=None)
Return the degrees of freedom attached to each convex of the mesh.
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If CVids is omitted, all the convexes will be considered (equivalent to CVids = 1 . . .
Mesh.max_cvid()).

IDx is a vector, length(IDx) = length(CVids)+1. DOFs is a vector containing the concate-
nated list of dof of each convex in CVids. Each entry of IDx is the position of the correspond-
ing convex point list in DOFs. Hence, for example, the list of points of the second convex is
DOFs[IDx(2):IDx(3)].

If CVids contains convex #id which do not exist in the mesh, their point list will be empty.

basic_dof_nodes(DOFids=None)
Get location of basic degrees of freedom.

Return the list of interpolation points for the specified dof #IDs in DOFids (if DOFids is
omitted, all basic dof are considered).

basic_dof_on_region(Rs)
Return the list of basic dof (before the optional reduction) lying on one of the mesh regions
listed in Rs.

More precisely, this function returns the basic dof whose support is non-null on one of re-
gions whose #ids are listed in Rs (note that for boundary regions, some dof nodes may not
lie exactly on the boundary, for example the dof of Pk(n,0) lies on the center of the convex,
but the base function in not null on the convex border).

char(opt=None)
Output a string description of the MeshFem.

By default, it does not include the description of the linked mesh object, except if opt is
‘with_mesh’.

convex_index()
Return the list of convexes who have an FEM.

display()
displays a short summary for a MeshFem object.

dof_from_cv(CVids)
Deprecated function. Use MeshFem.basic_dof_from_cv() instead.

dof_from_cvid(CVids=None)
Deprecated function. Use MeshFem.basic_dof_from_cvid() instead.

dof_from_im(mim, p=None)
Return a selection of dof who contribute significantly to the mass-matrix that would be
computed with mf and the integration method mim.

p represents the dimension on what the integration method operates (default p = mesh di-
mension).

IMPORTANT: you still have to set a valid integration method on the convexes which are not
crosses by the levelset!

dof_nodes(DOFids=None)
Deprecated function. Use MeshFem.basic_dof_nodes() instead.

dof_on_region(Rs)
Return the list of dof (after the optional reduction) lying on one of the mesh regions listed in
Rs.
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More precisely, this function returns the basic dof whose support is non-null on one of re-
gions whose #ids are listed in Rs (note that for boundary regions, some dof nodes may not
lie exactly on the boundary, for example the dof of Pk(n,0) lies on the center of the convex,
but the base function in not null on the convex border).

For a reduced mesh_fem a dof is lying on a region if its potential corresponding shape
function is nonzero on this region. The extension matrix is used to make the correspondence
between basic and reduced dofs.

dof_partition()
Get the ‘dof_partition’ array.

Return the array which associates an integer (the partition number) to each convex of the
MeshFem. By default, it is an all-zero array. The degrees of freedom of each convex of
the MeshFem are connected only to the dof of neighboring convexes which have the same
partition number, hence it is possible to create partially discontinuous MeshFem very easily.

eval(expression, gl={}, lo={})
interpolate an expression on the (lagrangian) MeshFem.

Examples:

mf.eval('x*y') # interpolates the function 'x*y'
mf.eval('[x,y]') # interpolates the vector field '[x,y]'

import numpy as np
mf.eval('np.sin(x)',globals(),locals()) # interpolates the
→˓function sin(x)

export_to_dx(filename, *args)
Synopsis: MeshFem.export_to_dx(self,string filename, . . . [‘as’, string
mesh_name][,’edges’][‘serie’,string serie_name][,’ascii’][,’append’], U, ‘name’. . . )

Export a MeshFem and some fields to an OpenDX file.

This function will fail if the MeshFem mixes different convex types (i.e. quads and triangles),
or if OpenDX does not handle a specific element type (i.e. prism connections are not known
by OpenDX).

The FEM will be mapped to order 1 Pk (or Qk) FEMs. If you need to represent high-order
FEMs or high-order geometric transformations, you should consider Slice.export_to_dx().

export_to_pos(filename, name=None, *args)
Synopsis: MeshFem.export_to_pos(self,string filename[, string name][[,MeshFem mf1],
mat U1, string nameU1[[,MeshFem mf2], mat U2, string nameU2,. . . ]])

Export a MeshFem and some fields to a pos file.

The FEM and geometric transformations will be mapped to order 1 isoparametric Pk (or Qk)
FEMs (as GMSH does not handle higher order elements).

export_to_vtk(filename, *args)
Synopsis: MeshFem.export_to_vtk(self,string filename, . . . [‘ascii’], U, ‘name’. . . )

Export a MeshFem and some fields to a vtk file.

The FEM and geometric transformations will be mapped to order 1 or 2 isoparamet-
ric Pk (or Qk) FEMs (as VTK does not handle higher order elements). If you need to
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represent high-order FEMs or high-order geometric transformations, you should consider
Slice.export_to_vtk().

export_to_vtu(filename, *args)
Synopsis: MeshFem.export_to_vtu(self,string filename, . . . [‘ascii’], U, ‘name’. . . )

Export a MeshFem and some fields to a vtu file.

The FEM and geometric transformations will be mapped to order 1 or 2 isoparametric Pk
(or Qk) FEMs (as VTK(XML) does not handle higher order elements). If you need to
represent high-order FEMs or high-order geometric transformations, you should consider
Slice.export_to_vtu().

extend_vector(V)
Multiply the provided vector V with the reduction matrix of the MeshFem.

extension_matrix()
Return the optional extension matrix.

fem(CVids=None)
Return a list of FEM used by the MeshFem.

FEMs is an array of all Fem objects found in the convexes given in CVids. If CV2F was
supplied as an output argument, it contains, for each convex listed in CVids, the index of its
correspounding FEM in FEMs.

Convexes which are not part of the mesh, or convexes which do not have any FEM have their
correspounding entry in CV2F set to -1.

has_linked_mesh_levelset()
Is a mesh_fem_level_set or not.

interpolate_convex_data(Ucv)
Interpolate data given on each convex of the mesh to the MeshFem dof. The MeshFem has to
be lagrangian, and should be discontinuous (typically an FEM_PK(N,0) or FEM_QK(N,0)
should be used).

The last dimension of the input vector Ucv should have Mesh.max_cvid() elements.

Example of use: MeshFem.interpolate_convex_data(Mesh.quality())

is_equivalent(CVids=None)
Test if the MeshFem is equivalent.

See MeshFem.is_lagrangian()

is_lagrangian(CVids=None)
Test if the MeshFem is Lagrangian.

Lagrangian means that each base function Phi[i] is such that Phi[i](P[j]) = delta(i,j), where
P[j] is the dof location of the jth base function, and delta(i,j) = 1 if i==j, else 0.

If CVids is omitted, it returns 1 if all convexes in the mesh are Lagrangian. If CVids is used,
it returns the convex indices (with respect to CVids) which are Lagrangian.

is_polynomial(CVids=None)
Test if all base functions are polynomials.

See MeshFem.is_lagrangian()
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is_reduced()
Return 1 if the optional reduction matrix is applied to the dofs.

linked_mesh()
Return a reference to the Mesh object linked to mf.

linked_mesh_levelset()
if it is a mesh_fem_level_set gives the linked mesh_level_set.

memsize()
Return the amount of memory (in bytes) used by the mesh_fem object.

The result does not take into account the linked mesh object.

mesh()
Return a reference to the Mesh object linked to mf. (identical to Mesh.linked_mesh())

nb_basic_dof()
Return the number of basic degrees of freedom (dof) of the MeshFem.

nbdof()
Return the number of degrees of freedom (dof) of the MeshFem.

non_conformal_basic_dof(CVids=None)
Return partially linked degrees of freedom.

Return the basic dof located on the border of a convex and which belong to only one convex,
except the ones which are located on the border of the mesh. For example, if the convex ‘a’
and ‘b’ share a common face, ‘a’ has a P1 FEM, and ‘b’ has a P2 FEM, then the basic dof on
the middle of the face will be returned by this function (this can be useful when searching
the interfaces between classical FEM and hierarchical FEM).

non_conformal_dof(CVids=None)
Deprecated function. Use MeshFem.non_conformal_basic_dof() instead.

qdim()
Return the dimension Q of the field interpolated by the MeshFem.

By default, Q=1 (scalar field). This has an impact on the dof numbering.

reduce_meshfem(RM)
Set reduction mesh fem This function selects the degrees of freedom of the finite element
method by selecting a set of independent vectors of the matrix RM. The numer of columns
of RM should corresponds to the number of degrees of freedom of the finite element method.

reduce_vector(V)
Multiply the provided vector V with the extension matrix of the MeshFem.

reduction(s)
Set or unset the use of the reduction/extension matrices.

reduction_matrices(R, E)
Set the reduction and extension matrices and valid their use.

reduction_matrix()
Return the optional reduction matrix.

save(filename, opt=None)
Save a MeshFem in a text file (and optionally its linked mesh object if opt is the string
‘with_mesh’).
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set_classical_discontinuous_fem(k, *args)
Synopsis: MeshFem.set_classical_discontinuous_fem(self, int k[[, ‘complete’], @tscalar al-
pha[, ivec CVIDX]])

Assigns a classical (Lagrange polynomial) discontinuous fem of order k.

Similar to MeshFem.set_classical_fem() except that FEM_PK_DISCONTINUOUS is used.
Param alpha the node inset, 0 ≤ 𝑎𝑙𝑝ℎ𝑎 < 1, where 0 implies usual dof nodes, greater values
move the nodes toward the center of gravity, and 1 means that all degrees of freedom collapse
on the center of gravity. The option ‘complete’ requests complete Langrange polynomial
elements, even if the element geometric transformation is an incomplete one (e.g. 8-node
quadrilateral or 20-node hexahedral).

set_classical_fem(k, *args)
Synopsis: MeshFem.set_classical_fem(self, int k[[, ‘complete’], ivec CVids])

Assign a classical (Lagrange polynomial) fem of order k to the MeshFem. The option ‘com-
plete’ requests complete Langrange polynomial elements, even if the element geometric
transformation is an incomplete one (e.g. 8-node quadrilateral or 20-node hexahedral).

Uses FEM_PK for simplexes, FEM_QK for parallelepipeds etc.

set_dof_partition(DOFP)
Change the ‘dof_partition’ array.

DOFP is a vector holding a integer value for each convex of the MeshFem. See Mesh-
Fem.dof_partition() for a description of “dof partition”.

set_enriched_dofs(DOFs)
For a MeshFem product object only. Set te enriched dofs and adapt the MeshFem product.

set_fem(f, CVids=None)
Set the Finite Element Method.

Assign an FEM f to all convexes whose #ids are listed in CVids. If CVids is not given, the
integration is assigned to all convexes.

See the help of Fem to obtain a list of available FEM methods.

set_partial(DOFs, RCVs=None)
Can only be applied to a partial MeshFem. Change the subset of the degrees of freedom of
mf.

If RCVs is given, no FEM will be put on the convexes listed in RCVs.

set_qdim(Q)
Change the Q dimension of the field that is interpolated by the MeshFem.

Q = 1 means that the MeshFem describes a scalar field, Q = N means that the MeshFem
describes a vector field of dimension N.

7.11 MeshIm

class MeshIm(*args)
GetFEM MeshIm object

This object represents an integration method defined on a whole mesh (an potentially on its bound-
aries).
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General constructor for MeshIm objects

• MIM = MeshIm('load', string fname[, Mesh m]) Load a MeshIm from a
file.

If the mesh m is not supplied (this kind of file does not store the mesh), then it is read from
the file and its descriptor is returned as the second output argument.

• MIM = MeshIm('from string', string s[, Mesh m]) Create a MeshIm
object from its string description.

See also MeshIm.char()

• MIM = MeshIm('clone', MeshIm mim) Create a copy of a MeshIm.

• MIM = MeshIm('levelset', MeshLevelSet mls, string where,
Integ im[, Integ im_tip[, Integ im_set]]) Build an integration method
conformal to a partition defined implicitly by a levelset.

The where argument define the domain of integration with respect to the levelset, it has to be
chosen among ‘ALL’, ‘INSIDE’, ‘OUTSIDE’ and ‘BOUNDARY’.

it can be completed by a string defining the boolean operation to define the integration do-
main when there is more than one levelset.

the syntax is very simple, for example if there are 3 different levelset,

“a*b*c” is the intersection of the domains defined by each levelset (this is the
default behaviour if this function is not called).

“a+b+c” is the union of their domains.

“c-(a+b)” is the domain of the third levelset minus the union of the domains of the
two others.

“!a” is the complementary of the domain of a (i.e. it is the domain where a(x)>0)

The first levelset is always referred to with “a”, the second with “b”, and so on.

for intance INSIDE(a*b*c)

CAUTION: this integration method will be defined only on the element cut by the level-
set. For the ‘ALL’, ‘INSIDE’ and ‘OUTSIDE’ options it is mandatory to use the method
MeshIm.set_integ() to define the integration method on the remaining elements.

• MIM = MeshIm(Mesh m, [{Integ im|int im_degree}]) Build a new
MeshIm object.

For convenience, optional arguments (im or im_degree) can be provided, in that case a call
to MeshIm.integ() is issued with these arguments.

adapt()
For a MeshIm levelset object only. Adapt the integration methods to a change of the levelset
function.

char()
Output a string description of the MeshIm.

By default, it does not include the description of the linked Mesh object.

convex_index()
Return the list of convexes who have a integration method.
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Convexes who have the dummy IM_NONE method are not listed.

display()
displays a short summary for a MeshIm object.

eltm(em, cv, f=None)
Return the elementary matrix (or tensor) integrated on the convex cv.

WARNING

Be sure that the fem used for the construction of em is compatible with the fem assigned
to element cv ! This is not checked by the function ! If the argument f is given, then the
elementary tensor is integrated on the face f of cv instead of the whole convex.

im_nodes(CVids=None)
Return the coordinates of the integration points, with their weights.

CVids may be a list of convexes, or a list of convex faces, such as returned by Mesh.region()

WARNING

Convexes which are not part of the mesh, or convexes which do not have an approximate
integration method do not have their corresponding entry (this has no meaning for exact
integration methods!).

integ(CVids=None)
Return a list of integration methods used by the MeshIm.

I is an array of all Integ objects found in the convexes given in CVids. If CV2I was sup-
plied as an output argument, it contains, for each convex listed in CVids, the index of its
correspounding integration method in I.

Convexes which are not part of the mesh, or convexes which do not have any integration
method have their correspounding entry in CV2I set to -1.

linked_mesh()
Returns a reference to the Mesh object linked to mim.

memsize()
Return the amount of memory (in bytes) used by the MeshIm object.

The result does not take into account the linked Mesh object.

save(filename)
Saves a MeshIm in a text file (and optionally its linked mesh object).

set_integ(*args)
Synopsis: MeshIm.set_integ(self,{Integ im|int im_degree}[, ivec CVids])

Set the integration method.

Assign an integration method to all convexes whose #ids are listed in CVids. If CVids is not
given, the integration is assigned to all convexes. It is possible to assign a specific integration
method with an integration method handle im obtained via Integ(‘IM_SOMETHING’), or
to let getfem choose a suitable integration method with im_degree (choosen such that poly-
nomials of degree ≤ im_degree are exactly integrated. If im_degree=-1, then the dummy
integration method IM_NONE will be used.)
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7.12 MeshImData

class MeshImData(*args)
GetFEM MeshImData object

This object represents data defined on a mesh_im object.

General constructor for MeshImData objects

• MIMD = MeshImData(MeshIm mim, int region, ivec size) Build a new
MeshImd object linked to a MeshIm object. If region is provided, considered integration
points are filtered in this region. size is a vector of integers that specifies the dimensions of
the stored data per integration point. If not given, the scalar stored data are considered.

display()
displays a short summary for a MeshImd object.

linked_mesh()
Returns a reference to the Mesh object linked to mim.

nb_tensor_elements()
Output the size of the stored data (per integration point).

nbpts()
Output the number of integration points (filtered in the considered region).

region()
Output the region that the MeshImd is restricted to.

set_region(rnum)
Set the considered region to rnum.

set_tensor_size()
Set the size of the data per integration point.

tensor_size()
Output the dimensions of the stored data (per integration point).

7.13 MeshLevelSet

class MeshLevelSet(*args)
GetFEM MeshLevelSet object

General constructor for mesh_levelset objects. The role of this object is to provide a mesh cut by
a certain number of level_set. This object is used to build conformal integration method (object
mim and enriched finite element methods (Xfem)).

General constructor for MeshLevelSet objects

• MLS = MeshLevelSet(Mesh m) Build a new MeshLevelSet object from a Mesh and
returns its handle.

adapt()
Do all the work (cut the convexes with the levelsets).

To initialice the MeshLevelSet object or to actualize it when the value of any levelset function
is modified, one has to call this method.
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add(ls)
Add a link to the LevelSet ls.

Only a reference is kept, no copy is done. In order to indicate that the linked Mesh is cut by
a LevelSet one has to call this method, where ls is an LevelSet object. An arbitrary number
of LevelSet can be added.

WARNING

The Mesh of ls and the linked Mesh must be the same.

char()
Output a (unique) string representation of the MeshLevelSetn.

This can be used to perform comparisons between two different MeshLevelSet objects. This
function is to be completed.

crack_tip_convexes()
Return the list of convex #id’s of the linked Mesh on which have a tip of any linked Lev-
elSet’s.

cut_mesh()
Return a Mesh cut by the linked LevelSet’s.

display()
displays a short summary for a MeshLevelSet object.

levelsets()
Return a list of references to the linked LevelSet’s.

linked_mesh()
Return a reference to the linked Mesh.

memsize()
Return the amount of memory (in bytes) used by the MeshLevelSet.

nb_ls()
Return the number of linked LevelSet’s.

sup(ls)
Remove a link to the LevelSet ls.

7.14 MesherObject

class MesherObject(*args)
GetFEM MesherObject object

This object represents a geometric object to be meshed by the experimental meshing procedure of
Getfem.

General constructor for MesherObject objects

• MF = MesherObject('ball', vec center, scalar radius) Represents a
ball of corresponding center and radius.

• MF = MesherObject('half space', vec origin, vec
normal_vector) Represents an half space delimited by the plane which contains
the origin and normal to normal_vector. The selected part is the part in the direction of the
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normal vector. This allows to cut a geometry with a plane for instance to build a polygon or
a polyhedron.

• MF = MesherObject('cylinder', vec origin, vec n, scalar
length, scalar radius) Represents a cylinder (in any dimension) of a cer-
tain radius whose axis is determined by the origin, a vector n and a certain length.

• MF = MesherObject('cone', vec origin, vec n, scalar length,
scalar half_angle) Represents a cone (in any dimension) of a certain half-angle (in
radians) whose axis is determined by the origin, a vector n and a certain length.

• MF = MesherObject('torus', scalar R, scalar r) Represents a torus in
3d of axis along the z axis with a great radius equal to R and small radius equal to r. For the
moment, the possibility to change the axis is not given.

• MF = MesherObject('rectangle', vec rmin, vec rmax) Represents a
rectangle (or parallelepiped in 3D) parallel to the axes.

• MF = MesherObject('intersect', MesherObject object1 ,
MesherObject object2, ...) Intersection of several objects.

• MF = MesherObject('union', MesherObject object1 ,
MesherObject object2, ...) Union of several objects.

• MF = MesherObject('set minus', MesherObject object1 ,
MesherObject object2) Geometric object being object1 minus object2.

char()
Output a (unique) string representation of the MesherObject.

This can be used to perform comparisons between two different MesherObject objects. This
function is to be completed.

display()
displays a short summary for a MesherObject object.

7.15 Model

class Model(*args)
GetFEM Model object

Model variables store the variables and the state data and the description of a model. This includes
the global tangent matrix, the right hand side and the constraints. There are two kinds of models,
the real and the complex models.

General constructor for Model objects

• MD = Model('real') Build a model for real unknowns.

• MD = Model('complex') Build a model for complex unknowns.

Neumann_term(varname, region)
Gives the assembly string corresponding to the Neumann term of the fem variable varname
on region. It is deduced from the assembly string declared by the model bricks. region
should be the index of a boundary region on the mesh where varname is defined. Care to
call this function only after all the volumic bricks have been declared. Complains, if a brick
omit to declare an assembly string.
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add_Dirichlet_condition_with_Nitsche_method(mim, varname, Neuman-
nterm, datagamma0,
region, theta=None,
*args)

Synopsis: ind = Model.add_Dirichlet_condition_with_Nitsche_method(self, MeshIm mim,
string varname, string Neumannterm, string datagamma0, int region[, scalar theta][, string
dataname])

Add a Dirichlet condition on the variable varname and the mesh region region. This region
should be a boundary. Neumannterm is the expression of the Neumann term (obtained by the
Green formula) described as an expression of the high-level generic assembly language. This
term can be obtained by Model.Neumann_term(varname, region) once all volumic bricks
have been added to the model. The Dirichlet condition is prescribed with Nitsche’s method.
datag is the optional right hand side of the Dirichlet condition. datagamma0 is the Nitsche’s
method parameter. theta is a scalar value which can be positive or negative. theta = 1
corresponds to the standard symmetric method which is conditionally coercive for gamma0
small. theta = -1 corresponds to the skew-symmetric method which is inconditionally co-
ercive. theta = 0 (default) is the simplest method for which the second derivative of the
Neumann term is not necessary even for nonlinear problems. Return the brick index in the
model.

add_Dirichlet_condition_with_multipliers(mim, varname,
mult_description, region,
dataname=None)

Add a Dirichlet condition on the variable varname and the mesh region region. This region
should be a boundary. The Dirichlet condition is prescribed with a multiplier variable de-
scribed by mult_description. If mult_description is a string this is assumed to be the variable
name corresponding to the multiplier (which should be first declared as a multiplier variable
on the mesh region in the model). If it is a finite element method (mesh_fem object) then a
multiplier variable will be added to the model and build on this finite element method (it will
be restricted to the mesh region region and eventually some conflicting dofs with some other
multiplier variables will be suppressed). If it is an integer, then a multiplier variable will be
added to the model and build on a classical finite element of degree that integer. dataname is
the optional right hand side of the Dirichlet condition. It could be constant or described on a
fem; scalar or vector valued, depending on the variable on which the Dirichlet condition is
prescribed. Return the brick index in the model.

add_Dirichlet_condition_with_penalization(mim, varname, coeff, re-
gion, dataname=None,
mf_mult=None)

Add a Dirichlet condition on the variable varname and the mesh region region. This region
should be a boundary. The Dirichlet condition is prescribed with penalization. The penal-
ization coefficient is initially coeff and will be added to the data of the model. dataname is
the optional right hand side of the Dirichlet condition. It could be constant or described on a
fem; scalar or vector valued, depending on the variable on which the Dirichlet condition is
prescribed. mf_mult is an optional parameter which allows to weaken the Dirichlet condition
specifying a multiplier space. Return the brick index in the model.

add_Dirichlet_condition_with_simplification(varname, region,
dataname=None)

Adds a (simple) Dirichlet condition on the variable varname and the mesh region region.
The Dirichlet condition is prescribed by a simple post-treatment of the final linear system
(tangent system for nonlinear problems) consisting of modifying the lines corresponding to
the degree of freedom of the variable on region (0 outside the diagonal, 1 on the diagonal
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of the matrix and the expected value on the right hand side). The symmetry of the linear
system is kept if all other bricks are symmetric. This brick is to be reserved for simple
Dirichlet conditions (only dof declared on the corresponding boundary are prescribed). The
application of this brick on reduced dof may be problematic. Intrinsic vectorial finite element
method are not supported. dataname is the optional right hand side of the Dirichlet condition.
It could be constant (but in that case, it can only be applied to Lagrange f.e.m.) or (important)
described on the same finite element method as varname. Returns the brick index in the
model.

add_Fourier_Robin_brick(mim, varname, dataexpr, region)
Add a Fourier-Robin term to the model relatively to the variable varname. This corresponds
to a weak term of the form

∫︀
(𝑞𝑢).𝑣. dataexpr is the parameter 𝑞 of the Fourier-Robin

condition. It can be an arbitrary valid expression of the high-level generic assembly language
(except for the complex version for which it should be a data of the model). region is the
mesh region on which the term is added. Return the brick index in the model.

add_HHO_reconstructed_gradient(transname)
Add to the model the elementary transformation corresponding to the reconstruction of a
gradient for HHO methods. The name is the name given to the elementary transformation.

add_HHO_reconstructed_symmetrized_gradient(transname)
Add to the model the elementary transformation corresponding to the reconstruction of a
symmetrized gradient for HHO methods. The name is the name given to the elementary
transformation.

add_HHO_reconstructed_symmetrized_value(transname)
Add to the model the elementary transformation corresponding to the reconstruction of the
variable for HHO methods using a symmetrized gradient. The name is the name given to the
elementary transformation.

add_HHO_reconstructed_value(transname)
Add to the model the elementary transformation corresponding to the reconstruction of the
variable for HHO methods. The name is the name given to the elementary transformation.

add_HHO_stabilization(transname)
Add to the model the elementary transformation corresponding to the HHO stabilization
operator. The name is the name given to the elementary transformation.

add_HHO_symmetrized_stabilization(transname)
Add to the model the elementary transformation corresponding to the HHO stabilization
operator using a symmetrized gradient. The name is the name given to the elementary trans-
formation.

add_Helmholtz_brick(mim, varname, dataexpr, region=None)
Add a Helmholtz term to the model relatively to the variable varname. dataexpr is the wave
number. region is an optional mesh region on which the term is added. If it is not specified,
it is added on the whole mesh. Return the brick index in the model.

add_Houbolt_scheme(varname)
Attach a Houbolt method for the time discretization of the variable varname. Valid only if
there is at most second order time derivative of the variable

add_Kirchhoff_Love_Neumann_term_brick(mim, varname, dataname_M,
dataname_divM, region)

Add a Neumann term brick for Kirchhoff-Love model on the variable varname and the mesh
region region. dataname_M represents the bending moment tensor and dataname_divM its
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divergence. Return the brick index in the model.

add_Kirchhoff_Love_plate_brick(mim, varname, dataname_D, dataname_nu,
region=None)

Add a bilaplacian brick on the variable varname and on the mesh region region. This rep-
resent a term ∆(𝐷∆𝑢) where 𝐷(𝑥) is a the flexion modulus determined by dataname_D.
The term is integrated by part following a Kirchhoff-Love plate model with dataname_nu
the poisson ratio. Return the brick index in the model.

add_Laplacian_brick(mim, varname, region=None)
Add a Laplacian term to the model relatively to the variable varname (in fact with a minus :
−div(∇𝑢)). If this is a vector valued variable, the Laplacian term is added componentwise.
region is an optional mesh region on which the term is added. If it is not specified, it is added
on the whole mesh. Return the brick index in the model.

add_Mindlin_Reissner_plate_brick(mim, mim_reduced, varname_u3, var-
name_theta, param_E, param_nu,
param_epsilon, param_kappa, vari-
ant=None, *args)

Synopsis: ind = Model.add_Mindlin_Reissner_plate_brick(self, MeshIm mim, MeshIm
mim_reduced, string varname_u3, string varname_theta , string param_E, string param_nu,
string param_epsilon, string param_kappa [,int variant [, int region]])

Add a term corresponding to the classical Reissner-Mindlin plate model for which var-
name_u3 is the transverse displacement, varname_theta the rotation of fibers normal to the
midplane, ‘param_E’ the Young Modulus, param_nu the poisson ratio, param_epsilon the
plate thickness, param_kappa the shear correction factor. Note that since this brick uses
the high level generic assembly language, the parameter can be regular expression of this
language. There are three variants. variant = 0 corresponds to the an unreduced formulation
and in that case only the integration method mim is used. Practically this variant is not usable
since it is subject to a strong locking phenomenon. variant = 1 corresponds to a reduced in-
tegration where mim is used for the rotation term and mim_reduced for the transverse shear
term. variant = 2 (default) corresponds to the projection onto a rotated RT0 element of the
transverse shear term. For the moment, this is adapted to quadrilateral only (because it is not
sufficient to remove the locking phenomenon on triangle elements). Note also that if you
use high order elements, the projection on RT0 will reduce the order of the approximation.
Returns the brick index in the model.

add_Newmark_scheme(varname, beta, gamma)
Attach a theta method for the time discretization of the variable varname. Valid only if there
is at most second order time derivative of the variable.

add_Nitsche_contact_with_rigid_obstacle_brick(mim, varname,
Neumannterm,
dataname_obstacle,
gamma0name, region,
theta=None, *args)

Synopsis: ind = Model.add_Nitsche_contact_with_rigid_obstacle_brick(self, MeshIm mim,
string varname, string Neumannterm, string dataname_obstacle, string gamma0name,
int region[, scalar theta[, string dataname_friction_coeff[, string dataname_alpha, string
dataname_wt]]])

Adds a contact condition with or without Coulomb friction on the variable varname and the
mesh boundary region. The contact condition is prescribed with Nitsche’s method. The rigid
obstacle should be described with the data dataname_obstacle being a signed distance to the
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obstacle (interpolated on a finite element method). gamma0name is the Nitsche’s method
parameter. theta is a scalar value which can be positive or negative. theta = 1 corresponds to
the standard symmetric method which is conditionally coercive for gamma0 small. theta =
-1 corresponds to the skew-symmetric method which is inconditionally coercive. theta = 0 is
the simplest method for which the second derivative of the Neumann term is not necessary.
The optional parameter dataname_friction_coeff is the friction coefficient which could be
constant or defined on a finite element method. CAUTION: This brick has to be added in
the model after all the bricks corresponding to partial differential terms having a Neumann
term. Moreover, This brick can only be applied to bricks declaring their Neumann terms.
Returns the brick index in the model.

add_Nitsche_fictitious_domain_contact_brick(mim, varname1, var-
name2, dataname_d1,
dataname_d2,
gamma0name,
theta=None, *args)

Synopsis: ind = Model.add_Nitsche_fictitious_domain_contact_brick(self, MeshIm mim,
string varname1, string varname2, string dataname_d1, string dataname_d2, string
gamma0name [, scalar theta[, string dataname_friction_coeff[, string dataname_alpha, string
dataname_wt1,string dataname_wt2]]])

Adds a contact condition with or without Coulomb friction between two bodies in a fictitious
domain. The contact condition is applied on the variable varname_u1 corresponds with the
first and slave body with Nitsche’s method and on the variable varname_u2 corresponds with
the second and master body with Nitsche’s method. The contact condition is evaluated on the
fictitious slave boundary. The first body should be described by the level-set dataname_d1
and the second body should be described by the level-set dataname_d2. gamma0name is
the Nitsche’s method parameter. theta is a scalar value which can be positive or negative.
theta = 1 corresponds to the standard symmetric method which is conditionally coercive for
gamma0 small. theta = -1 corresponds to the skew-symmetric method which is incondi-
tionally coercive. theta = 0 is the simplest method for which the second derivative of the
Neumann term is not necessary. The optional parameter dataname_friction_coeff is the fric-
tion coefficient which could be constant or defined on a finite element method. CAUTION:
This brick has to be added in the model after all the bricks corresponding to partial differ-
ential terms having a Neumann term. Moreover, This brick can only be applied to bricks
declaring their Neumann terms. Returns the brick index in the model.

add_Nitsche_large_sliding_contact_brick_raytracing(unbiased_version,
dataname_r,
re-
lease_distance,
dataname_fr=None,
*args)

Synopsis: ind = Model.add_Nitsche_large_sliding_contact_brick_raytracing(self, bool un-
biased_version, string dataname_r, scalar release_distance[, string dataname_fr[, string
dataname_alpha[, int version]]])

Adds a large sliding contact with friction brick to the model based on the Nitsche’s method.
This brick is able to deal with self-contact, contact between several deformable bodies and
contact with rigid obstacles. It uses the high-level generic assembly. It adds to the model
a raytracing_interpolate_transformation object. “unbiased_version” refers to the version of
Nische’s method to be used. (unbiased or biased one). For each slave boundary a material
law should be defined as a function of the dispacement variable on this boundary. The release
distance should be determined with care (generally a few times a mean element size, and less
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than the thickness of the body). Initially, the brick is added with no contact boundaries. The
contact boundaries and rigid bodies are added with special functions. version is 0 (the default
value) for the non-symmetric version and 1 for the more symmetric one (not fully symmetric
even without friction).

add_Nitsche_midpoint_contact_with_rigid_obstacle_brick(mim,
var-
name,
Neuman-
nterm,
Neuman-
nterm_wt,
dataname_obstacle,
gamma0name,
region,
theta,
dataname_friction_coeff,
dataname_alpha,
dataname_wt)

EXPERIMENTAL BRICK: for midpoint scheme only !! Adds a contact condition with or
without Coulomb friction on the variable varname and the mesh boundary region. The con-
tact condition is prescribed with Nitsche’s method. The rigid obstacle should be described
with the data dataname_obstacle being a signed distance to the obstacle (interpolated on a
finite element method). gamma0name is the Nitsche’s method parameter. theta is a scalar
value which can be positive or negative. theta = 1 corresponds to the standard symmetric
method which is conditionally coercive for gamma0 small. theta = -1 corresponds to the
skew-symmetric method which is inconditionally coercive. theta = 0 is the simplest method
for which the second derivative of the Neumann term is not necessary. The optional parame-
ter dataname_friction_coeff is the friction coefficient which could be constant or defined on
a finite element method. Returns the brick index in the model.

add_assembly_assignment(dataname, expression, region=None, *args)
Synopsis: Model.add_assembly_assignment(self, string dataname, string expression[, int
region[, int order[, int before]]])

Adds expression expr to be evaluated at assembly time and being assigned to the data
dataname which has to be of im_data type. This allows for instance to store a sub-expression
of an assembly computation to be used on an other assembly. It can be used for instance to
store the plastic strain in plasticity models. order represents the order of assembly where
this assignement has to be done (potential(0), weak form(1) or tangent system(2) or at each
order(-1)). The default value is 1. If before = 1, the the assignement is perfromed before the
computation of the other assembly terms, such that the data can be used in the remaining
of the assembly as an intermediary result (be careful that it is still considered as a data, no
derivation of the expression is performed for the tangent system). If before = 0 (default), the
assignement is done after the assembly terms.

add_basic_contact_brick(varname_u, multname_n, multname_t=None, *args)
Synopsis: ind = Model.add_basic_contact_brick(self, string varname_u, string mult-
name_n[, string multname_t], string dataname_r, Spmat BN[, Spmat BT, string
dataname_friction_coeff][, string dataname_gap[, string dataname_alpha[, int aug-
mented_version[, string dataname_gamma, string dataname_wt]]])

Add a contact with or without friction brick to the model. If U is the vector of degrees of
freedom on which the unilateral constraint is applied, the matrix BN have to be such that
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this constraint is defined by 𝐵𝑁𝑈 ≤ 0. A friction condition can be considered by adding
the three parameters multname_t, BT and dataname_friction_coeff. In this case, the tangen-
tial displacement is 𝐵𝑇𝑈 and the matrix BT should have as many rows as BN multiplied
by 𝑑 − 1 where 𝑑 is the domain dimension. In this case also, dataname_friction_coeff is
a data which represents the coefficient of friction. It can be a scalar or a vector represent-
ing a value on each contact condition. The unilateral constraint is prescribed thank to a
multiplier multname_n whose dimension should be equal to the number of rows of BN. If
a friction condition is added, it is prescribed with a multiplier multname_t whose dimen-
sion should be equal to the number of rows of BT. The augmentation parameter r should
be chosen in a range of acceptabe values (see Getfem user documentation). dataname_gap
is an optional parameter representing the initial gap. It can be a single value or a vector of
value. dataname_alpha is an optional homogenization parameter for the augmentation pa-
rameter (see Getfem user documentation). The parameter augmented_version indicates the
augmentation strategy : 1 for the non-symmetric Alart-Curnier augmented Lagrangian, 2 for
the symmetric one (except for the coupling between contact and Coulomb friction), 3 for
the unsymmetric method with augmented multipliers, 4 for the unsymmetric method with
augmented multipliers and De Saxce projection.

add_basic_contact_brick_two_deformable_bodies(varname_u1, var-
name_u2, mult-
name_n, dataname_r,
BN1, BN2,
dataname_gap=None,
*args)

Synopsis: ind = Model.add_basic_contact_brick_two_deformable_bodies(self, string var-
name_u1, string varname_u2, string multname_n, string dataname_r, Spmat BN1, Spmat
BN2[, string dataname_gap[, string dataname_alpha[, int augmented_version]]])

Add a frictionless contact condition to the model between two deformable bodies. If
U1, U2 are the vector of degrees of freedom on which the unilateral constraint is applied,
the matrices BN1 and BN2 have to be such that this condition is defined by $B_{N1}
U_1 B_{N2} U_2 + le gap$. The constraint is prescribed thank to a multiplier mult-
name_n whose dimension should be equal to the number of lines of BN. The augmen-
tation parameter r should be chosen in a range of acceptabe values (see Getfem user
documentation). dataname_gap is an optional parameter representing the initial gap. It
can be a single value or a vector of value. dataname_alpha is an optional homogeniza-
tion parameter for the augmentation parameter (see Getfem user documentation). The
parameter aug_version indicates the augmentation strategy : 1 for the non-symmetric
Alart-Curnier augmented Lagrangian, 2 for the symmetric one, 3 for the unsymmetric
method with augmented multiplier.

add_bilaplacian_brick(mim, varname, dataname, region=None)
Add a bilaplacian brick on the variable varname and on the mesh region region. This repre-
sent a term ∆(𝐷∆𝑢). where 𝐷(𝑥) is a coefficient determined by dataname which could be
constant or described on a f.e.m. The corresponding weak form is

∫︀
𝐷(𝑥)∆𝑢(𝑥)∆𝑣(𝑥)𝑑𝑥.

Return the brick index in the model.

add_constraint_with_multipliers(varname, multname, B, *args)
Synopsis: ind = Model.add_constraint_with_multipliers(self, string varname, string mult-
name, Spmat B, {vec L | string dataname})

Add an additional explicit constraint on the variable varname thank to a multiplier multname
peviously added to the model (should be a fixed size variable). The constraint is 𝐵𝑈 = 𝐿
with B being a rectangular sparse matrix. It is possible to change the constraint at any time
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with the methods Model.set_private_matrix() and Model.set_private_rhs(). If dataname is
specified instead of L, the vector L is defined in the model as data with the given name.
Return the brick index in the model.

add_constraint_with_penalization(varname, coeff, B, *args)
Synopsis: ind = Model.add_constraint_with_penalization(self, string varname, scalar coeff,
Spmat B, {vec L | string dataname})

Add an additional explicit penalized constraint on the variable varname. The constraint
is :math‘BU=L‘ with B being a rectangular sparse matrix. Be aware that B should not
contain a plain row, otherwise the whole tangent matrix will be plain. It is possible
to change the constraint at any time with the methods Model.set_private_matrix() and
Model.set_private_rhs(). The method Model.change_penalization_coeff() can be used. If
dataname is specified instead of L, the vector L is defined in the model as data with the given
name. Return the brick index in the model.

add_contact_boundary_to_unbiased_Nitsche_large_sliding_contact_brick(indbrick,
mim,
re-
gion,
disp-
name,
lamb-
daname,
wname=None)

Adds a contact boundary to an existing unbiased Nitschelarge sliding contact with friction
brick which is both master and slave.

add_contact_with_rigid_obstacle_brick(mim, varname_u, multname_n,
multname_t=None, *args)

Synopsis: ind = Model.add_contact_with_rigid_obstacle_brick(self, MeshIm mim,
string varname_u, string multname_n[, string multname_t], string dataname_r[, string
dataname_friction_coeff], int region, string obstacle[, int augmented_version])

DEPRECATED FUNCTION. Use ‘add nodal contact with rigid obstacle brick’ instead.

add_data(name, size)
Add a fixed size data to the model. sizes is either a integer (for a scalar or vector data) or a
vector of dimensions for a tensor data. name is the data name.

add_elastoplasticity_brick(mim, projname, varname, previous_dep_name,
datalambda, datamu, datathreshold, datasigma, re-
gion=None)

Old (obsolete) brick which do not use the high level generic assembly. Add a nonlinear
elastoplastic term to the model relatively to the variable varname, in small deformations,
for an isotropic material and for a quasistatic model. projname is the type of projection
that used: only the Von Mises projection is available with ‘VM’ or ‘Von Mises’. datasigma
is the variable representing the constraints on the material. previous_dep_name represents
the displacement at the previous time step. Moreover, the finite element method on which
varname is described is an K ordered mesh_fem, the datasigma one have to be at least an
K-1 ordered mesh_fem. datalambda and datamu are the Lame coefficients of the studied
material. datathreshold is the plasticity threshold of the material. The three last variables
could be constants or described on the same finite element method. region is an optional
mesh region on which the term is added. If it is not specified, it is added on the whole mesh.
Return the brick index in the model.
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add_element_extrapolation_transformation(transname, source_mesh,
elt_corr)

Add a special interpolation transformation which represents the identity transformation but
allows to evaluate the expression on another element than the current element by polynomial
extrapolation. It is used for stabilization term in fictitious domain applications. the array
elt_cor should be a two entry array whose first line contains the elements concerned by the
transformation and the second line the respective elements on which the extrapolation has
to be made. If an element is not listed in elt_cor the evaluation is just made on the current
element.

add_elementary_P0_projection(transname)
Add the elementary transformation corresponding to the projection P0 element. The name
is the name given to the elementary transformation.

add_elementary_rotated_RT0_projection(transname)
Add the elementary transformation corresponding to the projection on rotated RT0 element
for two-dimensional elements to the model. The name is the name given to the elementary
transformation.

add_enriched_Mindlin_Reissner_plate_brick(mim, mim_reduced1,
mim_reduced2, var-
name_ua, varname_theta,
varname_u3, var-
name_theta3, param_E,
param_nu, param_epsilon,
variant=None, *args)

Synopsis: ind = Model.add_enriched_Mindlin_Reissner_plate_brick(self, MeshIm mim,
MeshIm mim_reduced1, MeshIm mim_reduced2, string varname_ua, string var-
name_theta,string varname_u3, string varname_theta3 , string param_E, string param_nu,
string param_epsilon [,int variant [, int region]])

Add a term corresponding to the enriched Reissner-Mindlin plate model for which var-
name_ua is the membrane displacements, varname_u3 is the transverse displacement, var-
name_theta the rotation of fibers normal to the midplane, varname_theta3 the pinching,
‘param_E’ the Young Modulus, param_nu the poisson ratio, param_epsilon the plate thick-
ness. Note that since this brick uses the high level generic assembly language, the parameter
can be regular expression of this language. There are four variants. variant = 0 corresponds
to the an unreduced formulation and in that case only the integration method mim is used.
Practically this variant is not usable since it is subject to a strong locking phenomenon.
variant = 1 corresponds to a reduced integration where mim is used for the rotation term
and mim_reduced1 for the transverse shear term and mim_reduced2 for the pinching term.
variant = 2 (default) corresponds to the projection onto a rotated RT0 element of the trans-
verse shear term and a reduced integration for the pinching term. For the moment, this is
adapted to quadrilateral only (because it is not sufficient to remove the locking phenomenon
on triangle elements). Note also that if you use high order elements, the projection on RT0
will reduce the order of the approximation. variant = 3 corresponds to the projection onto
a rotated RT0 element of the transverse shear term and the projection onto P0 element of
the pinching term. For the moment, this is adapted to quadrilateral only (because it is not
sufficient to remove the locking phenomenon on triangle elements). Note also that if you
use high order elements, the projection on RT0 will reduce the order of the approximation.
Returns the brick index in the model.

add_explicit_matrix(varname1, varname2, B, issymmetric=None, *args)
Synopsis: ind = Model.add_explicit_matrix(self, string varname1, string varname2, Spmat
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B[, int issymmetric[, int iscoercive]])

Add a brick representing an explicit matrix to be added to the tangent linear system relatively
to the variables varname1 and varname2. The given matrix should have has many rows as
the dimension of varname1 and as many columns as the dimension of varname2. If the two
variables are different and if issymmetric is set to 1 then the transpose of the matrix is also
added to the tangent system (default is 0). Set iscoercive to 1 if the term does not affect the
coercivity of the tangent system (default is 0). The matrix can be changed by the command
Model.set_private_matrix(). Return the brick index in the model.

add_explicit_rhs(varname, L)
Add a brick representing an explicit right hand side to be added to the right hand side of
the tangent linear system relatively to the variable varname. The given rhs should have
the same size than the dimension of varname. The rhs can be changed by the command
Model.set_private_rhs(). If dataname is specified instead of L, the vector L is defined in the
model as data with the given name. Return the brick index in the model.

add_fem_data(name, mf, sizes=None)
Add a data to the model linked to a MeshFem. name is the data name, sizes an optional
parameter which is either an integer or a vector of suplementary dimensions with respect to
mf.

add_fem_variable(name, mf)
Add a variable to the model linked to a MeshFem. name is the variable name.

add_filtered_fem_variable(name, mf, region)
Add a variable to the model linked to a MeshFem. The variable is filtered in the sense that
only the dof on the region are considered. name is the variable name.

add_finite_strain_elasticity_brick(mim, constitutive_law, varname,
params, region=None)

Add a nonlinear elasticity term to the model relatively to the variable varname. law-
name is the constitutive law which could be ‘SaintVenant Kirchhoff’, ‘Mooney Rivlin’,
‘Neo Hookean’, ‘Ciarlet Geymonat’ or ‘Generalized Blatz Ko’. ‘Mooney Rivlin’ and ‘Neo
Hookean’ law names have to be preceeded with the word ‘Compressible’ or ‘Incompressible’
to force using the corresponding version. The compressible version of these laws requires
one additional material coefficient.

IMPORTANT : if the variable is defined on a 2D mesh, the plane strain approximation is
automatically used. params is a vector of parameters for the constitutive law. Its length
depends on the law. It could be a short vector of constant values or a vector field described
on a finite element method for variable coefficients. region is an optional mesh region on
which the term is added. If it is not specified, it is added on the whole mesh. This brick use
the high-level generic assembly. Returns the brick index in the model.

add_finite_strain_elastoplasticity_brick(mim, lawname, un-
knowns_type, var-
names=None, *args)

Synopsis: ind = Model.add_finite_strain_elastoplasticity_brick(self, MeshIm mim , string
lawname, string unknowns_type [, string varnames, . . . ] [, string params, . . . ] [, int region =
-1])

Add a finite strain elastoplasticity brick to the model. For the moment there is
only one supported law defined through lawname as “Simo_Miehe”. This law sup-
ports to possibilities of unknown variables to solve for defined by means of un-
knowns_type set to either ‘DISPLACEMENT_AND_PLASTIC_MULTIPLIER’ (integer
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value 1) or ‘DISPLACEMENT_AND_PLASTIC_MULTIPLIER_AND_PRESSURE’ (in-
teger value 3). The “Simo_Miehe” law expects as varnames a set of the following names
that have to be defined as variables in the model:

• the displacement variable which has to be defined as an unknown,

• the plastic multiplier which has also defined as an unknown,

• optionally the pressure variable for a mixed displacement-pressure formulation
for ‘DISPLACEMENT_AND_PLASTIC_MULTIPLIER_AND_PRESSURE’ as un-
knowns_type,

• the name of a (scalar) fem_data or im_data field that holds the plastic strain at the
previous time step, and

• the name of a fem_data or im_data field that holds all non-repeated components of the
inverse of the plastic right Cauchy-Green tensor at the previous time step (it has to be a
4 element vector for plane strain 2D problems and a 6 element vector for 3D problems).

The “Simo_Miehe” law also expects as params a set of the following three parameters:

• an expression for the initial bulk modulus K,

• an expression for the initial shear modulus G,

• the name of a user predefined function that decribes the yield limit as a function of the
hardening variable (both the yield limit and the hardening variable values are assumed
to be Frobenius norms of appropriate stress and strain tensors, respectively).

As usual, region is an optional mesh region on which the term is added. If it is not specified,
it is added on the whole mesh. Return the brick index in the model.

add_finite_strain_incompressibility_brick(mim, varname, mult-
name_pressure, re-
gion=None)

Add a finite strain incompressibility condition on variable (for large strain elasticity). mult-
name_pressure is a variable which represent the pressure. Be aware that an inf-sup condition
between the finite element method describing the pressure and the primal variable has to be
satisfied. region is an optional mesh region on which the term is added. If it is not specified,
it is added on the whole mesh. Return the brick index in the model. This brick is equiva-
lent to the nonlinear incompressibility brick but uses the high-level generic
assembly adding the term p*(1-Det(Id(meshdim)+Grad_u)) if p is the multiplier
and u the variable which represent the displacement.

add_generalized_Dirichlet_condition_with_Nitsche_method(mim,
var-
name,
Neu-
man-
nterm,
gamma0name,
region,
theta=None)

Add a Dirichlet condition on the variable varname and the mesh region region. This version
is for vector field. It prescribes a condition @f$ Hu = r @f$ where H is a matrix field. CAU-
TION : the matrix H should have all eigenvalues equal to 1 or 0. The region should be a
boundary. Neumannterm is the expression of the Neumann term (obtained by the Green for-
mula) described as an expression of the high-level generic assembly language. This term can
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be obtained by Model.Neumann_term(varname, region) once all volumic bricks have been
added to the model. The Dirichlet condition is prescribed with Nitsche’s method. dataname
is the optional right hand side of the Dirichlet condition. It could be constant or described
on a fem. gamma0name is the Nitsche’s method parameter. theta is a scalar value which
can be positive or negative. theta = 1 corresponds to the standard symmetric method which
is conditionally coercive for gamma0 small. theta = -1 corresponds to the skew-symmetric
method which is inconditionally coercive. theta = 0 is the simplest method for which the
second derivative of the Neumann term is not necessary even for nonlinear problems. Hname
is the data corresponding to the matrix field H. It has to be a constant matrix or described on
a scalar fem. Returns the brick index in the model. (This brick is not fully tested)

add_generalized_Dirichlet_condition_with_multipliers(mim,
varname,
mult_description,
region,
dataname,
Hname)

Add a Dirichlet condition on the variable varname and the mesh region region. This version
is for vector field. It prescribes a condition 𝐻𝑢 = 𝑟 where H is a matrix field. The region
should be a boundary. The Dirichlet condition is prescribed with a multiplier variable de-
scribed by mult_description. If mult_description is a string this is assumed to be the variable
name corresponding to the multiplier (which should be first declared as a multiplier variable
on the mesh region in the model). If it is a finite element method (mesh_fem object) then a
multiplier variable will be added to the model and build on this finite element method (it will
be restricted to the mesh region region and eventually some conflicting dofs with some other
multiplier variables will be suppressed). If it is an integer, then a multiplier variable will be
added to the model and build on a classical finite element of degree that integer. dataname
is the right hand side of the Dirichlet condition. It could be constant or described on a fem;
scalar or vector valued, depending on the variable on which the Dirichlet condition is pre-
scribed. Hname is the data corresponding to the matrix field H. Returns the brick index in
the model.

add_generalized_Dirichlet_condition_with_penalization(mim,
varname,
coeff,
region,
dataname,
Hname,
mf_mult=None)

Add a Dirichlet condition on the variable varname and the mesh region region. This version
is for vector field. It prescribes a condition 𝐻𝑢 = 𝑟 where H is a matrix field. The region
should be a boundary. The Dirichlet condition is prescribed with penalization. The penal-
ization coefficient is intially coeff and will be added to the data of the model. dataname is
the right hand side of the Dirichlet condition. It could be constant or described on a fem;
scalar or vector valued, depending on the variable on which the Dirichlet condition is pre-
scribed. Hname is the data corresponding to the matrix field H. It has to be a constant matrix
or described on a scalar fem. mf_mult is an optional parameter which allows to weaken the
Dirichlet condition specifying a multiplier space. Return the brick index in the model.

add_generic_elliptic_brick(mim, varname, dataname, region=None)
Add a generic elliptic term to the model relatively to the variable varname. The shape of
the elliptic term depends both on the variable and the data. This corresponds to a term
−div(𝑎∇𝑢) where 𝑎 is the data and 𝑢 the variable. The data can be a scalar, a matrix or an
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order four tensor. The variable can be vector valued or not. If the data is a scalar or a matrix
and the variable is vector valued then the term is added componentwise. An order four tensor
data is allowed for vector valued variable only. The data can be constant or describbed on a
fem. Of course, when the data is a tensor describe on a finite element method (a tensor field)
the data can be a huge vector. The components of the matrix/tensor have to be stored with
the fortran order (columnwise) in the data vector (compatibility with blas). The symmetry
of the given matrix/tensor is not verified (but assumed). If this is a vector valued variable,
the elliptic term is added componentwise. region is an optional mesh region on which the
term is added. If it is not specified, it is added on the whole mesh. Note that for the real
version which uses the high-level generic assembly language, dataname can be any regular
expression of the high-level generic assembly language (like “1”, “sin(X(1))” or “Norm(u)”
for instance) even depending on model variables. Return the brick index in the model.

add_im_data(name, mimd)
Add a data set to the model linked to a MeshImd. name is the data name.

add_im_variable(name, mimd)
Add a variable to the model linked to a MeshImd. name is the variable name.

add_initialized_data(name, V, sizes=None)
Add an initialized fixed size data to the model. sizes an optional parameter which is either
an integer or a vector dimensions that describes the format of the data. By default, the data
is considered to b a vector field. name is the data name and V is the value of the data.

add_initialized_fem_data(name, mf, V, sizes=None)
Add a data to the model linked to a MeshFem. name is the data name. The data is initiakized
with V. The data can be a scalar or vector field. sizes an optional parameter which is either
an integer or a vector of suplementary dimensions with respect to mf.

add_integral_contact_between_nonmatching_meshes_brick(mim, var-
name_u1,
var-
name_u2,
multname,
dataname_r,
dataname_friction_coeff=None,
*args)

Synopsis: ind = Model.add_integral_contact_between_nonmatching_meshes_brick(self,
MeshIm mim, string varname_u1, string varname_u2, string multname, string dataname_r
[, string dataname_friction_coeff], int region1, int region2 [, int option [, string
dataname_alpha [, string dataname_wt1 , string dataname_wt2]]])

Add a contact with or without friction condition between nonmatching meshes to the model.
This brick adds a contact which is defined in an integral way. It is the direct approxima-
tion of an augmented agrangian formulation (see Getfem user documentation) defined at the
continuous level. The advantage should be a better scalability: the number of Newton it-
erations should be more or less independent of the mesh size. The condition is applied on
the variables varname_u1 and varname_u2 on the boundaries corresponding to region1 and
region2. multname should be a fem variable representing the contact stress for the friction-
less case and the contact and friction stress for the case with friction. An inf-sup condition
between multname and varname_u1 and varname_u2 is required. The augmentation param-
eter dataname_r should be chosen in a range of acceptable values. The optional parameter
dataname_friction_coeff is the friction coefficient which could be constant or defined on a
finite element method on the same mesh as varname_u1. Possible values for option is 1
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for the non-symmetric Alart-Curnier augmented Lagrangian method, 2 for the symmetric
one, 3 for the non-symmetric Alart-Curnier method with an additional augmentation and 4
for a new unsymmetric method. The default value is 1. In case of contact with friction,
dataname_alpha, dataname_wt1 and dataname_wt2 are optional parameters to solve evolu-
tionary friction problems.

add_integral_contact_with_rigid_obstacle_brick(mim, varname_u,
multname,
dataname_obstacle,
dataname_r,
dataname_friction_coeff=None,
*args)

Synopsis: ind = Model.add_integral_contact_with_rigid_obstacle_brick(self, MeshIm mim,
string varname_u, string multname, string dataname_obstacle, string dataname_r [, string
dataname_friction_coeff], int region [, int option [, string dataname_alpha [, string
dataname_wt [, string dataname_gamma [, string dataname_vt]]]]])

Add a contact with or without friction condition with a rigid obstacle to the model. This
brick adds a contact which is defined in an integral way. It is the direct approximation of an
augmented Lagrangian formulation (see Getfem user documentation) defined at the contin-
uous level. The advantage is a better scalability: the number of Newton iterations should be
more or less independent of the mesh size. The contact condition is applied on the variable
varname_u on the boundary corresponding to region. The rigid obstacle should be described
with the data dataname_obstacle being a signed distance to the obstacle (interpolated on a fi-
nite element method). multname should be a fem variable representing the contact stress. An
inf-sup condition beetween multname and varname_u is required. The augmentation param-
eter dataname_r should be chosen in a range of acceptabe values. The optional parameter
dataname_friction_coeff is the friction coefficient which could be constant or defined on a
finite element method. Possible values for option is 1 for the non-symmetric Alart-Curnier
augmented Lagrangian method, 2 for the symmetric one, 3 for the non-symmetric Alart-
Curnier method with an additional augmentation and 4 for a new unsymmetric method.
The default value is 1. In case of contact with friction, dataname_alpha and dataname_wt
are optional parameters to solve evolutionary friction problems. dataname_gamma and
dataname_vt represent optional data for adding a parameter-dependent sliding velocity to
the friction condition.

add_integral_large_sliding_contact_brick_raytracing(dataname_r,
re-
lease_distance,
dataname_fr=None,
*args)

Synopsis: ind = Model.add_integral_large_sliding_contact_brick_raytracing(self, string
dataname_r, scalar release_distance, [, string dataname_fr[, string dataname_alpha[, int ver-
sion]]])

Adds a large sliding contact with friction brick to the model. This brick is able to
deal with self-contact, contact between several deformable bodies and contact with rigid
obstacles. It uses the high-level generic assembly. It adds to the model a raytrac-
ing_interpolate_transformation object. For each slave boundary a multiplier variable should
be defined. The release distance should be determined with care (generally a few times a
mean element size, and less than the thickness of the body). Initially, the brick is added
with no contact boundaries. The contact boundaries and rigid bodies are added with special
functions. version is 0 (the default value) for the non-symmetric version and 1 for the more
symmetric one (not fully symmetric even without friction).
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add_internal_im_variable(name, mimd)
Add a variable to the model, which is linked to a MeshImd and will be condensed out during
the assemblage of the tangent matrix. name is the variable name.

add_interpolate_transformation_from_expression(transname,
source_mesh, tar-
get_mesh, expr)

Add a transformation to the model from mesh source_mesh to mesh target_mesh given by the
expression expr which corresponds to a high-level generic assembly expression which may
contains some variable of the model. CAUTION: the derivative of the transformation with
used variable is taken into account in the computation of the tangen system. However, order
two derivative is not implemented, so such tranformation is not allowed in the definition of
a potential.

add_isotropic_linearized_elasticity_brick(mim, varname,
dataname_lambda,
dataname_mu, re-
gion=None)

Add an isotropic linearized elasticity term to the model relatively to the variable varname.
dataname_lambda and dataname_mu should contain the Lame coefficients. region is an
optional mesh region on which the term is added. If it is not specified, it is added on the
whole mesh. Return the brick index in the model.

add_isotropic_linearized_elasticity_pstrain_brick(mim, var-
name, data_E,
data_nu, re-
gion=None)

Add an isotropic linearized elasticity term to the model relatively to the variable varname.
data_E and data_nu should contain the Young modulus and Poisson ratio, respectively. re-
gion is an optional mesh region on which the term is added. If it is not specified, it is added
on the whole mesh. On two-dimensional meshes, the term will correpsond to a plain strain
approximation. On three-dimensional meshes, it will correspond to the standard model. Re-
turn the brick index in the model.

add_isotropic_linearized_elasticity_pstress_brick(mim, var-
name, data_E,
data_nu, re-
gion=None)

Add an isotropic linearized elasticity term to the model relatively to the variable varname.
data_E and data_nu should contain the Young modulus and Poisson ratio, respectively. re-
gion is an optional mesh region on which the term is added. If it is not specified, it is added
on the whole mesh. On two-dimensional meshes, the term will correpsond to a plain stress
approximation. On three-dimensional meshes, it will correspond to the standard model. Re-
turn the brick index in the model.

add_linear_generic_assembly_brick(mim, expression, region=None, *args)
Synopsis: ind = Model.add_linear_generic_assembly_brick(self, MeshIm mim, string ex-
pression[, int region[, int is_symmetric[, int is_coercive]]])

Deprecated. Use Model.add_linear_term() instead.

add_linear_incompressibility_brick(mim, varname, multname_pressure, re-
gion=None, *args)

Synopsis: ind = Model.add_linear_incompressibility_brick(self, MeshIm mim, string var-
name, string multname_pressure[, int region[, string dataexpr_coeff]])
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Add a linear incompressibility condition on variable. multname_pressure is a variable which
represent the pressure. Be aware that an inf-sup condition between the finite element method
describing the pressure and the primal variable has to be satisfied. region is an optional mesh
region on which the term is added. If it is not specified, it is added on the whole mesh.
dataexpr_coeff is an optional penalization coefficient for nearly incompressible elasticity
for instance. In this case, it is the inverse of the Lame coefficient 𝜆. Return the brick index
in the model.

add_linear_term(mim, expression, region=None, *args)
Synopsis: ind = Model.add_linear_term(self, MeshIm mim, string expression[, int region[,
int is_symmetric[, int is_coercive]]])

Adds a matrix term given by the assembly string expr which will be assembled in region
region and with the integration method mim. Only the matrix term will be taken into account,
assuming that it is linear. The advantage of declaring a term linear instead of nonlinear is that
it will be assembled only once and no assembly is necessary for the residual. Take care that
if the expression contains some variables and if the expression is a potential or of first order
(i.e. describe the weak form, not the derivative of the weak form), the expression will be
derivated with respect to all variables. You can specify if the term is symmetric, coercive or
not. If you are not sure, the better is to declare the term not symmetric and not coercive. But
some solvers (conjugate gradient for instance) are not allowed for non-coercive problems.
brickname is an optional name for the brick.

add_linear_twodomain_term(mim, expression, region, secondary_domain,
is_symmetric=None, *args)

Synopsis: ind = Model.add_linear_twodomain_term(self, MeshIm mim, string expression,
int region, string secondary_domain[, int is_symmetric[, int is_coercive]])

Adds a linear term given by a weak form language expression like Model.add_linear_term()
but for an integration on a direct product of two domains, a first specfied by mim and
region and a second one by secondary_domain which has to be declared first into
the model.

add_lumped_mass_for_first_order_brick(mim, varname, data-
expr_rho=None, *args)

Synopsis: ind = Model.add_lumped_mass_for_first_order_brick(self, MeshIm mim, string
varname[, string dataexpr_rho[, int region]])

Add lumped mass for first order term to the model relatively to the variable varname. If
specified, the data dataexpr_rho is the density (1 if omitted). region is an optional mesh
region on which the term is added. If it is not specified, it is added on the whole mesh.
Return the brick index in the model.

add_macro(name, expr)
Define a new macro for the high generic assembly language. The name include the pa-
rameters. For instance name=’sp(a,b)’, expr=’a.b’ is a valid definition. Macro without
parameter can also be defined. For instance name=’x1’, expr=’X[1]’ is valid. The form
name=’grad(u)’, expr=’Grad_u’ is also allowed but in that case, the parameter ‘u’ will only
be allowed to be a variable name when using the macro. Note that macros can be directly
defined inside the assembly strings with the keyword ‘Def’.

add_mass_brick(mim, varname, dataexpr_rho=None, *args)
Synopsis: ind = Model.add_mass_brick(self, MeshIm mim, string varname[, string data-
expr_rho[, int region]])

Add mass term to the model relatively to the variable varname. If specified, the data data-
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expr_rho is the density (1 if omitted). region is an optional mesh region on which the term
is added. If it is not specified, it is added on the whole mesh. Return the brick index in the
model.

add_master_contact_boundary_to_biased_Nitsche_large_sliding_contact_brick(indbrick,
mim,
re-
gion,
disp-
name,
wname=None)

Adds a master contact boundary to an existing biased Nitsche’s large sliding contact with
friction brick.

add_master_contact_boundary_to_large_sliding_contact_brick(indbrick,
mim,
re-
gion,
disp-
name,
wname=None)

Adds a master contact boundary to an existing large sliding contact with friction brick.

add_master_contact_boundary_to_projection_transformation(transname,
m,
disp-
name,
re-
gion)

Add a master contact boundary with corresponding displacement variable dispname on
a specific boundary region to an existing projection interpolate transformation called
transname.

add_master_contact_boundary_to_raytracing_transformation(transname,
m,
disp-
name,
re-
gion)

Add a master contact boundary with corresponding displacement variable dispname on
a specific boundary region to an existing raytracing interpolate transformation called
transname.

add_master_slave_contact_boundary_to_large_sliding_contact_brick(indbrick,
mim,
re-
gion,
disp-
name,
lamb-
daname,
wname=None)

Adds a contact boundary to an existing large sliding contact with friction brick which is both
master and slave (allowing the self-contact).

add_multiplier(name, mf, primalname, mim=None, region=None)
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Add a particular variable linked to a fem being a multiplier with respect to a primal variable.
The dof will be filtered with the gmm::range_basis function applied on the terms of the
model which link the multiplier and the primal variable. This in order to retain only linearly
independent constraints on the primal variable. Optimized for boundary multipliers.

add_nodal_contact_between_nonmatching_meshes_brick(mim1,
mim2=None,
*args)

Synopsis: ind = Model.add_nodal_contact_between_nonmatching_meshes_brick(self,
MeshIm mim1[, MeshIm mim2], string varname_u1[, string varname_u2], string mult-
name_n[, string multname_t], string dataname_r[, string dataname_fr], int rg1, int rg2[, int
slave1, int slave2, int augmented_version])

Add a contact with or without friction condition between two faces of one or two elastic
bodies. The condition is applied on the variable varname_u1 or the variables varname_u1
and varname_u2 depending if a single or two distinct displacement fields are given. Integers
rg1 and rg2 represent the regions expected to come in contact with each other. In the sin-
gle displacement variable case the regions defined in both rg1 and rg2 refer to the variable
varname_u1. In the case of two displacement variables, rg1 refers to varname_u1 and rg2
refers to varname_u2. multname_n should be a fixed size variable whose size is the number
of degrees of freedom on those regions among the ones defined in rg1 and rg2 which are
characterized as “slaves”. It represents the contact equivalent nodal normal forces. mult-
name_t should be a fixed size variable whose size corresponds to the size of multname_n
multiplied by qdim - 1 . It represents the contact equivalent nodal tangent (frictional) forces.
The augmentation parameter r should be chosen in a range of acceptabe values (close to the
Young modulus of the elastic body, see Getfem user documentation). The friction coefficient
stored in the parameter fr is either a single value or a vector of the same size as multname_n.
The optional parameters slave1 and slave2 declare if the regions defined in rg1 and rg2 are
correspondingly considered as “slaves”. By default slave1 is true and slave2 is false, i.e. rg1
contains the slave surfaces, while ‘rg2’ the master surfaces. Preferrably only one of slave1
and slave2 is set to true. The parameter augmented_version indicates the augmentation strat-
egy : 1 for the non-symmetric Alart-Curnier augmented Lagrangian, 2 for the symmetric one
(except for the coupling between contact and Coulomb friction), 3 for the new unsymmetric
method. Basically, this brick computes the matrices BN and BT and the vectors gap and
alpha and calls the basic contact brick.

add_nodal_contact_with_rigid_obstacle_brick(mim, varname_u,
multname_n, mult-
name_t=None, *args)

Synopsis: ind = Model.add_nodal_contact_with_rigid_obstacle_brick(self, MeshIm mim,
string varname_u, string multname_n[, string multname_t], string dataname_r[, string
dataname_friction_coeff], int region, string obstacle[, int augmented_version])

Add a contact with or without friction condition with a rigid obstacle to the model. The
condition is applied on the variable varname_u on the boundary corresponding to region.
The rigid obstacle should be described with the string obstacle being a signed distance to the
obstacle. This string should be an expression where the coordinates are ‘x’, ‘y’ in 2D and
‘x’, ‘y’, ‘z’ in 3D. For instance, if the rigid obstacle correspond to 𝑧 ≤ 0, the corresponding
signed distance will be simply “z”. multname_n should be a fixed size variable whose size
is the number of degrees of freedom on boundary region. It represents the contact equiv-
alent nodal forces. In order to add a friction condition one has to add the multname_t and
dataname_friction_coeff parameters. multname_t should be a fixed size variable whose size
is the number of degrees of freedom on boundary region multiplied by 𝑑 − 1 where 𝑑 is
the domain dimension. It represents the friction equivalent nodal forces. The augmentation
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parameter r should be chosen in a range of acceptabe values (close to the Young modulus
of the elastic body, see Getfem user documentation). dataname_friction_coeff is the friction
coefficient. It could be a scalar or a vector of values representing the friction coefficient on
each contact node. The parameter augmented_version indicates the augmentation strategy
: 1 for the non-symmetric Alart-Curnier augmented Lagrangian, 2 for the symmetric one
(except for the coupling between contact and Coulomb friction), 3 for the new unsymmetric
method. Basically, this brick compute the matrix BN and the vectors gap and alpha and calls
the basic contact brick.

add_nonlinear_elasticity_brick(mim, varname, constitutive_law, dataname,
region=None)

Add a nonlinear elasticity term to the model relatively to the variable varname (deprecated
brick, use add_finite_strain_elaticity instead). lawname is the constitutive law which could
be ‘SaintVenant Kirchhoff’, ‘Mooney Rivlin’, ‘neo Hookean’, ‘Ciarlet Geymonat’ or ‘gen-
eralized Blatz Ko’. ‘Mooney Rivlin’ and ‘neo Hookean’ law names can be preceded with
the word ‘compressible’ or ‘incompressible’ to force using the corresponding version. The
compressible version of these laws requires one additional material coefficient. By default,
the incompressible version of ‘Mooney Rivlin’ law and the compressible one of the ‘neo
Hookean’ law are considered. In general, ‘neo Hookean’ is a special case of the ‘Mooney
Rivlin’ law that requires one coefficient less. IMPORTANT : if the variable is defined on
a 2D mesh, the plane strain approximation is automatically used. dataname is a vector of
parameters for the constitutive law. Its length depends on the law. It could be a short vector
of constant values or a vector field described on a finite element method for variable coeffi-
cients. region is an optional mesh region on which the term is added. If it is not specified,
it is added on the whole mesh. This brick use the low-level generic assembly. Returns the
brick index in the model.

add_nonlinear_generic_assembly_brick(mim, expression, region=None,
*args)

Synopsis: ind = Model.add_nonlinear_generic_assembly_brick(self, MeshIm mim, string
expression[, int region[, int is_symmetric[, int is_coercive]]])

Deprecated. Use Model.add_nonlinear_term() instead.

add_nonlinear_incompressibility_brick(mim, varname, mult-
name_pressure, region=None)

Add a nonlinear incompressibility condition on variable (for large strain elasticity). mult-
name_pressure is a variable which represent the pressure. Be aware that an inf-sup condition
between the finite element method describing the pressure and the primal variable has to be
satisfied. region is an optional mesh region on which the term is added. If it is not specified,
it is added on the whole mesh. Return the brick index in the model.

add_nonlinear_term(mim, expression, region=None, *args)
Synopsis: ind = Model.add_nonlinear_term(self, MeshIm mim, string expression[, int re-
gion[, int is_symmetric[, int is_coercive]]])

Adds a nonlinear term given by the assembly string expr which will be assembled in region
region and with the integration method mim. The expression can describe a potential or a
weak form. Second order terms (i.e. containing second order test functions, Test2) are not
allowed. You can specify if the term is symmetric, coercive or not. If you are not sure, the
better is to declare the term not symmetric and not coercive. But some solvers (conjugate
gradient for instance) are not allowed for non-coercive problems. brickname is an optional
name for the brick.

add_nonlinear_twodomain_term(mim, expression, region, secondary_domain,
is_symmetric=None, *args)
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Synopsis: ind = Model.add_nonlinear_twodomain_term(self, MeshIm mim, string expres-
sion, int region, string secondary_domain[, int is_symmetric[, int is_coercive]])

Adds a nonlinear term given by a weak form language expression like
Model.add_nonlinear_term() but for an integration on a direct product of two do-
mains, a first specfied by mim and region and a second one by secondary_domain
which has to be declared first into the model.

add_nonmatching_meshes_contact_brick(mim1, mim2=None, *args)
Synopsis: ind = Model.add_nonmatching_meshes_contact_brick(self, MeshIm mim1[,
MeshIm mim2], string varname_u1[, string varname_u2], string multname_n[, string mult-
name_t], string dataname_r[, string dataname_fr], int rg1, int rg2[, int slave1, int slave2, int
augmented_version])

DEPRECATED FUNCTION. Use ‘add nodal contact between nonmatching meshes brick’
instead.

add_normal_Dirichlet_condition_with_Nitsche_method(mim, varname,
Neumannterm,
gamma0name,
region,
theta=None,
*args)

Synopsis: ind = Model.add_normal_Dirichlet_condition_with_Nitsche_method(self,
MeshIm mim, string varname, string Neumannterm, string gamma0name, int region[, scalar
theta][, string dataname])

Add a Dirichlet condition to the normal component of the vector (or tensor) valued vari-
able varname and the mesh region region. This region should be a boundary. Neuman-
nterm is the expression of the Neumann term (obtained by the Green formula) described
as an expression of the high-level generic assembly language. This term can be obtained
by Model.Neumann_term(varname, region) once all volumic bricks have been added to the
model. The Dirichlet condition is prescribed with Nitsche’s method. dataname is the op-
tional right hand side of the Dirichlet condition. It could be constant or described on a fem.
gamma0name is the Nitsche’s method parameter. theta is a scalar value which can be positive
or negative. theta = 1 corresponds to the standard symmetric method which is conditionally
coercive for gamma0 small. theta = -1 corresponds to the skew-symmetric method which is
inconditionally coercive. theta = 0 is the simplest method for which the second derivative
of the Neumann term is not necessary even for nonlinear problems. Returns the brick index
in the model. (This brick is not fully tested)

add_normal_Dirichlet_condition_with_multipliers(mim, varname,
mult_description,
region,
dataname=None)

Add a Dirichlet condition to the normal component of the vector (or tensor) valued vari-
able varname and the mesh region region. This region should be a boundary. The Dirich-
let condition is prescribed with a multiplier variable described by mult_description. If
mult_description is a string this is assumed to be the variable name corresponding to the
multiplier (which should be first declared as a multiplier variable on the mesh region in the
model). If it is a finite element method (mesh_fem object) then a multiplier variable will be
added to the model and build on this finite element method (it will be restricted to the mesh
region region and eventually some conflicting dofs with some other multiplier variables will
be suppressed). If it is an integer, then a multiplier variable will be added to the model and
build on a classical finite element of degree that integer. dataname is the optional right hand
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side of the Dirichlet condition. It could be constant or described on a fem; scalar or vector
valued, depending on the variable on which the Dirichlet condition is prescribed (scalar if
the variable is vector valued, vector if the variable is tensor valued). Returns the brick index
in the model.

add_normal_Dirichlet_condition_with_penalization(mim, varname,
coeff, region,
dataname=None,
mf_mult=None)

Add a Dirichlet condition to the normal component of the vector (or tensor) valued variable
varname and the mesh region region. This region should be a boundary. The Dirichlet con-
dition is prescribed with penalization. The penalization coefficient is initially coeff and will
be added to the data of the model. dataname is the optional right hand side of the Dirichlet
condition. It could be constant or described on a fem; scalar or vector valued, depending
on the variable on which the Dirichlet condition is prescribed (scalar if the variable is vec-
tor valued, vector if the variable is tensor valued). mf_mult is an optional parameter which
allows to weaken the Dirichlet condition specifying a multiplier space. Returns the brick
index in the model.

add_normal_derivative_Dirichlet_condition_with_multipliers(mim,
var-
name,
mult_description,
re-
gion,
dataname=None,
R_must_be_derivated=None)

Add a Dirichlet condition on the normal derivative of the variable varname and on the
mesh region region (which should be a boundary). The general form is

∫︀
𝜕𝑛𝑢(𝑥)𝑣(𝑥) =∫︀

𝑟(𝑥)𝑣(𝑥)∀𝑣 where 𝑟(𝑥) is the right hand side for the Dirichlet condition (0 for homo-
geneous conditions) and 𝑣 is in a space of multipliers defined by mult_description. If
mult_description is a string this is assumed to be the variable name corresponding to the
multiplier (which should be first declared as a multiplier variable on the mesh region in the
model). If it is a finite element method (mesh_fem object) then a multiplier variable will be
added to the model and build on this finite element method (it will be restricted to the mesh
region region and eventually some conflicting dofs with some other multiplier variables will
be suppressed). If it is an integer, then a multiplier variable will be added to the model and
build on a classical finite element of degree that integer. dataname is an optional parameter
which represents the right hand side of the Dirichlet condition. If R_must_be_derivated is
set to true then the normal derivative of dataname is considered. Return the brick index in
the model.

add_normal_derivative_Dirichlet_condition_with_penalization(mim,
var-
name,
co-
eff,
re-
gion,
dataname=None,
R_must_be_derivated=None)

Add a Dirichlet condition on the normal derivative of the variable varname and on the
mesh region region (which should be a boundary). The general form is

∫︀
𝜕𝑛𝑢(𝑥)𝑣(𝑥) =
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∫︀
𝑟(𝑥)𝑣(𝑥)∀𝑣 where 𝑟(𝑥) is the right hand side for the Dirichlet condition (0 for homo-

geneous conditions). The penalization coefficient is initially coeff and will be added to the
data of the model. It can be changed with the command Model.change_penalization_coeff().
dataname is an optional parameter which represents the right hand side of the Dirichlet con-
dition. If R_must_be_derivated is set to true then the normal derivative of dataname is
considered. Return the brick index in the model.

add_normal_derivative_source_term_brick(mim, varname, dataname, re-
gion)

Add a normal derivative source term brick 𝐹 =
∫︀
𝑏.𝜕𝑛𝑣 on the variable varname and the

mesh region region.

Update the right hand side of the linear system. dataname represents b and varname repre-
sents v. Return the brick index in the model.

add_normal_source_term_brick(mim, varname, dataname, region)
Add a source term on the variable varname on a boundary region. This region should be a
boundary. The source term is represented by the data dataepxpr which could be any regu-
lar expression of the high-level generic assembly language (except for the complex version
where it has to be a declared data of the model). A scalar product with the outward normal
unit vector to the boundary is performed. The main aim of this brick is to represent a Neu-
mann condition with a vector data without performing the scalar product with the normal as
a pre-processing. Return the brick index in the model.

add_penalized_contact_between_nonmatching_meshes_brick(mim,
var-
name_u1,
var-
name_u2,
dataname_r,
dataname_coeff=None,
*args)

Synopsis: ind = Model.add_penalized_contact_between_nonmatching_meshes_brick(self,
MeshIm mim, string varname_u1, string varname_u2, string dataname_r [, string
dataname_coeff], int region1, int region2 [, int option [, string dataname_lambda, [, string
dataname_alpha [, string dataname_wt1, string dataname_wt2]]]])

Add a penalized contact condition with or without friction between nonmatching meshes to
the model. The condition is applied on the variables varname_u1 and varname_u2 on the
boundaries corresponding to region1 and region2. The penalization parameter dataname_r
should be chosen large enough to prescribe approximate non-penetration and friction con-
ditions but not too large not to deteriorate too much the conditionning of the tangent
system. The optional parameter dataname_friction_coeff is the friction coefficient which
could be constant or defined on a finite element method on the same mesh as varname_u1.
dataname_lambda is an optional parameter used if option is 2. In that case, the penalization
term is shifted by lambda (this allows the use of an Uzawa algorithm on the correspond-
ing augmented Lagrangian formulation) In case of contact with friction, dataname_alpha,
dataname_wt1 and dataname_wt2 are optional parameters to solve evolutionary friction
problems.

add_penalized_contact_with_rigid_obstacle_brick(mim, varname_u,
dataname_obstacle,
dataname_r,
dataname_coeff=None,
*args)
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Synopsis: ind = Model.add_penalized_contact_with_rigid_obstacle_brick(self, MeshIm
mim, string varname_u, string dataname_obstacle, string dataname_r [, string
dataname_coeff], int region [, int option, string dataname_lambda, [, string dataname_alpha
[, string dataname_wt]]])

Add a penalized contact with or without friction condition with a rigid obstacle to the model.
The condition is applied on the variable varname_u on the boundary corresponding to re-
gion. The rigid obstacle should be described with the data dataname_obstacle being a signed
distance to the obstacle (interpolated on a finite element method). The penalization param-
eter dataname_r should be chosen large enough to prescribe approximate non-penetration
and friction conditions but not too large not to deteriorate too much the conditionning of the
tangent system. dataname_lambda is an optional parameter used if option is 2. In that case,
the penalization term is shifted by lambda (this allows the use of an Uzawa algorithm on the
corresponding augmented Lagrangian formulation)

add_pointwise_constraints_with_given_multipliers(varname,
multname,
dataname_pt,
dataname_unitv=None,
*args)

Synopsis: ind = Model.add_pointwise_constraints_with_given_multipliers(self, string
varname, string multname, string dataname_pt[, string dataname_unitv] [, string
dataname_val])

Add some pointwise constraints on the variable varname using a given multiplier multname.
The conditions are prescribed on a set of points given in the data dataname_pt whose dimen-
sion is the number of points times the dimension of the mesh. The multiplier variable should
be a fixed size variable of size the number of points. If the variable represents a vector field,
one has to give the data dataname_unitv which represents a vector of dimension the number
of points times the dimension of the vector field which should store some unit vectors. In
that case the prescribed constraint is the scalar product of the variable at the corresponding
point with the corresponding unit vector. The optional data dataname_val is the vector of
values to be prescribed at the different points. This brick is specifically designed to kill rigid
displacement in a Neumann problem. Returns the brick index in the model.

add_pointwise_constraints_with_multipliers(varname, dataname_pt,
dataname_unitv=None,
*args)

Synopsis: ind = Model.add_pointwise_constraints_with_multipliers(self, string varname,
string dataname_pt[, string dataname_unitv] [, string dataname_val])

Add some pointwise constraints on the variable varname using multiplier. The multiplier
variable is automatically added to the model. The conditions are prescribed on a set of points
given in the data dataname_pt whose dimension is the number of points times the dimension
of the mesh. If the variable represents a vector field, one has to give the data dataname_unitv
which represents a vector of dimension the number of points times the dimension of the
vector field which should store some unit vectors. In that case the prescribed constraint is the
scalar product of the variable at the corresponding point with the corresponding unit vector.
The optional data dataname_val is the vector of values to be prescribed at the different
points. This brick is specifically designed to kill rigid displacement in a Neumann problem.
Returns the brick index in the model.
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add_pointwise_constraints_with_penalization(varname, co-
eff, dataname_pt,
dataname_unitv=None,
*args)

Synopsis: ind = Model.add_pointwise_constraints_with_penalization(self, string varname,
scalar coeff, string dataname_pt[, string dataname_unitv] [, string dataname_val])

Add some pointwise constraints on the variable varname thanks to a penalization. The penal-
ization coefficient is initially penalization_coeff and will be added to the data of the model.
The conditions are prescribed on a set of points given in the data dataname_pt whose dimen-
sion is the number of points times the dimension of the mesh. If the variable represents a
vector field, one has to give the data dataname_unitv which represents a vector of dimension
the number of points times the dimension of the vector field which should store some unit
vectors. In that case the prescribed constraint is the scalar product of the variable at the cor-
responding point with the corresponding unit vector. The optional data dataname_val is the
vector of values to be prescribed at the different points. This brick is specifically designed
to kill rigid displacement in a Neumann problem. Returns the brick index in the model.

add_projection_transformation(transname, release_distance)
Add a projection interpolate transformation called transname to a model to be used by the
generic assembly bricks. CAUTION: For the moment, the derivative of the transformation
is not taken into account in the model solve.

add_raytracing_transformation(transname, release_distance)
Add a raytracing interpolate transformation called transname to a model to be used by the
generic assembly bricks. CAUTION: For the moment, the derivative of the transformation
is not taken into account in the model solve.

add_rigid_obstacle_to_Nitsche_large_sliding_contact_brick(indbrick,
expr,
N)

Adds a rigid obstacle to an existing large sliding contact with friction brick. expr is an
expression using the high-level generic assembly language (where x is the current point n
the mesh) which should be a signed distance to the obstacle. N is the mesh dimension.

add_rigid_obstacle_to_large_sliding_contact_brick(indbrick, expr,
N)

Adds a rigid obstacle to an existing large sliding contact with friction brick. expr is an
expression using the high-level generic assembly language (where x is the current point n
the mesh) which should be a signed distance to the obstacle. N is the mesh dimension.

add_rigid_obstacle_to_projection_transformation(transname, expr,
N)

Add a rigid obstacle whose geometry corresponds to the zero level-set of the high-level
generic assembly expression expr to an existing projection interpolate transformation called
transname.

add_rigid_obstacle_to_raytracing_transformation(transname, expr,
N)

Add a rigid obstacle whose geometry corresponds to the zero level-set of the high-level
generic assembly expression expr to an existing raytracing interpolate transformation called
transname.
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add_slave_contact_boundary_to_biased_Nitsche_large_sliding_contact_brick(indbrick,
mim,
re-
gion,
disp-
name,
lamb-
daname,
wname=None)

Adds a slave contact boundary to an existing biased Nitsche’s large sliding contact with
friction brick.

add_slave_contact_boundary_to_large_sliding_contact_brick(indbrick,
mim,
re-
gion,
disp-
name,
lamb-
daname,
wname=None)

Adds a slave contact boundary to an existing large sliding contact with friction brick.

add_slave_contact_boundary_to_projection_transformation(transname,
m,
disp-
name,
re-
gion)

Add a slave contact boundary with corresponding displacement variable dispname on a spe-
cific boundary region to an existing projection interpolate transformation called transname.

add_slave_contact_boundary_to_raytracing_transformation(transname,
m,
disp-
name,
re-
gion)

Add a slave contact boundary with corresponding displacement variable dispname on a spe-
cific boundary region to an existing raytracing interpolate transformation called transname.

add_small_strain_elastoplasticity_brick(mim, lawname, unknowns_type,
varnames=None, *args)

Synopsis: ind = Model.add_small_strain_elastoplasticity_brick(self, MeshIm mim, string
lawname, string unknowns_type [, string varnames, . . . ] [, string params, . . . ] [, string theta
= ‘1’ [, string dt = ‘timestep’]] [, int region = -1])

Adds a small strain plasticity term to the model M. This is the main GetFEM brick for
small strain plasticity. lawname is the name of an implemented plastic law, unknowns_type
indicates the choice between a discretization where the plastic multiplier is an unknown
of the problem or (return mapping approach) just a data of the model stored for the next
iteration. Remember that in both cases, a multiplier is stored anyway. varnames is a set
of variable and data names with length which may depend on the plastic law (at least the
displacement, the plastic multiplier and the plastic strain). params is a list of expressions
for the parameters (at least elastic coefficients and the yield stress). These expressions can
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be some data names (or even variable names) of the model but can also be any scalar valid
expression of the high level assembly language (such as ‘1/2’, ‘2+sin(X[0])’, ‘1+Norm(v)’
. . . ). The last two parameters optionally provided in params are the theta parameter of the
theta-scheme (generalized trapezoidal rule) used for the plastic strain integration and the
time-step‘dt‘. The default value for theta if omitted is 1, which corresponds to the classical
Backward Euler scheme which is first order consistent. theta=1/2 corresponds to the Crank-
Nicolson scheme (trapezoidal rule) which is second order consistent. Any value between 1/2
and 1 should be a valid value. The default value of dt is ‘timestep’ which simply indicates
the time step defined in the model (by md.set_time_step(dt)). Alternatively it can be any
expression (data name, constant value . . . ). The time step can be altered from one iteration
to the next one. region is a mesh region.

The available plasticity laws are:

• ‘Prandtl Reuss’ (or ‘isotropic perfect plasticity’). Isotropic elasto-plasticity with no
hardening. The variables are the displacement, the plastic multiplier and the plastic
strain. The displacement should be a variable and have a corresponding data having
the same name preceded by ‘Previous_’ corresponding to the displacement at the previ-
ous time step (typically ‘u’ and ‘Previous_u’). The plastic multiplier should also have
two versions (typically ‘xi’ and ‘Previous_xi’) the first one being defined as data if un-
knowns_type ‘ is ‘DISPLACEMENT_ONLY’ or the integer value 0, or as a variable if
‘unknowns_type is DISPLACEMENT_AND_PLASTIC_MULTIPLIER or the integer
value 1. The plastic strain should represent a n x n data tensor field stored on mesh_fem
or (preferably) on an im_data (corresponding to mim). The data are the first Lame co-
efficient, the second one (shear modulus) and the uniaxial yield stress. A typical call is
Model.add_small_strain_elastoplasticity_brick(mim, ‘Prandtl Reuss’, 0, ‘u’, ‘xi’, ‘Pre-
vious_Ep’, ‘lambda’, ‘mu’, ‘sigma_y’, ‘1’, ‘timestep’); IMPORTANT: Note that this
law implements the 3D expressions. If it is used in 2D, the expressions are just trans-
posed to the 2D. For the plane strain approximation, see below.

• “plane strain Prandtl Reuss” (or “plane strain isotropic perfect plasticity”) The same law
as the previous one but adapted to the plane strain approximation. Can only be used in
2D.

• “Prandtl Reuss linear hardening” (or “isotropic plasticity linear hardening”). Isotropic
elasto-plasticity with linear isotropic and kinematic hardening. An additional vari-
able compared to “Prandtl Reuss” law: the accumulated plastic strain. Similarly
to the plastic strain, it is only stored at the end of the time step, so a simple data
is required (preferably on an im_data). Two additional parameters: the kinematic
hardening modulus and the isotropic one. 3D expressions only. A typical call is
Model.add_small_strain_elastoplasticity_brick(mim, ‘Prandtl Reuss linear hardening’,
0, ‘u’, ‘xi’, ‘Previous_Ep’, ‘Previous_alpha’, ‘lambda’, ‘mu’, ‘sigma_y’, ‘H_k’, H_i’,
‘1’, ‘timestep’);

• “plane strain Prandtl Reuss linear hardening” (or “plane strain isotropic plasticity linear
hardening”). The same law as the previous one but adapted to the plane strain approxi-
mation. Can only be used in 2D.

See GetFEM user documentation for further explanations on the discretization of the plastic
flow and on the implemented plastic laws. See also GetFEM user documentation on time
integration strategy (integration of transient problems).

IMPORTANT : remember that small_strain_elastoplasticity_next_iter has to be called at the
end of each time step, before the next one (and before any post-treatment : this sets the value
of the plastic strain and plastic multiplier).
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add_source_term(mim, expression, region=None)
Adds a source term given by the assembly string expr which will be assembled in region
region and with the integration method mim. Only the residual term will be taken into
account. Take care that if the expression contains some variables and if the expression is
a potential, the expression will be derivated with respect to all variables. brickname is an
optional name for the brick.

add_source_term_brick(mim, varname, dataexpr, region=None, *args)
Synopsis: ind = Model.add_source_term_brick(self, MeshIm mim, string varname, string
dataexpr[, int region[, string directdataname]])

Add a source term to the model relatively to the variable varname. The source term is
represented by dataexpr which could be any regular expression of the high-level generic
assembly language (except for the complex version where it has to be a declared data of the
model). region is an optional mesh region on which the term is added. An additional optional
data directdataname can be provided. The corresponding data vector will be directly added
to the right hand side without assembly. Note that when region is a boundary, this brick
allows to prescribe a nonzero Neumann boundary condition. Return the brick index in the
model.

add_source_term_generic_assembly_brick(mim, expression, region=None)
Deprecated. Use Model.add_source_term() instead.

add_standard_secondary_domain(name, mim, region=-1)
Add a secondary domain to the model which can be used in a weak-form language expression
for integration on the product of two domains. name is the name of the secondary domain,
mim is an integration method on this domain and region the region on which the integration
is to be performed.

add_theta_method_for_first_order(varname, theta)
Attach a theta method for the time discretization of the variable varname. Valid only if there
is at most first order time derivative of the variable.

add_theta_method_for_second_order(varname, theta)
Attach a theta method for the time discretization of the variable varname. Valid only if there
is at most second order time derivative of the variable.

add_twodomain_source_term(mim, expression, region, secondary_domain)
Adds a source term given by a weak form language expression like
Model.add_source_term() but for an integration on a direct product of two domains,
a first specfied by mim and region and a second one by secondary_domain which
has to be declared first into the model.

add_variable(name, sizes)
Add a variable to the model of constant sizes. sizes is either a integer (for a scalar or vector
variable) or a vector of dimensions for a tensor variable. name is the variable name.

assembly(option=None)
Assembly of the tangent system taking into account the terms from all bricks. option,
if specified, should be ‘build_all’, ‘build_rhs’, ‘build_matrix’, ‘build_rhs_with_internal’,
‘build_matrix_condensed’, ‘build_all_condensed’. The default is to build the whole tangent
linear system (matrix and rhs). This function is useful to solve your problem with you own
solver.

brick_list()
print to the output the list of bricks of the model.
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brick_term_rhs(ind_brick, ind_term=None, sym=None, ind_iter=None)
Gives the access to the part of the right hand side of a term of a particular nonlinear brick.
Does not account of the eventual time dispatcher. An assembly of the rhs has to be done
first. ind_brick is the brick index. ind_term is the index of the term inside the brick (default
value : 0). sym is to access to the second right hand side of for symmetric terms acting on
two different variables (default is 0). ind_iter is the iteration number when time dispatchers
are used (default is 0).

change_penalization_coeff(ind_brick, coeff)
Change the penalization coefficient of a Dirichlet condition with penalization brick. If the
brick is not of this kind, this function has an undefined behavior.

char()
Output a (unique) string representation of the Model.

This can be used to perform comparisons between two different Model objects. This function
is to be completed.

clear()
Clear the model.

clear_assembly_assignment()
Delete all added assembly assignments

compute_Von_Mises_or_Tresca(varname, lawname, dataname, mf_vm, ver-
sion=None)

Compute on mf_vm the Von-Mises stress or the Tresca stress of a field for nonlinear elasticity
in 3D. lawname is the constitutive law which could be ‘SaintVenant Kirchhoff’, ‘Mooney
Rivlin’, ‘neo Hookean’ or ‘Ciarlet Geymonat’. dataname is a vector of parameters for the
constitutive law. Its length depends on the law. It could be a short vector of constant values or
a vector field described on a finite element method for variable coefficients. version should
be ‘Von_Mises’ or ‘Tresca’ (‘Von_Mises’ is the default).

compute_elastoplasticity_Von_Mises_or_Tresca(datasigma, mf_vm, ver-
sion=None)

Compute on mf_vm the Von-Mises or the Tresca stress of a field for plasticity and return it
into the vector V. datasigma is a vector which contains the stress constraints values supported
by the mesh. version should be ‘Von_Mises’ or ‘Tresca’ (‘Von_Mises’ is the default).

compute_finite_strain_elasticity_Von_Mises(lawname, varname,
params, mf_vm, re-
gion=None)

Compute on mf_vm the Von-Mises stress of a field varname for nonlinear elasticity in 3D.
lawname is the constitutive law which should be a valid name. params are the parameters
law. It could be a short vector of constant values or may depend on data or variables of the
model. Uses the high-level generic assembly.

compute_finite_strain_elastoplasticity_Von_Mises(mim, mf_vm,
lawname, un-
knowns_type,
varnames=None,
*args)

Synopsis: V = Model.compute_finite_strain_elastoplasticity_Von_Mises(self, MeshIm
mim, MeshFem mf_vm, string lawname, string unknowns_type, [, string varnames, . . . ]
[, string params, . . . ] [, int region = -1])

Compute on mf_vm the Von-Mises or the Tresca stress of a field for plasticity and return it
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into the vector V. The first input parameters ar as in the function ‘finite strain elastoplasticity
next iter’.

compute_isotropic_linearized_Von_Mises_or_Tresca(varname,
dataname_lambda,
dataname_mu,
mf_vm, ver-
sion=None)

Compute the Von-Mises stress or the Tresca stress of a field (only valid for isotropic lin-
earized elasticity in 3D). version should be ‘Von_Mises’ or ‘Tresca’ (‘Von_Mises’ is the
default). Parametrized by Lame coefficients.

compute_isotropic_linearized_Von_Mises_pstrain(varname, data_E,
data_nu, mf_vm)

Compute the Von-Mises stress of a displacement field for isotropic linearized elasticity in
3D or in 2D with plane strain assumption. Parametrized by Young modulus and Poisson
ratio.

compute_isotropic_linearized_Von_Mises_pstress(varname, data_E,
data_nu, mf_vm)

Compute the Von-Mises stress of a displacement field for isotropic linearized elasticity in
3D or in 2D with plane stress assumption. Parametrized by Young modulus and Poisson
ratio.

compute_plastic_part(mim, mf_pl, varname, previous_dep_name, projname, data-
lambda, datamu, datathreshold, datasigma)

Compute on mf_pl the plastic part and return it into the vector V. datasigma is a vector which
contains the stress constraints values supported by the mesh.

compute_second_Piola_Kirchhoff_tensor(varname, lawname, dataname,
mf_sigma)

Compute on mf_sigma the second Piola Kirchhoff stress tensor of a field for nonlinear
elasticity in 3D. lawname is the constitutive law which could be ‘SaintVenant Kirchhoff’,
‘Mooney Rivlin’, ‘neo Hookean’ or ‘Ciarlet Geymonat’. dataname is a vector of parameters
for the constitutive law. Its length depends on the law. It could be a short vector of constant
values or a vector field described on a finite element method for variable coefficients.

contact_brick_set_BN(indbrick, BN)
Can be used to set the BN matrix of a basic contact/friction brick.

contact_brick_set_BT(indbrick, BT)
Can be used to set the BT matrix of a basic contact with friction brick.

define_variable_group(name, varname=None, *args)
Synopsis: Model.define_variable_group(self, string name[, string varname, . . . ])

Defines a group of variables for the interpolation (mainly for the raytracing interpolation
transformation.

del_macro(name)
Delete a previously defined macro for the high generic assembly language.

delete_brick(ind_brick)
Delete a variable or a data from the model.

delete_variable(name)
Delete a variable or a data from the model.
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disable_bricks(bricks_indices)
Disable a brick (the brick will no longer participate to the building of the tangent linear
system).

disable_variable(varname)
Disable a variable for a solve (and its attached multipliers). The next solve will operate only
on the remaining variables. This allows to solve separately different parts of a model. If
there is a strong coupling of the variables, a fixed point strategy can the be used.

displacement_group_name_of_Nitsche_large_sliding_contact_brick(indbrick)
Gives the name of the group of variables corresponding to the sliding data for an existing
large sliding contact brick.

displacement_group_name_of_large_sliding_contact_brick(indbrick)
Gives the name of the group of variables corresponding to the sliding data for an existing
large sliding contact brick.

display()
displays a short summary for a Model object.

elastoplasticity_next_iter(mim, varname, previous_dep_name, projname,
datalambda, datamu, datathreshold, datasigma)

Used with the old (obsolete) elastoplasticity brick to pass from an iteration to the next one.
Compute and save the stress constraints sigma for the next iterations. ‘mim’ is the integration
method to use for the computation. ‘varname’ is the main variable of the problem. ‘previ-
ous_dep_name’ represents the displacement at the previous time step. ‘projname’ is the type
of projection to use. For the moment it could only be ‘Von Mises’ or ‘VM’. ‘datalambda’
and ‘datamu’ are the Lame coefficients of the material. ‘datasigma’ is a vector which will
contain the new stress constraints values.

enable_bricks(bricks_indices)
Enable a disabled brick.

enable_variable(varname)
Enable a disabled variable (and its attached multipliers).

finite_strain_elastoplasticity_next_iter(mim, lawname, un-
knowns_type, var-
names=None, *args)

Synopsis: Model.finite_strain_elastoplasticity_next_iter(self, MeshIm mim, string law-
name, string unknowns_type, [, string varnames, . . . ] [, string params, . . . ] [, int region
= -1])

Function that allows to pass from a time step to another for the finite strain
plastic brick. The parameters have to be exactly the same than the one of
add_finite_strain_elastoplasticity_brick, so see the documentation of this function for the
explanations. Basically, this brick computes the plastic strain and the plastic multiplier and
stores them for the next step. For the Simo-Miehe law which is currently the only one imple-
mented, this function updates the state variables defined in the last two entries of varnames,
and resets the plastic multiplier field given as the second entry of varnames.

first_iter()
To be executed before the first iteration of a time integration scheme.

from_variables()
Return the vector of all the degrees of freedom of the model consisting of the concatenation
of the variables of the model (useful to solve your problem with you own solver).
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get_time()
Give the value of the data t corresponding to the current time.

get_time_step()
Gives the value of the time step.

interpolation(expr, *args)
Synopsis: V = Model.interpolation(self, string expr, {MeshFem mf | MeshImd mimd | vec
pts, Mesh m}[, int region[, int extrapolation[, int rg_source]]])

Interpolate a certain expression with respect to the mesh_fem mf or the mesh_im_data mimd
or the set of points pts on mesh m. The expression has to be valid according to the high-
level generic assembly language possibly including references to the variables and data of
the model.

The options extrapolation and rg_source are specific to interpolations with respect to a set
of points pts.

interval_of_variable(varname)
Gives the interval of the variable varname in the linear system of the model.

is_complex()
Return 0 is the model is real, 1 if it is complex.

list_residuals()
print to the output the residuals corresponding to all terms included in the model.

local_projection(mim, expr, mf, region=None)
Make an elementwise L2 projection of an expression with respect to the mesh_fem mf. This
mesh_fem has to be a discontinuous one. The expression has to be valid according to the
high-level generic assembly language possibly including references to the variables and data
of the model.

matrix_term(ind_brick, ind_term)
Gives the matrix term ind_term of the brick ind_brick if it exists

memsize()
Return a rough approximation of the amount of memory (in bytes) used by the model.

mesh_fem_of_variable(name)
Gives access to the mesh_fem of a variable or data.

mult_varname_Dirichlet(ind_brick)
Gives the name of the multiplier variable for a Dirichlet brick. If the brick is not a Dirichlet
condition with multiplier brick, this function has an undefined behavior

nbdof()
Return the total number of degrees of freedom of the model.

next_iter()
To be executed at the end of each iteration of a time integration scheme.

perform_init_time_derivative(ddt)
By calling this function, indicates that the next solve will compute the solution for a (very)
small time step ddt in order to initalize the data corresponding to the derivatives needed by
time integration schemes (mainly the initial time derivative for order one in time problems
and the second order time derivative for second order in time problems). The next solve will
not change the value of the variables.
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resize_variable(name, sizes)
Resize a constant size variable of the model. sizes is either a integer (for a scalar or vector
variable) or a vector of dimensions for a tensor variable. name is the variable name.

rhs()
Return the right hand side of the tangent problem.

set_element_extrapolation_correspondence(transname, elt_corr)
Change the correspondence map of an element extrapolation interpolate transformation.

set_private_matrix(indbrick, B)
For some specific bricks having an internal sparse matrix (explicit bricks: ‘constraint brick’
and ‘explicit matrix brick’), set this matrix.

set_private_rhs(indbrick, B)
For some specific bricks having an internal right hand side vector (explicit bricks: ‘constraint
brick’ and ‘explicit rhs brick’), set this rhs.

set_time(t)
Set the value of the data t corresponding to the current time to t.

set_time_step(dt)
Set the value of the time step to dt. This value can be change from a step to another for all
one-step schemes (i.e. for the moment to all proposed time integration schemes).

set_variable(name, V)
Set the value of a variable or data. name is the data name.

shift_variables_for_time_integration()
Function used to shift the variables of a model to the data corresponding of ther value on
the previous time step for time integration schemes. For each variable for which a time
integration scheme has been declared, the scheme is called to perform the shift. This function
has to be called between two time steps.

sliding_data_group_name_of_Nitsche_large_sliding_contact_brick(indbrick)
Gives the name of the group of variables corresponding to the sliding data for an existing
large sliding contact brick.

sliding_data_group_name_of_large_sliding_contact_brick(indbrick)
Gives the name of the group of variables corresponding to the sliding data for an existing
large sliding contact brick.

small_strain_elastoplasticity_Von_Mises(mim, mf_vm, lawname, un-
knowns_type, varnames=None,
*args)

Synopsis: V = Model.small_strain_elastoplasticity_Von_Mises(self, MeshIm mim, Mesh-
Fem mf_vm, string lawname, string unknowns_type [, string varnames, . . . ] [, string params,
. . . ] [, string theta = ‘1’ [, string dt = ‘timestep’]] [, int region])

This function computes the Von Mises stress field with respect to a small strain elastoplas-
ticity term, approximated on mf_vm, and stores the result into VM. All other parameters
have to be exactly the same as for add_small_strain_elastoplasticity_brick. Remember that
small_strain_elastoplasticity_next_iter has to be called before any call of this function.

small_strain_elastoplasticity_next_iter(mim, lawname, unknowns_type,
varnames=None, *args)

Synopsis: Model.small_strain_elastoplasticity_next_iter(self, MeshIm mim, string law-
name, string unknowns_type [, string varnames, . . . ] [, string params, . . . ] [, string theta
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= ‘1’ [, string dt = ‘timestep’]] [, int region = -1])

Function that allows to pass from a time step to another for the small strain
plastic brick. The parameters have to be exactly the same than the one of
add_small_strain_elastoplasticity_brick, so see the documentation of this function for the
explanations. Basically, this brick computes the plastic strain and the plastic multiplier and
stores them for the next step. Additionaly, it copies the computed displacement to the data
that stores the displacement of the previous time step (typically ‘u’ to ‘Previous_u’). It has
to be called before any use of compute_small_strain_elastoplasticity_Von_Mises.

solve(*args)
Synopsis: (nbit, converged) = Model.solve(self[, . . . ])

Run the standard getfem solver.

Note that you should be able to use your own solver if you want (it is possible to obtain the
tangent matrix and its right hand side with the Model.tangent_matrix() etc.).

Various options can be specified:

• ‘noisy’ or ‘very_noisy’ the solver will display some information showing the progress
(residual values etc.).

• ‘max_iter’, int NIT set the maximum iterations numbers.

• ‘max_res’, @float RES set the target residual value.

• ‘diverged_res’, @float RES set the threshold value of the residual beyond which the
iterative method is considered to diverge (default is 1e200).

• ‘lsolver’, string SOLVER_NAME select explicitely the solver used for the linear sys-
tems (the default value is ‘auto’, which lets getfem choose itself). Possible values
are ‘superlu’, ‘mumps’ (if supported), ‘cg/ildlt’, ‘gmres/ilu’ and ‘gmres/ilut’.

• ‘lsearch’, string LINE_SEARCH_NAME select explicitely the line search method
used for the linear systems (the default value is ‘default’). Possible values are ‘sim-
plest’, ‘systematic’, ‘quadratic’ or ‘basic’.

Return the number of iterations, if an iterative method is used.

Note that it is possible to disable some variables (see Model.disable_variable() ) in order
to solve the problem only with respect to a subset of variables (the disabled variables
are then considered as data) for instance to replace the global Newton strategy with a
fixed point one.

tangent_matrix()
Return the tangent matrix stored in the model .

test_tangent_matrix(EPS=None, *args)
Synopsis: Model.test_tangent_matrix(self[, scalar EPS[, int NB[, scalar scale]]])

Test the consistency of the tangent matrix in some random positions and random directions
(useful to test newly created bricks). EPS is the value of the small parameter for the finite
difference computation of the derivative is the random direction (default is 1E-6). NN is the
number of tests (default is 100). scale is a parameter for the random position (default is 1,
0 is an acceptable value) around the current position. Each dof of the random position is
chosen in the range [current-scale, current+scale].
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test_tangent_matrix_term(varname1, varname2, EPS=None, *args)
Synopsis: Model.test_tangent_matrix_term(self, string varname1, string varname2[, scalar
EPS[, int NB[, scalar scale]]])

Test the consistency of a part of the tangent matrix in some random positions and random
directions (useful to test newly created bricks). The increment is only made on variable
varname2 and tested on the part of the residual corresponding to varname1. This means
that only the term (varname1, varname2) of the tangent matrix is tested. EPS is the value
of the small parameter for the finite difference computation of the derivative is the random
direction (default is 1E-6). NN is the number of tests (default is 100). scale is a parameter
for the random position (default is 1, 0 is an acceptable value) around the current position.
Each dof of the random position is chosen in the range [current-scale, current+scale].

to_variables(V)
Set the value of the variables of the model with the vector V. Typically, the vector V results
of the solve of the tangent linear system (useful to solve your problem with you own solver).

transformation_name_of_Nitsche_large_sliding_contact_brick(indbrick)
Gives the name of the group of variables corresponding to the sliding data for an existing
large sliding contact brick.

transformation_name_of_large_sliding_contact_brick(indbrick)
Gives the name of the group of variables corresponding to the sliding data for an existing
large sliding contact brick.

variable(name)
Gives the value of a variable or data.

variable_list()
print to the output the list of variables and constants of the model.

7.16 Precond

class Precond(*args)
GetFEM Precond object

The preconditioners may store REAL or COMPLEX values. They accept getfem sparse matrices
and Matlab sparse matrices.

General constructor for Precond objects

• PC = Precond('identity') Create a REAL identity precondioner.

• PC = Precond('cidentity') Create a COMPLEX identity precondioner.

• PC = Precond('diagonal', vec D) Create a diagonal precondioner.

• PC = Precond('ildlt', SpMat m) Create an ILDLT (Cholesky) preconditioner
for the (symmetric) sparse matrix m. This preconditioner has the same sparsity pattern than
m (no fill-in).

• PC = Precond('ilu', SpMat m) Create an ILU (Incomplete LU) preconditioner
for the sparse matrix m. This preconditioner has the same sparsity pattern than m (no fill-in).

• PC = Precond('ildltt', SpMat m[, int fillin[, scalar
threshold]]) Create an ILDLTT (Cholesky with filling) preconditioner for the
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(symmetric) sparse matrix m. The preconditioner may add at most fillin additional non-zero
entries on each line. The default value for fillin is 10, and the default threshold is1e-7.

• PC = Precond('ilut', SpMat m[, int fillin[, scalar
threshold]]) Create an ILUT (Incomplete LU with filling) preconditioner for the
sparse matrix m. The preconditioner may add at most fillin additional non-zero entries on
each line. The default value for fillin is 10, and the default threshold is 1e-7.

• PC = Precond('superlu', SpMat m) Uses SuperLU to build an exact factoriza-
tion of the sparse matrix m. This preconditioner is only available if the getfem-interface was
built with SuperLU support. Note that LU factorization is likely to eat all your memory for
3D problems.

• PC = Precond('spmat', SpMat m) Preconditioner given explicitely by a sparse
matrix.

char()
Output a (unique) string representation of the Precond.

This can be used to perform comparisons between two different Precond objects. This func-
tion is to be completed.

display()
displays a short summary for a Precond object.

is_complex()
Return 1 if the preconditioner stores complex values.

mult(V)
Apply the preconditioner to the supplied vector.

size()
Return the dimensions of the preconditioner.

tmult(V)
Apply the transposed preconditioner to the supplied vector.

type()
Return a string describing the type of the preconditioner (‘ilu’, ‘ildlt’,..).

7.17 Slice

class Slice(*args)
GetFEM Slice object

Creation of a mesh slice. Mesh slices are very similar to a P1-discontinuous MeshFem on which
interpolation is very fast. The slice is built from a mesh object, and a description of the slicing
operation, for example:

sl = Slice(('planar',+1,[[0],[0]],[[0],[1]]), m, 5)

cuts the original mesh with the half space {y>0}. Each convex of the original Mesh m is sim-
plexified (for example a quadrangle is splitted into 2 triangles), and each simplex is refined 5
times.

Slicing operations can be:
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• cutting with a plane, a sphere or a cylinder

• intersection or union of slices

• isovalues surfaces/volumes

• “points”, “streamlines” (see below)

If the first argument is a MeshFem mf instead of a Mesh, and if it is followed by a mf -field u, then
the deformation u will be applied to the mesh before the slicing operation.

The first argument can also be a slice.

General constructor for Slice objects

• sl = Slice(sliceop, {Slice sl|{Mesh m| MeshFem mf, vec U},
int refine}[, mat CVfids]) Create a Slice using sliceop operation.

sliceop operation is specified with Tuple or List, do not forget the extra parentheses!. The
first element is the name of the operation, followed the slicing options:

– (‘none’) : Does not cut the mesh.

– (‘planar’, int orient, vec p, vec n) : Planar cut. p and n define a half-space, p being a
point belong to the boundary of the half-space, and n being its normal. If orient is equal
to -1 (resp. 0, +1), then the slicing operation will cut the mesh with the “interior” (resp.
“boundary”, “exterior”) of the half-space. orient may also be set to +2 which means
that the mesh will be sliced, but both the outer and inner parts will be kept.

– (‘ball’, int orient, vec c, scalar r) : Cut with a ball of center c and radius r.

– (‘cylinder’, int orient, vec p1, vec p2, scalar r) : Cut with a cylinder whose axis is the
line (p1, p2) and whose radius is r.

– (‘isovalues’, int orient, MeshFem mf, vec U, scalar s) : Cut using the isosurface of the
field U (defined on the MeshFem mf ). The result is the set {x such that :math:‘U(x) leq
s}‘ or {x such that ‘U‘(x)=‘s}‘ or {x such that ‘U‘(x) >= ‘s}‘ depending on the value of
orient.

– (‘boundary’[, SLICEOP]) : Return the boundary of the result of SLICEOP, where
SLICEOP is any slicing operation. If SLICEOP is not specified, then the whole mesh is
considered (i.e. it is equivalent to (‘boundary’,{‘none’})).

– (‘explode’, mat Coef) : Build an ‘exploded’ view of the mesh: each convex is shrinked
(0 < Coef ≤ 1). In the case of 3D convexes, only their faces are kept.

– (‘union’, SLICEOP1, SLICEOP2) : Returns the union of slicing operations.

– (‘intersection’, SLICEOP1, SLICEOP2) : Returns the intersection of slicing operations,
for example:

sl = Slice((intersection',('planar',+1,[[0],[0],[0]],[[0],[0],
→˓[1]]),

('isovalues',-1,mf2,u2,0)),mf,u,5)

– (‘comp’, SLICEOP) : Returns the complementary of slicing operations.

– (‘diff’, SLICEOP1, SLICEOP2) : Returns the difference of slicing operations.

90 Chapter 7. API reference



Python Interface, Release 5.4.2

– (‘mesh’, Mesh m) : Build a slice which is the intersection of the sliced mesh with
another mesh. The slice is such that all of its simplexes are stricly contained into a
convex of each mesh.

• sl = Slice('streamlines', MeshFem mf, mat U, mat S) Compute
streamlines of the (vector) field U, with seed points given by the columns of S.

• sl = Slice('points', Mesh m, mat Pts) Return the “slice” composed of
points given by the columns of Pts (useful for interpolation on a given set of sparse points,
see gf_compute('interpolate on',sl)).

• sl = Slice('load', string filename[, Mesh m]) Load the slice (and its
linked mesh if it is not given as an argument) from a text file.

area()
Return the area of the slice.

char()
Output a (unique) string representation of the Slice.

This can be used to perform comparisons between two different Slice objects. This function
is to be completed.

cvs()
Return the list of convexes of the original mesh contained in the slice.

dim()
Return the dimension of the slice (2 for a 2D mesh, etc..).

display()
displays a short summary for a Slice object.

edges()
Return the edges of the linked mesh contained in the slice.

P contains the list of all edge vertices, E1 contains the indices of each mesh edge in P, and
E2 contains the indices of each “edges” which is on the border of the slice. This function is
useless except for post-processing purposes.

export_to_dx(filename, *args)
Synopsis: Slice.export_to_dx(self, string filename, . . . )

Export a slice to OpenDX.

Following the filename, you may use any of the following options:

• if ‘ascii’ is not used, the file will contain binary data (non portable, but fast).

• if ‘edges’ is used, the edges of the original mesh will be written instead of the slice
content.

• if ‘append’ is used, the opendx file will not be overwritten, and the new data will be
added at the end of the file.

More than one dataset may be written, just list them. Each dataset consists of either:

• a field interpolated on the slice (scalar, vector or tensor), followed by an optional name.

• a mesh_fem and a field, followed by an optional name.
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export_to_pos(filename, name=None, *args)
Synopsis: Slice.export_to_pos(self, string filename[, string name][[,MeshFem mf1], mat
U1, string nameU1[[,MeshFem mf1], mat U2, string nameU2,. . . ])

Export a slice to Gmsh.

More than one dataset may be written, just list them. Each dataset consists of either:

• a field interpolated on the slice (scalar, vector or tensor).

• a mesh_fem and a field.

export_to_pov(filename)
Export a the triangles of the slice to POV-RAY.

export_to_vtk(filename, *args)
Synopsis: Slice.export_to_vtk(self, string filename, . . . )

Export a slice to VTK.

Following the filename, you may use any of the following options:

• if ‘ascii’ is not used, the file will contain binary data (non portable, but fast).

• if ‘edges’ is used, the edges of the original mesh will be written instead of the slice
content.

More than one dataset may be written, just list them. Each dataset consists of either:

• a field interpolated on the slice (scalar, vector or tensor), followed by an optional name.

• a mesh_fem and a field, followed by an optional name.

Examples:

• Slice.export_to_vtk(‘test.vtk’, Usl, ‘first_dataset’, mf, U2, ‘second_dataset’)

• Slice.export_to_vtk(‘test.vtk’, ‘ascii’, mf,U2)

• Slice.export_to_vtk(‘test.vtk’, ‘edges’, ‘ascii’, Uslice)

export_to_vtu(filename, *args)
Synopsis: Slice.export_to_vtu(self, string filename, . . . )

Export a slice to VTK(XML).

Following the filename, you may use any of the following options:

• if ‘ascii’ is not used, the file will contain binary data (non portable, but fast).

• if ‘edges’ is used, the edges of the original mesh will be written instead of the slice
content.

More than one dataset may be written, just list them. Each dataset consists of either:

• a field interpolated on the slice (scalar, vector or tensor), followed by an optional name.

• a mesh_fem and a field, followed by an optional name.

Examples:

• Slice.export_to_vtu(‘test.vtu’, Usl, ‘first_dataset’, mf, U2, ‘second_dataset’)

• Slice.export_to_vtu(‘test.vtu’, ‘ascii’, mf,U2)

• Slice.export_to_vtu(‘test.vtu’, ‘edges’, ‘ascii’, Uslice)
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interpolate_convex_data(Ucv)
Interpolate data given on each convex of the mesh to the slice nodes.

The input array Ucv may have any number of dimensions, but its last dimension should be
equal to Mesh.max_cvid().

Example of use: Slice.interpolate_convex_data(Mesh.quality()).

linked_mesh()
Return the mesh on which the slice was taken.

memsize()
Return the amount of memory (in bytes) used by the slice object.

mesh()
Return the mesh on which the slice was taken (identical to ‘linked mesh’)

nbpts()
Return the number of points in the slice.

nbsplxs(dim=None)
Return the number of simplexes in the slice.

Since the slice may contain points (simplexes of dim 0), segments (simplexes of dimension
1), triangles etc., the result is a vector of size Slice.dim()+1, except if the optional argument
dim is used.

pts()
Return the list of point coordinates.

set_pts(P)
Replace the points of the slice.

The new points P are stored in the columns the matrix. Note that you can use the function to
apply a deformation to a slice, or to change the dimension of the slice (the number of rows
of P is not required to be equal to Slice.dim()).

splxs(dim)
Return the list of simplexes of dimension dim.

On output, S has ‘dim+1’ rows, each column contains the point numbers of a simplex. The
vector CV2S can be used to find the list of simplexes for any convex stored in the slice. For
example ‘S[:,CV2S[4]:CV2S[5]]’ gives the list of simplexes for the fourth convex.

7.18 Spmat

class Spmat(*args)
GetFEM Spmat object

Create a new sparse matrix in GetFEM format. These sparse matrix can be stored as CSC (com-
pressed column sparse), which is the format used by Matlab, or they can be stored as WSC (inter-
nal format to getfem). The CSC matrices are not writable (it would be very inefficient), but they
are optimized for multiplication with vectors, and memory usage. The WSC are writable, they are
very fast with respect to random read/write operation. However their memory overhead is higher
than CSC matrices, and they are a little bit slower for matrix-vector multiplications.
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By default, all newly created matrices are build as WSC matrices. This can be changed
later with Spmat.to_csc(...), or may be changed automatically by getfem (for example
gf_linsolve() converts the matrices to CSC).

The matrices may store REAL or COMPLEX values.

General constructor for Spmat objects

• SM = Spmat('empty', int m [, int n])Create a new empty (i.e. full of zeros)
sparse matrix, of dimensions m x n. If n is omitted, the matrix dimension is m x m.

• SM = Spmat('copy', mat K [, list I [, list J=I]]) Duplicate a ma-
trix K (which might be an SpMat). If index I and/or J are given, the matrix will be a
submatrix of K. For example:

m = Spmat('copy', Spmat('empty',50,50), range(40), [6, 7, 8, 3,
→˓10])

will return a 40x5 matrix.

• SM = Spmat('identity', int n) Create a n x n identity matrix.

• SM = Spmat('mult', Spmat A, Spmat B) Create a sparse matrix as the product
of the sparse matrices A and B. It requires that A and B be both real or both complex, you
may have to use Spmat.to_complex()

• SM = Spmat('add', Spmat A, Spmat B) Create a sparse matrix as the sum of
the sparse matrices A and B. Adding a real matrix with a complex matrix is possible.

• SM = Spmat('diag', mat D [, ivec E [, int n [,int m]]]) Create a
diagonal matrix. If E is given, D might be a matrix and each column of E will contain the
sub-diagonal number that will be filled with the corresponding column of D.

• SM = Spmat('load','hb'|'harwell-boeing'|'mm'|'matrix-market',
string filename) Read a sparse matrix from an Harwell-Boeing or a Matrix-Market
file .

add(I, J, V)
Add V to the sub-matrix ‘M(I,J)’.

V might be a sparse matrix or a full matrix.

assign(I, J, V)
Copy V into the sub-matrix ‘M(I,J)’.

V might be a sparse matrix or a full matrix.

char()
Output a (unique) string representation of the Spmat.

This can be used to perform comparisons between two different Spmat objects. This function
is to be completed.

clear(I=None, *args)
Synopsis: Spmat.clear(self[, list I[, list J]])

Erase the non-zero entries of the matrix.

The optional arguments I and J may be specified to clear a sub-matrix instead of the entire
matrix.
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conjugate()
Conjugate each element of the matrix.

csc_ind()
Return the two usual index arrays of CSC storage.

If M is not stored as a CSC matrix, it is converted into CSC.

csc_val()
Return the array of values of all non-zero entries of M.

If M is not stored as a CSC matrix, it is converted into CSC.

determinant()
returns the matrix determinant calculated using MUMPS.

diag(E=None)
Return the diagonal of M as a vector.

If E is used, return the sub-diagonals whose ranks are given in E.

dirichlet_nullspace(R)
Solve the dirichlet conditions M.U=R.

A solution U0 which has a minimum L2-norm is returned, with a sparse matrix N containing
an orthogonal basis of the kernel of the (assembled) constraints matrix M (hence, the PDE
linear system should be solved on this subspace): the initial problem

K.U = B with constraints M.U = R

is replaced by

(N’.K.N).UU = N’.B with U = N.UU + U0

display()
displays a short summary for a Spmat object.

full(I=None, *args)
Synopsis: Sm = Spmat.full(self[, list I[, list J]])

Return a full (sub-)matrix.

The optional arguments I and J, are the sub-intervals for the rows and columns that are to be
extracted.

is_complex()
Return 1 if the matrix contains complex values.

mult(V)
Product of the sparse matrix M with a vector V.

For matrix-matrix multiplications, see Spmat(‘mult’).

nnz()
Return the number of non-null values stored in the sparse matrix.

save(format, filename)
Export the sparse matrix.

the format of the file may be ‘hb’ for Harwell-Boeing, or ‘mm’ for Matrix-Market.

scale(v)
Multiplies the matrix by a scalar value v.
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set_diag(D, E=None)
Change the diagonal (or sub-diagonals) of the matrix.

If E is given, D might be a matrix and each column of E will contain the sub-diagonal
number that will be filled with the corresponding column of D.

size()
Return a vector where ni and nj are the dimensions of the matrix.

storage()
Return the storage type currently used for the matrix.

The storage is returned as a string, either ‘CSC’ or ‘WSC’.

tmult(V)
Product of M transposed (conjugated if M is complex) with the vector V.

to_complex()
Store complex numbers.

to_csc()
Convert the matrix to CSC storage.

CSC storage is recommended for matrix-vector multiplications.

to_wsc()
Convert the matrix to WSC storage.

Read and write operation are quite fast with WSC storage.

transconj()
Transpose and conjugate the matrix.

transpose()
Transpose the matrix.

7.19 Module asm

asm_generic(mim, order, expression, region, model=None, *args)
Synopsis: (. . . ) = asm_generic(MeshIm mim, int order, string expression, int region, [Model
model, [‘Secondary_domain’, ‘name’,]] [string varname, int is_variable[, {MeshFem mf,
MeshImd mimd}], value], [‘select_output’, ‘varname1’[, ‘varname2]], . . . )

High-level generic assembly procedure for volumic or boundary assembly.

Performs the generic assembly of expression with the integration method mim on the mesh re-
gion of index region (-1 means all elements of the mesh). The same mesh should be shared by
the integration method and all the finite element methods or mesh_im_data corresponding to the
variables.

order indicates either that the (scalar) potential (order = 0) or the (vector) residual (order = 1) or
the tangent (matrix) (order = 2) is to be computed.

model is an optional parameter allowing to take into account all variables and data of a model.
Note that all enabled variables of the model will occupy space in the returned vector/matrix corre-
sponding to their degrees of freedom in the global system, even if they are not present in expres-
sion.
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The variables and constants (data) are listed after the region number (or optionally the model). For
each variable/constant, a name must be given first (as it is referred in the assembly string), then
an integer equal to 1 or 0 is expected respectively for declaring a variable or a constant, then the
finite element method if it is a fem variable/constant or the mesh_im_data if it is data defined on
integration points, and the vector representing the value of the variable/constant. It is possible to
give an arbitrary number of variable/constant. The difference between a variable and a constant is
that test functions are only available for variables, not for constants.

select_output is an optional parameter which allows to reduce the output vector (for order equal
to 1) or the matrix (for order equal to 2) to the degrees of freedom of the specified variables. One
variable has to be specified for a vector output and two for a matrix output.

Note that if several variables are given, the assembly of the tangent matrix/residual vector will be
done considering the order in the call of the function (the degrees of freedom of the first variable,
then of the second one, and so on). If a model is provided, all degrees of freedom of the model
will be counted first, even if some of the model variables do not appear in expression.

For example, the L2 norm of a vector field “u” can be computed with:

gf_compute('L2 norm') or with the square root of:

gf_asm('generic', mim, 0, 'u.u', -1, 'u', 1, mf, U);

The nonhomogeneous Laplacian stiffness matrix of a scalar field can be evaluated with:

gf_asm('laplacian', mim, mf, mf_data, A) or equivalently with:

gf_asm('generic', mim, 2, 'A*Grad_Test2_u.Grad_Test_u', -1, 'u', 1,
→˓mf, U, 'A', 0, mf_data, A);

asm_mass_matrix(mim, mf1, mf2=None, *args)
Synopsis: M = asm_mass_matrix(MeshIm mim, MeshFem mf1[, MeshFem mf2[, int region]])

Assembly of a mass matrix.

Return a SpMat object.

asm_laplacian(mim, mf_u, mf_d, a, region=None)
Assembly of the matrix for the Laplacian problem.

∇ · (𝑎(𝑥)∇𝑢) with a a scalar.

Return a SpMat object.

asm_linear_elasticity(mim, mf_u, mf_d, lambda_d, mu_d, region=None)
Assembles of the matrix for the linear (isotropic) elasticity problem.

∇ · (𝐶(𝑥) : ∇𝑢) with 𝐶 defined via lambda_d and mu_d.

Return a SpMat object.

asm_nonlinear_elasticity(mim, mf_u, U, law, mf_d, params, *args)
Synopsis: TRHS = asm_nonlinear_elasticity(MeshIm mim, MeshFem mf_u, vec U, string law,
MeshFem mf_d, mat params, {‘tangent matrix’|’rhs’|’incompressible tangent matrix’, MeshFem
mf_p, vec P|’incompressible rhs’, MeshFem mf_p, vec P})

Assembles terms (tangent matrix and right hand side) for nonlinear elasticity.

The solution U is required at the current time-step. The law may be choosen among:
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• ‘SaintVenant Kirchhoff’: Linearized law, should be avoided. This law has the two usual
Lame coefficients as parameters, called lambda and mu.

• ‘Mooney Rivlin’: This law has three parameters, called C1, C2 and D1. Can be preceded
with the words ‘compressible’ or ‘incompressible’ to force a specific version. By default, the
incompressible version is considered which requires only the first two material coefficients.

• ‘neo Hookean’: A special case of the ‘Mooney Rivlin’ law that requires one material coeffi-
cient less (C2 = 0). By default, its compressible version is used.

• ‘Ciarlet Geymonat’: This law has 3 parameters, called lambda, mu and gamma, with gamma
chosen such that gamma is in ]-lambda/2-mu, -mu[.

The parameters of the material law are described on the MeshFem mf_d. The matrix params
should have nbdof(mf_d) columns, each row correspounds to a parameter.

The last argument selects what is to be built: either the tangent matrix, or the right hand side. If
the incompressibility is considered, it should be followed by a MeshFem mf_p, for the pression.

Return a SpMat object (tangent matrix), vec object (right hand side), tuple of SpMat objects
(incompressible tangent matrix), or tuple of vec objects (incompressible right hand side).

asm_helmholtz(mim, mf_u, mf_d, k, region=None)
Assembly of the matrix for the Helmholtz problem.

∆𝑢 + 𝑘2𝑢 = 0, with k complex scalar.

Return a SpMat object.

asm_bilaplacian(mim, mf_u, mf_d, a, region=None)
Assembly of the matrix for the Bilaplacian problem.

∆(𝑎(𝑥)∆𝑢) = 0 with a scalar.

Return a SpMat object.

asm_bilaplacian_KL(mim, mf_u, mf_d, a, nu, region=None)
Assembly of the matrix for the Bilaplacian problem with Kirchhoff-Love formulation.

∆(𝑎(𝑥)∆𝑢) = 0 with a scalar.

Return a SpMat object.

asm_volumic_source(mim, mf_u, mf_d, fd, region=None)
Assembly of a volumic source term.

Output a vector V, assembled on the MeshFem mf_u, using the data vector fd defined on the data
MeshFem mf_d. fd may be real or complex-valued.

Return a vec object.

asm_boundary_source(bnum, mim, mf_u, mf_d, G)
Assembly of a boundary source term.

G should be a [Qdim x N] matrix, where N is the number of dof of mf_d, and Qdim is the dimen-
sion of the unkown u (that is set when creating the MeshFem).

Return a vec object.

asm_dirichlet(bnum, mim, mf_u, mf_d, H, R, threshold=None)
Assembly of Dirichlet conditions of type h.u = r.
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Handle h.u = r where h is a square matrix (of any rank) whose size is equal to the dimension of
the unkown u. This matrix is stored in H, one column per dof in mf_d, each column containing
the values of the matrix h stored in fortran order:

‘𝐻(:, 𝑗) = [ℎ11(𝑥𝑗)ℎ21(𝑥𝑗)ℎ12(𝑥𝑗)ℎ22(𝑥𝑗)]‘

if u is a 2D vector field.

Of course, if the unknown is a scalar field, you just have to set H = ones(1, N), where N is the
number of dof of mf_d.

This is basically the same than calling gf_asm(‘boundary qu term’) for H and calling
gf_asm(‘neumann’) for R, except that this function tries to produce a ‘better’ (more diagonal)
constraints matrix (when possible).

See also Spmat.Dirichlet_nullspace().

asm_boundary_qu_term(boundary_num, mim, mf_u, mf_d, q)
Assembly of a boundary qu term.

q should be be a [Qdim x Qdim x N] array, where N is the number of dof of mf_d, and Qdim is
the dimension of the unkown u (that is set when creating the MeshFem).

Return a SpMat object.

asm_define_function(name, nb_args, expression, expression_derivative_t=None, *args)
Synopsis: asm_define_function(string name, int nb_args, string expression[, string expres-
sion_derivative_t[, string expression_derivative_u]])

Define a new function name which can be used in high level generic assembly. The function can
have one or two parameters. In expression all available predefined function or operation of the
generic assembly can be used. However, no reference to some variables or data can be specified.
The argument of the function is t for a one parameter function and t and u for a two parameter
function. For instance ‘sin(pi*t)+2*t*t’ is a valid expression for a one parameter function and
‘sin(max(t,u)*pi)’ is a valid expression for a two parameters function. expression_derivative_t
and expression_derivative_u are optional expressions for the derivatives with respect to t and u. If
they are not furnished, a symbolic derivation is used.

asm_undefine_function(name)
Cancel the definition of a previously defined function name for the high level generic assembly.

asm_define_linear_hardening_function(name, sigma_y0, H, *args)
Synopsis: asm_define_linear_hardening_function(string name, scalar sigma_y0, scalar H, . . .
[string ‘Frobenius’])

Define a new linear hardening function under the name name, with initial yield stress sigma_y0
and hardening modulus H. If an extra string argument with the value ‘Frobenius’ is provided, the
hardening function is expressed in terms of Frobenius norms of its input strain and output stress,
instead of their Von-Mises equivalents.

asm_define_Ramberg_Osgood_hardening_function(name, sigma_ref, *args)
Synopsis: asm_define_Ramberg_Osgood_hardening_function(string name, scalar sigma_ref,
{scalar eps_ref | scalar E, scalar alpha}, scalar n[, string ‘Frobenius’])

Define a new Ramberg Osgood hardening function under the name name, with initial yield stress
sigma_y0 and hardening modulus H. If an extra string argument with the value ‘Frobenius’ is
provided, the hardening function is expressed in terms of Frobenius norms of its input strain and
output stress, instead of their Von-Mises equivalents.
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asm_expression_analysis(expression, *args)
Synopsis: asm_expression_analysis(string expression [, {Mesh mesh | MeshIm mim}] [,
der_order] [, Model model] [, string varname, int is_variable[, {MeshFem mf | MeshImd mimd}],
. . . ])

Analyse a high-level generic assembly expression and print information about the provided ex-
pression.

asm_volumic(CVLST=None, *args)
Synopsis: (. . . ) = asm_volumic(,CVLST], expr [, mesh_ims, mesh_fems, data. . . ])

Low-level generic assembly procedure for volumic assembly.

The expression expr is evaluated over the MeshFem’s listed in the arguments (with optional data)
and assigned to the output arguments. For details about the syntax of assembly expressions, please
refer to the getfem user manual (or look at the file getfem_assembling.h in the GetFEM sources).

For example, the L2 norm of a field can be computed with:

gf_compute('L2 norm') or with the square root of:

gf_asm('volumic','u=data(#1); V()+=u(i).u(j).comp(Base(#1).Base(
→˓#1))(i,j)',mim,mf,U)

The Laplacian stiffness matrix can be evaluated with:

gf_asm('laplacian',mim, mf, mf_data, A) or equivalently with:

gf_asm('volumic','a=data(#2);M(#1,#1)+=sym(comp(Grad(#1).Grad(#1).
→˓Base(#2))(:,i,:,i,j).a(j))', mim,mf,mf_data,A);

asm_boundary(bnum, expr, mim=None, mf=None, data=None, *args)
Synopsis: (. . . ) = asm_boundary(int bnum, string expr [, MeshIm mim, MeshFem mf, data. . . ])

Low-level generic boundary assembly.

See the help for gf_asm(‘volumic’).

asm_interpolation_matrix(mf, *args)
Synopsis: Mi = asm_interpolation_matrix(MeshFem mf, {MeshFem mfi | vec pts})

Build the interpolation matrix from a MeshFem onto another MeshFem or a set of points.

Return a matrix Mi, such that V = Mi.U is equal to gf_compute(‘interpolate_on’,mfi). Useful for
repeated interpolations. Note that this is just interpolation, no elementary integrations are involved
here, and mfi has to be lagrangian. In the more general case, you would have to do a L2 projection
via the mass matrix.

Mi is a SpMat object.

asm_extrapolation_matrix(mf, *args)
Synopsis: Me = asm_extrapolation_matrix(MeshFem mf, {MeshFem mfe | vec pts})

Build the extrapolation matrix from a MeshFem onto another MeshFem or a set of points.

Return a matrix Me, such that V = Me.U is equal to gf_compute(‘extrapolate_on’,mfe). Useful
for repeated extrapolations.

Me is a SpMat object.
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asm_integral_contact_Uzawa_projection(bnum, mim, mf_u, U, mf_lambda,
vec_lambda, mf_obstacle, obstacle, r,
*args)

Synopsis: B = asm_integral_contact_Uzawa_projection(int bnum, MeshIm mim, MeshFem mf_u,
vec U, MeshFem mf_lambda, vec vec_lambda, MeshFem mf_obstacle, vec obstacle, scalar r [,
{scalar coeff | MeshFem mf_coeff, vec coeff} [, int option[, scalar alpha, vec W]]])

Specific assembly procedure for the use of an Uzawa algorithm to solve contact problems.
Projects the term $-(lambda - r (u_N-g))_-$ on the finite element space of $lambda$.

Return a vec object.

asm_level_set_normal_source_term(bnum, mim, mf_u, mf_lambda, vec_lambda,
mf_levelset, levelset)

Performs an assembly of the source term represented by vec_lambda on mf_lambda considered to
be a component in the direction of the gradient of a levelset function (normal to the levelset) of a
vector field defined on mf_u on the boundary bnum.

Return a vec object.

asm_lsneuman_matrix(mim, mf1, mf2, ls, region=None)
Assembly of a level set Neuman matrix.

Return a SpMat object.

asm_nlsgrad_matrix(mim, mf1, mf2, ls, region=None)
Assembly of a nlsgrad matrix.

Return a SpMat object.

asm_stabilization_patch_matrix(mesh, mf, mim, ratio, h)
Assembly of stabilization patch matrix .

Return a SpMat object.

7.20 Module compute

compute_L2_norm(MF, U, mim, CVids=None)
Compute the L2 norm of the (real or complex) field U.

If CVids is given, the norm will be computed only on the listed elements.

compute_L2_dist(MF, U, mim, mf2, U2, CVids=None)
Compute the L2 distance between U and U2.

If CVids is given, the norm will be computed only on the listed elements.

compute_H1_semi_norm(MF, U, mim, CVids=None)
Compute the L2 norm of grad(U).

If CVids is given, the norm will be computed only on the listed elements.

compute_H1_semi_dist(MF, U, mim, mf2, U2, CVids=None)
Compute the semi H1 distance between U and U2.

If CVids is given, the norm will be computed only on the listed elements.

compute_H1_norm(MF, U, mim, CVids=None)
Compute the H1 norm of U.
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If CVids is given, the norm will be computed only on the listed elements.

compute_H2_semi_norm(MF, U, mim, CVids=None)
Compute the L2 norm of D^2(U).

If CVids is given, the norm will be computed only on the listed elements.

compute_H2_norm(MF, U, mim, CVids=None)
Compute the H2 norm of U.

If CVids is given, the norm will be computed only on the listed elements.

compute_gradient(MF, U, mf_du)
Compute the gradient of the field U defined on MeshFem mf_du.

The gradient is interpolated on the MeshFem mf_du, and returned in DU. For example, if U is
defined on a P2 MeshFem, DU should be evaluated on a P1-discontinuous MeshFem. mf and
mf_du should share the same mesh.

U may have any number of dimensions (i.e. this function is not restricted to the gradient of scalar
fields, but may also be used for tensor fields). However the last dimension of U has to be equal
to the number of dof of mf. For example, if U is a [3x3xNmf] array (where Nmf is the number
of dof of mf ), DU will be a [Nx3x3[xQ]xNmf_du] array, where N is the dimension of the mesh,
Nmf_du is the number of dof of mf_du, and the optional Q dimension is inserted if Qdim_mf !=
Qdim_mf_du, where Qdim_mf is the Qdim of mf and Qdim_mf_du is the Qdim of mf_du.

compute_hessian(MF, U, mf_h)
Compute the hessian of the field U defined on MeshFem mf_h.

See also gf_compute(‘gradient’, MeshFem mf_du).

compute_eval_on_triangulated_surface(MF, U, Nrefine, CVLIST=None)
[OBSOLETE FUNCTION! will be removed in a future release] Utility function designed for 2D
triangular meshes : returns a list of triangles coordinates with interpolated U values. This can
be used for the accurate visualization of data defined on a discontinous high order element. On
output, the six first rows of UP contains the triangle coordinates, and the others rows contain the
interpolated values of U (one for each triangle vertex) CVLIST may indicate the list of convex
number that should be consider, if not used then all the mesh convexes will be used. U should be
a row vector.

compute_interpolate_on(MF, U, *args)
Synopsis: Ui = compute_interpolate_on(MeshFem MF, vec U, {MeshFem mfi | Slice sli | vec
pts})

Interpolate a field on another MeshFem or a Slice or a list of points.

• Interpolation on another MeshFem mfi: mfi has to be Lagrangian. If mf and mfi share the
same mesh object, the interpolation will be much faster.

• Interpolation on a Slice sli: this is similar to interpolation on a refined P1-discontinuous
mesh, but it is much faster. This can also be used with Slice(‘points’) to obtain field
values at a given set of points.

• Interpolation on a set of points pts

See also gf_asm(‘interpolation matrix’)

compute_extrapolate_on(MF, U, mfe)
Extrapolate a field on another MeshFem.
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If the mesh of mfe is stricly included in the mesh of mf, this function does stricly the same job as
gf_compute(‘interpolate_on’). However, if the mesh of mfe is not exactly included in mf (imagine
interpolation between a curved refined mesh and a coarse mesh), then values which are outside mf
will be extrapolated.

See also gf_asm(‘extrapolation matrix’)

compute_error_estimate(MF, U, mim)
Compute an a posteriori error estimate.

Currently there is only one which is available: for each convex, the jump of the normal derivative
is integrated on its faces.

compute_error_estimate_nitsche(MF, U, mim, GAMMAC, GAMMAN, lambda_,
mu_, gamma0, f_coeff, vertical_force)

Compute an a posteriori error estimate in the case of Nitsche method.

Currently there is only one which is available: for each convex, the jump of the normal derivative
is integrated on its faces.

compute_convect(MF, U, mf_v, V, dt, nt, option=None, *args)
Synopsis: compute_convect(MeshFem MF, vec U, MeshFem mf_v, vec V, scalar dt, int nt[, string
option[, vec per_min, vec per_max]])

Compute a convection of U with regards to a steady state velocity field V with a Characteristic-
Galerkin method. The result is returned in-place in U. This method is restricted to pure Lagrange
fems for U. mf_v should represent a continuous finite element method. dt is the integration time
and nt is the number of integration step on the caracteristics. option is an option for the part of
the boundary where there is a re-entrant convection. option = ‘extrapolation’ for an extrapolation
on the nearest element, option = ‘unchanged’ for a constant value on that boundary or option =
‘periodicity’ for a peridiodic boundary. For this latter option the two vectors per_min, per_max
has to be given and represent the limits of the periodic domain (on components where per_max[k]
< per_min[k] no operation is done). This method is rather dissipative, but stable.

7.21 Module delete

delete(I, J=None, K=None, *args)
Synopsis: delete(I[, J, K,. . . ])

I should be a descriptor given by gf_mesh(), gf_mesh_im(), gf_slice() etc.

Note that if another object uses I, then object I will be deleted only when both have been asked
for deletion.

Only objects listed in the output of gf_workspace(‘stats’) can be deleted (for example gf_fem
objects cannot be destroyed).

You may also use gf_workspace(‘clear all’) to erase everything at once.

7.22 Module linsolve

linsolve_gmres(M, b, restart=None, *args)
Synopsis: X = linsolve_gmres(SpMat M, vec b[, int restart][, Mrecond P][,’noisy’][,’res’,
r][,’maxiter’, n])
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Solve M.X = b with the generalized minimum residuals method.

Optionally using P as preconditioner. The default value of the restart parameter is 50.

linsolve_cg(M, b, P=None, *args)
Synopsis: X = linsolve_cg(SpMat M, vec b [, Mrecond P][,’noisy’][,’res’, r][,’maxiter’, n])

Solve M.X = b with the conjugated gradient method.

Optionally using P as preconditioner.

linsolve_bicgstab(M, b, P=None, *args)
Synopsis: X = linsolve_bicgstab(SpMat M, vec b [, Mrecond P][,’noisy’][,’res’, r][,’maxiter’, n])

Solve M.X = b with the bi-conjugated gradient stabilized method.

Optionally using P as a preconditioner.

linsolve_lu(M, b)
Alias for gf_linsolve(‘superlu’,. . . )

linsolve_superlu(M, b)
Solve M.U = b apply the SuperLU solver (sparse LU factorization).

The condition number estimate cond is returned with the solution U.

linsolve_mumps(M, b)
Solve M.U = b using the MUMPS solver.

7.23 Module poly

poly_print(P)
Prints the content of P.

poly_product(P)
To be done . . . !

7.24 Module util

util_save_matrix(FMT, FILENAME, A)
Exports a sparse matrix into the file named FILENAME, using Harwell-Boeing (FMT=’hb’) or
Matrix-Market (FMT=’mm’) formatting.

util_load_matrix(FMT, FILENAME)
Imports a sparse matrix from a file.

util_trace_level(level=None)
Set the verbosity of some GetFEM routines.

Typically the messages printed by the model bricks, 0 means no trace message (default is 3). if no
level is given, the current trace level is returned.

util_warning_level(level)
Filter the less important warnings displayed by getfem.

0 means no warnings, default level is 3. if no level is given, the current warning level is returned.
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util_set_num_threads(nb_threads)
Sets the number of threads for the multithreaded GetFEM version. It is available only when
GetFEM is compiled with openmp support.
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tmult() (Precond method), 89
tmult() (Spmat method), 96
to_complex() (Spmat method), 96
to_csc() (Spmat method), 96
to_variables() (Model method), 88
to_wsc() (Spmat method), 96
transconj() (Spmat method), 96
transform() (GeoTrans method), 32
transform() (Mesh method), 44
transformation_name_of_large_sliding_contact_brick()

(Model method), 88
transformation_name_of_Nitsche_large_sliding_contact_brick()

(Model method), 88
translate() (Mesh method), 44
transpose() (Spmat method), 96
triangulated_surface() (Mesh method),

44
type() (Precond method), 89

U
util_load_matrix() (in module getfem),
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util_save_matrix() (in module getfem),
104

util_set_num_threads() (in module get-
fem), 104

util_trace_level() (in module getfem),
104

util_warning_level() (in module getfem),
104

V
val() (GlobalFunction method), 33
values() (LevelSet method), 36
variable() (Model method), 88
variable_list() (Model method), 88
Von Mises, 19
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